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Parametric identification of nonlinear hysteretic systems

Y. Rochdi - F. Giri - F. Ikhouane - F.Z. Chaoui -
J. Rodellar

Abstract The hysteretic behavior is an essential fea-
ture of many physical systems (e.g. mechanical struc-
tures, buildings dampers). Such a feature is conve-
niently accounted for in hysteretic systems’ model-
ing through the well-known Bouc—Wen equations. But
these involve several unknown parameters and inter-
nal signals that are not all accessible to measurements.
Furthermore, not all parameters come in linearly. All
these difficulties make the identification of hysteretic
systems a challenging problem. To cope with these is-
sues, previous works have simplified the problem by
supposing that the system displacements are large, the
restoring force (and other internal signals) are acces-
sible to measurements, the displacement is the actual
control signal, the unknown parameter entering non-
linearly is known or is an integer, etc. In fact, these
restrictive assumptions amount to supposing, among
others, that the Bouc—Wen equations describe an iso-
lated physical element in which ‘hysteretis’ is the only
dynamic feature. The point is that the control input
should be an external driving force and not the dis-
placement. In this paper, the hysteretic equations are
let to be what they really are in most practical situa-
tions: just a part of the system dynamics. Such a more
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realistic problem statement has a cost, which is in ad-
ditional unknown parameters. A multi-stage paramet-
ric identification scheme is designed in this paper and
shown to recover consistently the unknown system pa-
rameters. The proposed solution is suitable for systems
not tolerating large displacements (e.g. buildings) as
well as for situations where force, velocity and accel-
eration sensors are not available.

Keywords Nonlinear system identification -
Hysteretic systems - Bouc—Wen model

1 Introduction

Hysteresis is a memory feature that characterizes a
wide variety of nonlinear systems. In these systems,
the output value at a given time instant depends not
only on the instantaneous input but also on its past his-
tory. To describe the behavior of hysteretic processes,
several mathematical models have been proposed, e.g.
Preisach and Bouc—Wen models [4]. In this paper
the focus is made on the Bouc—Wen model because
its full parametric nature makes it suitable for para-
metric identification. In practical applications, such
model describes softening hysteretic behavior [7]. It
may also represent a quasi-linear hysteretic behavior
that is compatible with certain physical phenomena,
e.g. thermodynamic laws [9]. Nevertheless, the Bouc—
Wen model has received a great deal of interest due



to its numerical tractability and its ability to match
the behavior of a wide class of systems in mechanical
and structural engineering. In particular, it has been
used to model piezoelectric actuators, base-isolation
devices and magnetorheological dampers [5, 6, 8]. In
this model, the restoring force @pw (¢) is related to the
displacement x () as follows:

Dpw(t) = akx(t) + (1 —a)Dkz(t), €))]
2() = DTN (A% (1) — B3| [z0)]" " 2(0)
—yi0|zm)|") 2)

where the parameters 0 < o < 1,k > 0,D > 0,
A>0,—8 <y < B,n>1 determine the shape
and size of the hysteresis loop. Identification of the
model (1)—(2) amounts to determining the parameters
o, B,v,A, D, k,n. This is not a trivial task as the state
z(t) is not accessible to measurements. Furthermore,
the parameter n comes nonlinearly in the model and is
not necessarily an integer. Many identification meth-
ods have been proposed to get estimates of the Bouc—
Wen model parameters. A number of early methods
have been reported in [7] and more recent ones have
been presented in [1, 3, 8]. However, the proposed
methods are generally based on simplifying assump-
tions on the system and on the signals. For instance,
in [1] and [8] it was supposed that some system pa-
rameters (e.g. system mass, friction coefficient) are
known and the second derivative of x(¢) is measur-
able. In [1], it was assumed that n is an integer and
bounded by a known integer. In [3] it is supposed that
the restoring force @pw (¢) is accessible to measure-
ments and the displacement x (¢) is the actual control
input of the system.

In this paper, the hysteretic element (1)—(2) is as-
sumed to be a part of a more complete mechanical
structure of single-degree-of-freedom (SDOF). Ac-
cordingly, the displacement x (¢) undergoes a Newton
motion equation driven by an external force. Further-
more, the displacement measurement is affected by an
additive noise. The considered SDOF structure is con-
trolled by the driving force (input signal) and observed
by the (noisy) measured displacement (output signal).
The more realistic system thus defined is characterized
by (1)-(2), together with the Newton equation and out-
put equations. The Newton equation introduces addi-
tional unknown parameters (inertia and friction coef-
ficients). An identification scheme is designed to get

estimates of all unknown parameters without resort-
ing to those unrealistic assumptions, such as suppos-
ing accessible to measurement the restoring force and
the displacement derivatives or supposing the parame-
ter n to be an integer. The proposed method operates in
three main stages. In each stage a part of the unknown
parameters and unmeasured signals is estimated and
the estimates obtained in one stage are based upon in
the next stage to estimate other signals and parameters.
The proposed identification method relies on simple
experiments that only necessitate sine wave exciting
signals. Finally, note that consistency properties are
formally established for all involved estimators (while
earlier works resorted generally to simulations to illus-
trate consistency [1, 7, 8]).

The paper is organized as follows: the identifica-
tion problem at hand is formulated in Sect. 2; the pro-
posed identification method is designed and analyzed
in Sect. 3. Simulations illustrating the given identifica-
tion scheme efficiency are presented in Sect. 4. A con-
clusion and a reference list end the paper.

2 Identification problem statement
2.1 Class of identified systems

We are interested in (mechanical/structural) systems
that involve the hysteresis feature. This is for instance
the case of base isolators installed to supply passive
or active (through actuators) protection of huge build-
ings against earthquakes. The motion of the base is de-
scribed applying Newton’s law:

mi(t) + fx(1) + Pew(r) = u(1), 3)
xa(t) =x() + &) “)

where u(t) represents the excitation force; x(¢) de-
notes the real displacement and x;(¢) is its measured
value; &(¢) is a zero-mean ergodic stochastic process
accounting for external disturbances. The constants m
and f are respectively the inertia and the friction coef-
ficient. @pw (¢) denotes the nonlinear restoring force
that is assumed to undergo the following normalized
Bouc—Wen model:

DPpw (1) =kyx(t) + kyo(1), (5)



o) = p(i@) — o O)||o®) | w@)

—(1—0)i(@®)|w®]") (6)
where
1
ky >0, ky >0, p >0, o> =
2 (7
and n>1.

The normalized model (5)—(6) involves only five un-
known parameters, while the initial model (1)-(2)
involved seven parameters. Equation (5) shows that
the restoring force @pw(¢) is the superposition of an
elastic component kyx(¢) and a hysteretic component
kyww (). The signal w(t), which is an internal state, is
not supposed to be available. Consequently, the restor-
ing force is in turn not available. In fact, u(¢) and x4(t)
are the only measurable signals. In particular, x (t) and
its derivatives x(¢) and X(¢t) are not supposed to be
measurable.

Remark 2.1

(1) The fact that none of @gw(t), x(t), x(¢) and ¥ (¢)
is supposed to be measurable does constitute a
substantial progress with respect to the existing lit-
erature, e.g. [1, 3, 8].

(2) A vibration system could be either force con-
trolled or displacement controlled. In the last case,
the internal signal x(¢) must be sufficiently ex-
citing to ensure consistent parameter estimation.
In [3], the internal signal x(¢) is supposed to be
T-periodic of a specific shape. Such assumption
amounts to neglect the mass m in (3). The point is
that, such an assumption does not hold in all situ-
ations. Therefore, the identification problem must
be dealt with taking into account the full system
described by the mechanical equations (3)—(4) and
the hysteretic equations (5)-(6). Such system is
driven by the external force u(¢) and has the dis-
placement x(¢) as output.

(3) Another interesting feature of the present study,
compared to most previously mentioned works, is
that the identification scheme design is performed
in presence of a measurement noise affecting the
displacement. This makes the present identifica-
tion design more realistic. In [8] a displacement
measurement noise was only accounted for in the
simulation stage.

2.2 Identification objective

Our purpose is to design an identification scheme
that provides asymptotically accurate estimates of the
unknown parameters m, f, ky, ky, 0,0 and n. From
an identification viewpoint the difficulty does not lie
only in the system memory feature, it also lies in
the fact that most internal signals (w (), Ppw (1), x (1),
x(t), X(t)) are not accessible to measurement (i.e. sys-
tem identification should only be based on the control
input u#(¢) and the output measure x,4(¢)). Another dif-
ficulty lies in the fact that the unknown parameter n
is not necessarily an integer and comes in nonlinearly
in (6).

3 Identification scheme design
3.1 Hysteretic model re-parameterization
The proposed identification scheme is based on a new

re-parameterization of the system. To this end, we
rewrite (5) and (7) as follows:

Ppw (1) = kex (1) + (1), ®)

(1) = ax (1) — b|x(0)||[v@)|" o) + e () o))"
C))

where:

v(t) = kyo (1), (10a)

a=pky; b= k/,’;,: . e= % (10b)

In this re-parameterized model, the unknown parame-
ters are n, m, f, ky,a, b, and c. The initial parameters
ky,p,y can be recovered from the new parameters
a, b, c and n using the following equations:

1/n
a a
w (b—c) p ku)

3.2 Estimation of the true displacement x ()

All studies on Bouc—Wen model lie on the experimen-
tally-based premise that a steady-state hysteretic limit
cycle is obtained whenever the considered hysteretic



element is excited by a periodic input signal see e.g.
[1, 8]. The only existing formal proof of this fact is
due to Ikhouane and Rodellar [2] and concerns a spe-
cific class of periodic input signals. The involved sig-
nals are mainly featured by their monotonic variation
in [kTkT + t] and opposite-sense monotonic variation
in[kT +t(k+1)T], forsomeconstantt (0 <7 < T),
where T is the signal period and k =0, 1,2,.... Itis
clear that the cosine signals, which are widely used
in the present paper for their simplicity, do share such
feature. Furthermore, it is proved that the hysteretic
limit cycle is fully determined by the input signal i.e.
is independent of the initial conditions. This implies
that, in presence of a periodic input signal, the undis-
turbed output is in turn periodic in steady state (with
the same period as the input) and is independent of the
initial conditions (it only depends on the input).

The proposed identification scheme necessitates
five experiments: two in the first stage of the identifi-
cation scheme (during the SSO procedure), two in the
second stage, and one in the third stage. All of these
involve simple periodic input signals, namely cosine
waves. Consequently, in all experiments, the undis-
turbed output x(¢) turns out to be, in steady state, a
periodic signal with the same period as the input u(z).
This property is now used to perform a consistent es-
timation of x(¢), using the measured signal x;(¢). In
effect, letting 7" denote the period of the input signal,
the displacement x(¢) can be estimated as follows:

N
1

x(t,N)=— t+iT) for0<t<T, 12a
i, N) =+ l;xd( iT) (12a)
x(t,N)=x(t —kT,N)

forkT <t <(k+ DT, k=1,2,3,.... (12b)
Proposition 3.1 The estimator x(t, N) (for a given,
but arbitrary t) is consistent provided that N is suffi-

ciently large. More precisely, one has wp. 1:
x(t,N) — x(t) (forallt).
N—o0

Proof Substituting (3) into (12) one has, successively:

1 & 1 &
i(r,N):WE x(t—i—iT)—i—ﬁE E+iT)
i=1 i=1

1 & ,
=x(l)+ﬁ§§(t+lT)

using the periodicity of x(¢). But, the ergodicity of
&(t) implies that

N
e Et+iT)—> E((1))=0
N i=1

(w.p. 1) as N — oo.

The above equalities establish the consistency of
(12) O

3.3 OQutline of the proposed identification scheme

A general view of the proposed identification scheme
is sketched here. Roughly speaking, the proposed
identification scheme includes three main steps.

First, the parameters m and f will be estimated and
the estimates will be denoted /1 and f . Also, the deriv-
atives x(¢) and X(¢) will be estimated, from x(z, N),
and the estimates will be denoted fc(t, N) and f(r, N).
Then, an obvious estimator of @gw (¢) will simply be:

dpw(t, N) =u(t) — mx(t, N) — fx(t, N). (13)

In the second step, the parameter k, is estimated and
the estimate k, will be used in the following estimator
of the internal variable v(z):

H(t, N) = dgw(t, N) — k% (t, N). (14)

In the third step, the rest of the parameters (i.e.
a,b,c,n) are estimated based on (9), using 0(z, N).
The estimates thus obtained will in turn be used to
get estimates for the parameters k,, o, ¥y making use
of (11).

3.4 Estimation of m, f and @pw(t)

As already mentioned, we only use, in this paper, co-
sine input signals i.e.

u(t) = U, cos(wt). (15)

It also has been mentioned earlier that the resulting
(steady-state) displacement x(¢) is periodic with pe-
riod T = 2m /w. Then, invoking the Fourier series the-
ory, the displacement can be decomposed as follows:

x(t) = X1 cos(wt — @) + xnar(t) (16a)



with

o0
Xhar(£) = Y Xpcos(hot — gp). (16b)
h=2

That is, xpar(¢) includes higher order harmonics re-
sulting from the system nonlinearity (accounted for
through (5)—(6)). Furthermore, it can be shown (see
e.g. [2]) that for small displacements the relationship
between @pw(t) and x(t) becomes linear in steady
state, i.e.:

Ppw (1) = (ky +a)x(1). a7)

This means that for a periodic displacement with small
magnitude the hysteretic feature has no substantial ef-
fect on the displacement. In view of (17), (3) becomes:

mx(t) + fx(t)+ Kx(@) = u(t) (18a)
with
K=k, +a. (18b)

The smaller is max, |x(¢)|, the more accurate is the lin-
ear equation (18a). This in turn implies that xpu () —
0 as max; |x(t)| — 0.

The second-order linear equation (18a) is particu-
larly suitable to get estimates of the unknown parame-
ters m, f, K. But, it is important to recall that x (),
which represents the output of the system is not di-
rectly measurable. So, the question is: How to check
that the validity conditions of such equation are actu-
ally fulfilled?

To answer this question, we make use of the fact
that x (¢, N) is a consistent estimate of the (unavail-
able) signal x(#) and the fact that xpu () — O as
max, (x(¢)) — 0. The idea is to drive the system into
a ‘small-signal’ operation regime, by tuning U,, (and
possibly w) and observing the size of xp, (). This is
precisely formulated in the following search proce-
dure:

Small signal operation (SSO)

(1) Develop the T -periodic signal x(t, N) in Fourier
series. S

(2) Compute the distortion ratio: Dg = Z")(-(#

(3) If DR > ¢, then tune Uy, (or w) so that mlax,|x(t)|
decreases and go to Step 1. Else, note the values

of Uy, w and X and end the procedure.

In Step 3, the parameter ¢ is a real threshold whose
choice is left to the designer. The outcome of the
SSO procedure is a quadruplet (U, ®, ¢(s), X1(¢))
corresponding to conditions where (17)—(18a) hold
with an error that depend on ¢. The smaller ¢ is, the
more accurate (17)—(18a) are. However, a too small
value of ¢ will necessitate a too long time for the
SSO search procedure to end. Therefore, ¢ should
be chosen bearing in mind the above two require-
ments. Our simulations has shown that the choice
& = 0.05 is a satisfactory compromise. The above pro-
cedure can be run on several times leading to dif-
ferent quadruplets. Let (U1, w1, ¢1(€), X11(e)) and
(U2, w2, ¢2(8), X 12(¢)) denote two of such quadru-
plets.

On the other hand, the following expressions read-
ily follow from (18a):

’ﬁ = ! (19a)
Unl  V(fo)?+ (K —mw?)?’
tan(g) = Kf;“’wz (19b)

In effect, these characterize the harmonic behavior of
any linear second-order system. Substituting, succes-
sively (U1, @1, ¢1(€), X11(8)) and (Upa, 02, ¢2(¢),
X12(¢)) into the above expressions, one gets four
equations involving the unknown parameters m, f,
and K. Then estimates m(¢), f(e), Ie(s) can be ob-
tained solving the obtained equations. The quality of
the estimates depends on the value of ¢. The smaller &
is, the more accurate the estimates. The result thus es-
tablished is simply formulated as follows:

fe)=f+ee), (20a)
K(e) =K +e(e) (20b)

m(e) =m+ O(e);

for some function e(¢) that vanishes when ¢ — 0.

Remark 3.1

(1) In[3], no method has been given to check whether
condition (18a) holds or not. In the light of these
observations, the procedure SSO presented above
turns out to be a significant progress.

(2) On the other hand, since the signal x(¢) and its
derivatives x(f) and X(¢t) are presently inacces-
sible to measurement, the estimation of the pa-



rameters m, f, K using the least-squares estima-
tor based on the parameterization equation (18a)
would not be possible.

(3) Now, it is clear that our identification scheme also
applies to the simpler case of displacement con-
trolled system. Then, Sects. 3.2 (estimation of x)
and 3.4 (estimation of m and f) are skipped.

3.5 Estimation of k., a and v(t)

In this section, the amplitude of the output signal x(¢)
is no longer supposed to be small. In such a case, the
curve (u(t), x(t)) leads to a visible hysteretic limit cy-
cle. Making adequate use of such limit cycles, it will
be possible to get estimates of ky and a. These esti-
mates will in turn be used to build up an estimator of
the internal state v(t).

Estimation of k, and a. To this end, we perform two
experiments that consist in exciting the system, suc-
cessively, with the two following signals:

u1(t)=U, cosnt/T), (21a)
uy(t) =Uy,cosmt/T)+U (21b)

where U,, and U are any real constants (with U # 0
and U, #0). Let x;(¢) and x,(¢) denote the resulting
(undisturbed) displacements. These are T -periodic be-
cause the input signals u (¢) and u, () are so. As men-
tioned earlier in this section, the steady-state parts of
x1(t) and x> (¢) are unique and independent of the ini-
tial conditions; they are fully determined by u(¢) and
uy(t) respectively. Now, one has the following result.

Proposition 3.2 Consider the system described by
(3)—(4) and (8)—(9). Let (x1(), vi(t)) and (x2(t), v2(t))
be the solutions obtained when applying ui(t) and
uy(t), respectively. Then one has, for all sufficiently
large t:

xl(r)=x2<r)+k3 and vi(t) = va(0).

X

Proof Let A be any real constant. Then, any couple of
signals (x (), v(¢)) such that:

x()=x1(t)+ A, v(t)=v1(t)

(for all sufficiently large 1) (22)

undergoes the differential equation (9). Indeed, one
has successively (for all sufficiently large 7):

ax(t) — bl ()| |v®]" " v(t) + ci (@) [v()|"
=a(i1(0) + 4) = b1 () + Ao ()" 01 (1)
+ (i @) + 4) o]
= a(i10)) = b1 )| @) v1)
+ c(E1(0) |1 ()]
(using the fact that A is constant)
=01(1) (since (x1(1), v1 (1)) satisfies (9))
=v(t). (23)

Furthermore, substituting (22) into (8) one gets (for all
sufficiently large ¢):

def
Dpw (1) = kyx(1) +v()

= kyx1 (1) +ky A+ 01 (1)

= OLw(0) + kA (24)

where
Dhw (1) E kex1 (1) + 1 (1), (25)

Using again the fact that (x{(¢), v1(¢)) is the solution
of (3), (8) and (9) when applying u (¢), it follows from
(3) that:

mi1(t) + fx1(t) + Pyp (1) = uy (t)

which, together with (22) and (24)—(25), implies (for
all sufficiently large ¢):

mx(t) + fx(t) + Pw(1) =u1(t) —ky A. (26a)

At this point, A is arbitrary. Let us consider the choice
A = U/ k,. Then, using (21b), (26a) can be rewritten
as (for all sufficiently large t):

mx(t) + fx(1) + Pws(1) = us(1). (26b)

Equations (26b), (25), (23) show that the couple
(x(t),v(t)) is a solution of the equation system {(3),
(8), (9)} when this is excited by the input signal u,(?).
But, we know that (x2(¢), v2(¢)) is also a solution
of that system (in response to uz(¢)). Furthermore,



it was already noticed that the steady-state solution
of that system is unique whatever the applied peri-
odic input signal. Therefore, one has x(t) = xa(t)
and v(t) = vp(t) (for all sufficiently large ¢). This,
together with (22), implies that x{(#) = x2(¢t) + A
and v (t) = v2(¢t) (for all sufficiently large ¢). Since
A = U/k,, the proposition is established. (]

Proposition 3.2 suggests, for the parameter ky, the
following estimator:
N U
ke (N) = —— - 27)
7 Jo G2(t, Ny —X1(1, N)) dt

where N is any sufficiently large integer. Also, (18b)
suggests for the parameter a the following estimator:

a(e, N) = K(g) — ky(N). (28)

Proposition 3.3 Let the system described by (3)—(4)
and (8)—(9) be successively excited with the two input
signals defined by (21a)—(21b). Let x1(t), x2(t) denote
the resulting displacements and x1(t, N), x2(t, N) be
their estimates obtained applying (12).

(1) The estimator (27) is consistent i.e. Iex (N) = ky
(wp.1)as N — oo.

(2) The estimator (28) is consistent up to an error that
depends on the threshold ¢ introduced in the SSO
procedure. More precisely, one has w.p. 1:

a(N,&)—a—e(e) as N — o0

for some function e(g) that vanishes when ¢ — 0.

Proof Proposition 3.1 assures that, for sufficiently
large values of ¢, one has w.p. 1: x; (¢, N) —> x; (1)

(i = 1,2). Then, the T-periodicity of x; (t N) (i=
1,2) implies that (w.p. 1):

1 T
= /0 (X2(t, N) — x1(t, N)) dt

1 T

= t+kT)—x1(t+kT))dt 29
N:)ooT/O (x2(t +kT) — x1(t + kT)) (29)
for any sufficiently large integer k. Using Proposi-
tion 3.2, it follows from (29) that

1T U
?/0 (ig(t,N)—il(t,N))dthook— (w.p. 1)

X
which, together with (27), establishes part 1. Part 2
readily follows from part 1, using (18b) and (20b). [

Estimation of v(t) If the derivatives x(¢) and X(t)
were measurable, then a consistent estimator of v(¢)
could readily be obtained from (3), (5) and (10a).
Specifically, the obtained estimator would be:

0(t, N, &) = u(t) —m(e)i(t) — f(©)x(t) —ky(N)x(t).
(30)

However, accurate sensors of the displacement deriv-
atives are generally not available in practice. Further-
more, it is generally not possible to design accurate es-
timators for arbitrary signal derivatives. Nevertheless,
we will show that this is presently possible, thanks
to the (steady-state) T -periodicity of the involved sig-
nals. Indeed, as x(#) is periodic (in steady state) with
period T = 27w /w, it can be developed in Fourier se-
ries:

x(t)=x0+ Y Xpcos(hot — gp). 31)
h=1

The derivatives x(¢) and X (¢) are in turn given the fol-
lowing Fourier expansions:

i) == hoX,sin(hot — @), (32a)
h=1

i) == (hw)*Xp cos(hot — ¢p). (32b)
h=1

The above expressions show that if the Fourier coeffi-
cients Xj of x(¢) were available, then it would be pos-
sible to obtain the derivatives x (¢) and X (¢). The point
is that the measurements x,4(¢) of x(¢) are noisy. Nev-
ertheless, we do have a consistent estimator of x(¢),
namely x (¢, N). Then, instead of (31) we consider the
Fourier series of x (¢, N):

£(t, N) =%o(N) + Y X (N) cos(hat — ¢ (N)).
h=1

(33)

Then, deriving both sides of (33) with respect to ¢ and
truncating the obtained developments, one gets the fol-
lowing estimators for x () and X (¢):

M

=Y " hoXy(N) sin(hot — gu(N)),
h=1

x(t,N,M) =

(34a)



M
Xt N, M) == "(hw)*X,(N) cos(hwt — gy (N))
h=1
(34b)

where M is any positive integer. Given the above es-
timates of x(¢) and x(¢), (30) suggests the following
estimator of v(z):

b(t, N, M, &) = u(t) —m(e)x(t, N, M)
— F(e)F(t, N, M) — ke (N)Z(t, N).
(35)

Proposition 3.4 The estimators (34a)—(34b) and (35)
have the following properties:

(1) (34a)—(34b) are consistent, i.e.
(a) X(t, N,M)— x(t) (wp. 1) as N, M — oo.
(b) X(t, N,M)— i(t) wp.1)as N,M — oc.
(2) For sufficiently large t, (35) is consistent up to an
error that depends on € (the threshold introduced
in the procedure SSO). More precisely, we have:

(@, N, M) —v(t) — e(e)

wp.)as N,M — oo
where e(e¢) — 0 if e — 0.

Proof 1t is readily seen from (33) and (34a)—(34b)
that:

fc(t, N,M)— fc(t, N) (w.p.1)as M — oo,

f(t, N,M)— f(r, N) (w.p.1)as M — oo.

On the other hand, Proposition 3.1 ensures that:

x(t,N)— x() (wp.l)as N — oo.
The above equations imply parts a and b.

Comparing (35) with (30), one gets part 2 using
parts a-b and (20a)—(20b). O

Remark 3.2 The results of Proposition 3.3 suggest that
the integers N and M should be sufficiently large. The
larger these integers are, the better the quality of the
estimates. As long as M is concerned, (29) shows that
a convenient choice is one that satisfies: h2X;, < X|
forall h > M.

3.6 Estimation of the remaining parameters

Though the signal v(¢) is accurately estimated, the es-
timation of the remaining parameters in (9) (namely,
b, ¢ and n) is not that easy. In fact, one is faced with
two major difficulties:

(i) Equation (9) involves the derivative of v(¢) and
this is not accessible to measurements.

(i) The parameter n is not necessarily an integer and
does not come in linearly.

One key idea to overcome these difficulties is to no-
tice that (9) considerably simplifies in each one of the
quadrants of the plane (v(¢), x(¢)). More specifically,
it follows from (9) that:

If (1) > 0 and v(r) > O then:
0(t) = [a— (b— ()" ] ). (362)
If (1) > 0 and v(r) < O then:
o) =[a+ @+ ) |v@)|")x@). (36b)
If (1) < 0 and v(r) < O then:
o) =[a+ (=b+ o) |v®)]"]x ). (36¢)
If (1) < 0 and v(r) > O then:
o) =[a+ b+ @) ]i@). (36d)

These equations are to be considered together with
(10a)—(10b). Now, let us consider the case where
x(t) > 0 and v(¢) > 0. It follows from (36a) that:

(¢
& —a=(c—-bv®)". (37a)
x(1)

On the other hand, one gets from (10) that:

0 a
C—b=——g=—7m <
ku) ku)

0. (37b)

Then, taking logarithms of both sides of (37a), yields:

log(=9 (1) +a) =log(b — ¢) +nlog(v(r)),  (38a)

def D(1)
v(t) = 0 (38b)

Equation (38a) is quite interesting because:



(i) The unknown parameters n and log(b — ¢) come
in linearly.

(i) Accurate estimates are available for the involved
signals, namely log(—v" + a) and log(v).

Therefore, the unknown parameters can be recov-
ered applying the least-squares estimator to the equa-
tion:

log(—3(t, N,M, L, &) +a(N))

=log(b—c) +nlog(d(t, N, M, ¢)) (39a)
with
. 0(t,N, M, L,
0(t1N1M1L18)=u (39b)
x(t,N,M)

where f}(t, N, M, L, ¢) denotes a consistent estimator
(up to an error e(e)) of the derivative v(z). f}(t, N, M,
L, ¢) is constructed making use of the fact that v(z)
is T-periodic (in steady state) and (¢, N, M, ¢) is a
consistent estimator (up to O(¢)). This construction is
based on the Fourier series expansion of v(t, N, M, )
up to the order L, just as this was done to get the es-
timators fc(t, N, M) and f(t, N, M) (see (34a)—(34Db))
making use of the T-periodicity of x(¢) and the fact
that x (¢, N) is a consistent estimator. The least-squares
estimator should be run on whenever x (¢, N, M) > 0
and 0(t, N, M, ) > 0. Doing so, one gets consistent
estimates of (b — ¢) and n.

Similarly, considering the case where x(¢) > 0 and
v(t) < 0, it follows from (36b) and (10a)—(10b) that:

m—a:(c+b)|v(t) : (40a)
pQRo —1)

c+b= —g 2 0 (because o > 1/2). (40b)

These imply:

log(9 (1) — a) =log(b + ¢) + nlog(|v(1)]). (41)

There, too, the unknown parameters, log(b + ¢) and
n, come in linearly and consistent estimators are avail-
able for the involved signals, i.e. ¥ (¢) and v(¢). Then,
the unknown parameters can be recovered applying
the least-squares estimator to the equation:

log(d (1, N, M, L,&) —a(N))
=log(b+c) +nlog(d(t, N, M,¢)). (42)

The present least-squares estimator is run on whenever
x(t,N,M) > 0and 0(t, N, M, ¢) < 0. The consistent
estimate thus obtained for (b + ¢) is combined with
that obtained previously for (b — ¢) to get consistent
estimates for b and c.

4 Evaluation of the identification scheme

To illustrate the efficiency of the proposed identifica-
tion scheme, we consider two different systems both
described by (3)-(6). The parameters characterizing
each system are given the following values:

System 1: p=6; n=27, m=3;, f=7,
ky=ky=2; o=0.7,

System?2: p=3; n=17 m=1;, f=1.4
ky=ky=2; o=1.7.

So the parameters to be identified, according to the
system re-parameterization (8), are from (10), (18b)
and (36¢):

System 1: a=12; b=1.292; c¢=—-0.554;
K = 14;
System?2: a=6; b=3.139; ¢=1.292;

Both systems are disturbed by a sequence &(¢) of ran-
dom numbers uniformly distributed over the interval
[—0.04 0.04].

First stage: estimation of the parameters m, f
and K. Following Sect. 3.4, we successively apply (to
each system) two sinusoidal input signals:

Signals applied to system 1:

. [Tt . [Tt
ul(t)=0.4s1n(%); M2([)=O_SSIH(E);

Signals applied to system 2:

2wt 4rt
ui(t) =0.1 sin(%); us(t) =0.2sin(%),

Applying to each system the procedure described
in Sect. 3.4, we obtain the estimates shown in Table 1,
for two values of N.



Table 1 Estimation of parameters m, f, K

System 1 System 2
m=73 f=7 K=14 m=1 f=14 K=8
N =50 3.534 7.201 14.075 1.045 1.475 8.266
N =200 3.070 7.184 14.009 1.007 1.466 8.031
Second stage: estimation of parameters a and k. System2: N =200, M=8, L=8
Following Sect. 3.4, the followings input signals are
& £s tmput sig and & =0.05.

applied successively to each system:

Signals applied to system 1:

i)

bl

Tt
)+1;

ul(t)=2sin(m 0

ur(t) =2 sin(

Signals applied to system 2:

2t 2t
ul(t)=2sin(%); ug(t)=2sin(%)+1.

Figures la-b show the resulting filtered xi(z, N)
and x,(t, N) obtained applying (12a)-(12b), with
N =200, as well as the difference signal x»(¢, N) —
Xx1(t, N). Then, one gets using (28):

U 1

System1: ky=————=—=2 and
ystem x Go— 1) G an
=K —k, =14.009 — 2 = 12.009;
. U 1
System2: ky=——"—/¥#—@=—= and
(xp —x1) 0.5

4d=K —k,=8.031—-2=6.031.

Third stage: estimation of the remaining parame-
ters. Following Sect. 3.6, each system is excited by a
sinusoidal input signal:

m).

Signal applied to system 1: u3(t) = 2sin( 0

2t
Signal applied to system 2: u3(t) =2 sin(%).

Estimates of x(z,N), x(t,N,M), x(t,N,M),
v, N,M,¢), v¢, N, M,e,L) and 9(t, N, M, L,¢)
are obtained using (12), (30), (35) and (39b), and the
following parameters:

N =800, M =38,

and &=0.05;

System 1: L=38

Considering first system 1, we plot the parameterized
curve (log(v(t, N,M,¢)),log(—9(t, N,M,L,¢e) +
a(N))) for those time instants ¢ such that x (¢, N, M) >
Oand v(¢t, N, M, &) > 0. As expected the obtained plot
(Fig. 2a) is a straight line (except for the borders due to
computation errors). Then, performing a least-squares
estimation (in the useful interval [—0.5 0.45]) we get
the following estimates:

7A=2.652 and b—¢é=1877. 43)
Similarly, applying the least-squares estimator to
(3.6), we get the estimates:

and b4 ¢é=0.662.

n=2.860 (44)

Combining (43) and (44), one obtains the estimates:

A

n=(2.86+2.652)/2=2.5, b=1.269,

¢ =0.607.

The remaining parameters are estimated using (11):

~

ky = 1.963; 0=6.112; o =0.675.
Applying the same procedure for system 2, we first
plot the curve (log(v(t, N, M, ¢)),log(—d(¢t, N, M,
L,&)+a(N))), for all ¢ such that x(¢, N, M) > 0 and
v(t, N, M, &) > 0. The obtained plot yields (Fig. 2b):
and b —¢=1.795.

n=1.598 (45)

Then, the plot of (log(v(¢, N, M, ¢)), log(l§(t, N,M,L,g)—

a(N))) yields:

A=1.679 and b+ ¢=4278. (46)
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Fig. 1 (a) Estimation of the offset X, — x; for system 1. (b) Es-
timation of the offset xo — x; for system 2

Combining (45) and (46), one obtains:

n=(1.679 + 1.598)/2 = 1.6385,

A

b =13.036, ¢=1241.

Finally, using (11) one gets:

~

ky =2.095; 0 =2.878; 6 =1.742.

It is readily checked that all obtained estimates are
close to their true values, despite the presence of dis-
turbances. This is further confirmed by Figs. 3a-b
plotting the hysteretic limit cycles obtained by the true

and the estimated models respectively.
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Fig. 2 (a) Plot of the curve (log(ﬁ(t)),log(—f?(t) + a))
for all 7 such that x(f) > 0 and 0(s) > 0. (b) The plot
(log(ﬁ(t)),log(f?(t) — @)) for all 7 such that X¥(r) < 0 and
() >0

5 Conclusion

We have considered the problem of identifying sys-
tems whose dynamic behavior involves a hysteretic
feature. Such a feature has been accounted for using
the well-known Bouc—Wen equations. The system un-
der study is described by (3)—(6) where the parame-
ter n comes in nonlinearly. Furthermore, the model in-
volves internal signals that are not necessarily acces-
sible to measurements (e.g. @pw (), v(¢), X (), X(1)).
Moreover, the displacement x(¢) is a state variable
and so cannot stand for the system control input. The
identification scheme we have designed, in Sect. 3,
operates in three main steps. In each step, a part of
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Fig. 3 (a) Limit cycles of system 1: true model cy-
cle (x4(t), @gw(t)) (black line) and estimated model cycle
(x(t,N), QSBW(t, N)) (white line). (b) Limit cycles of system 2:
true model cycle (x4(t), Ppw(t)) (black line) and estimated
model cycle (x(¢, N), ®pw (t, N)) (white line)

the unknown parameters is estimated and the esti-
mates are used in the next step to estimate other un-
known parameters. The involved estimators are gener-
ally shown to be consistent. Compared to the few ex-

isting works, our solution does not suppose the inter-
nal signals (@pw (), v(t), x(¢), X(¢t)) to be available,
or the displacements to be large or the parameter n
to be known and integer. Therefore, a model that is
suitable for small as well as for large displacements
is obtained without resorting to high price and inaccu-
rate sensors. Moreover, the system actual control in-
put is let be what it is in practice: the driving force
u(t). Finally, the proposed solution requires simple ex-
periments as these only involve sine input signals. All
these features represent a real progress in the topic of
hysteretic system identification.
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