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Abstract. We propose a comprehensive description of the strain configuration induced by the lattice mis-
match in a core-shell nanowire with circular cross-section, taking into account the crystal anisotropy and
the difference in stiffness constants of the two materials. We use an analytical approach which fully exploits
the symmetry properties of the system. Explicit formulae are given for nanowires with the wurtzite struc-
ture or the zinc-blende structure with the hexagonal/trigonal axis along the nanowire, and the results are
compared to available numerical calculations and experimental data on nanowires made of different III–V
and II–VI semiconductors. The method is also applied to multishell nanowires, and to core-shell nanowires
grown along the 〈0 0 1〉 axis of cubic semiconductors. It can be extended to other orientations and other
crystal structures.

1 Introduction

Semiconductor nanowires (NWs) are often grown in the
form of core-shell structures, in order to achieve better
photonic and electronic properties: the active core is iso-
lated from the surface defects and traps in order to ob-
tain a better luminescence efficiency, sharper linewidths,
longer coherence times and higher mobility, or even a bet-
ter chemical stability. As the lattice parameter of the shell
is generally different from that of the core, and since co-
herent structures are contemplated with no misfit defects
at the interface, the elastic strain induced in the core and
its effect on the electronic properties have to be taken
into account. In turn, the built-in strain can be used as
a further adjustable parameter: strain engineering can be
used to lower the degeneracy in the valence band and se-
lect the type of holes with a larger spin for spintronics
applications (for instance a larger spin-carrier coupling in
diluted magnetic semiconductors) [1], or a smaller lon-
gitudinal mass to achieve a better mobility in transport
properties [2]. The strain can also be designed to induce a
built-in piezoelectric field, resulting in a faster separation
of the electron-hole pairs in photovoltaic applications [3].
Finally, strain is an important parameter when engineer-
ing Si-Ge NWs to obtain direct bandgap configurations
and efficient emission of light [4].

Analytical expressions exist for a core-shell structure
made of elastically isotropic materials [5]. However, the
crystal structure results in anisotropic elastic properties,
the core and shell materials have different values of the
stiffness constants, and the NW shape can deviate from
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the ideal cylinder with a circular base and for instance
feature facetting. As a result, calculating the strain con-
figuration in a real semiconductor core-shell NW is not
an easy task: quantitative descriptions usually imply to
compute numerically the local strain, either using a mi-
croscopic model such as the valence force field model, or
performing a finite element treatment of the continuum
elasticity theory [6]. Nevertheless, an analytical descrip-
tion, such as what has been developed and reviewed in
reference [7] for the case of quantum dots and NWs em-
bedded in an infinite or semi-infinite material, remains the
best starting point for an implementation of the strain-
related mechanisms governing the electronic properties,
through deformation potentials and piezoelectric fields.

A quantitative, fully analytical solution for core-shell
NWs, taking into account the crystal structure, can be
found, and this is the purpose of the present study. Start-
ing with the well-known expression for isotropic materials
(and their extension for the transversely isotropic materi-
als), we propose solutions for the most often encountered
cases of zinc-blende and wurtzite semiconductors. We give
analytical expressions for the strain in the core and in the
shell, and for their effect on the extrema of bands, and we
compare these predictions to the results of microscopic
calculations and experimental data.

In most cases, deviations from the cylindrical strain
configuration are found. In two typical cases (with zinc-
blende or diamond semiconductor NWs along 〈1 1 1〉 and
along 〈0 0 1〉), we identify the resulting strain configura-
tion to first-order in the parameter describing the cu-
bic anisotropy and we show that these deviations from
cylindrical symmetry are rather small. These two cases
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illustrate two non-isotropic strain configurations: warping
along the NW axis, and anisotropy of the in-plane strain.
Other orientations and crystal structures are expected to
feature a combination of these two configurations.

To sum up our results: (i) the cylindrical approxima-
tion is surprisingly good, provided one uses the appro-
priate truncation of the stiffness tensor which is given
here; (ii) the result is exact for wurtzite NWs grown along
the hexagonal axis; (iii) a first-order treatment of the
anisotropy quantitatively agrees with available numerical
results for zinc-blende NWs; the additional strain compo-
nents are negligible in the core but they take significant
values in the shell; (iii) the present method is readily ex-
tended to other structures or orientations, and to multi-
shell NWs.

The paper is organized as follows: Section 2 is a short
summary of the problem to be solved and of results which
are well-known for isotropic materials. In Section 3, we ob-
tain analytical expressions of the strain configuration in
wurtzite semiconductor NWs grown along the hexagonal
axis; the transfer matrix approach allows us to consider
both core-shell and multishell NWs. In Sections 4 and 5,
we use a perturbation method to describe the more com-
plex strain configuration present in zinc-blende semicon-
ductor NWs grown along the trigonal axis and along the
cubic axis.

2 Strain and electrons in a core-shell NW

2.1 The displacement field in an infinite core-shell NW

In this section we recall the well-known strain configura-
tion in an infinitely long core-shell NW with circular cross-
section, made of isotropic materials, in order to identify
and illustrate the effects of the two elements of symmetry
on the displacement field and the Lamé-Clapeyron-Navier
equation. We consider a cylinder-shaped core (superscript
or subscript c), infinitely long, with a circular cross-section
of radius rc, embedded in a shell (superscript or subscript
s) of radius rs. We note z the NW axis, (r, θ) or (x, y) the
in-plane coordinates measured from the NW axis. The two
materials have the same crystal structure and the same
orientation, with different values of the lattice constants
as and ac. The growth is assumed to be coherent, with no
misfit defect at the interface, so that the lattice mismatch
f = (as − ac)/ac is fully accommodated by elastic strain.

The general solution involves calculating the displace-
ment field u(r) which relates the position of any point r
in the strained material to its value in the mismatched,
unstrained system. The local deformation, in the vicin-
ity of a point r, is fully described by the tensor of the
derivatives of u(r), ∂ui/∂xj : the symmetric part is the
strain tensor, εij = 1

2 (∂ui/∂xj + ∂uj/∂xi), associated to
elastic energy, while the antisymmetric part 1

2 (∂ui/∂xj −
∂uj/∂xi) describes a local rotation. In the presence of
body forces per unit volume F(r), the equilibrium con-
dition,

∑
j ∂σij/∂xj + Fi = 0, can be expressed as the

Lamé-Clapeyron-Navier equation (there is one equation

for each value of i and xi = x, y, z),
∑

jkl

cijkl
∂

∂xj

(
∂uk

∂xl
+

∂ul

∂xk

)

+ Fi = 0. (1)

In this equation, the cijkl are the components of the stiff-
ness tensor, which relates the stress tensor σij to the strain
tensor εkl through the Hooke’s law, σij =

∑
kl cijklεkl.

The number of independent components cijkl is deter-
mined by the symmetry properties of the material [8].

In a core-shell NW, we apply the Lamé-Clapeyron-
Navier equation within each constituent; the body forces
are zero, but we have to apply proper boundary condi-
tions [9] at the surface and at the interface. A first series
of conditions ensure the stability of the interface/surface:
stress components applied to the surface (σrr, σrθ and
σrz) vanish, and they are equal on both sides of the in-
terface. Additional conditions state the continuity of the
lattice: the displacement field u(r) must compensate for
the lattice mismatch f . All these conditions are actually
the same as for a thin epitaxial layer, but then the condi-
tion on the continuity of the lattice can be expressed on
the in-plane strain components [10].

In addition, for an infinitely long NW, the overall
translational invariance along the axis must be maintained
(and it is known also that in a NW of finite length, accord-
ing to the Saint-Venant’s principle, this holds everywhere
but for a segment of length equal to about the diameter
at each end). Translational invariance means that the rel-
ative displacement of two neighboring points is indepen-
dent of z, i.e., that all derivatives of u(r) are independent
of z: ∂/∂z (∂ui/∂xj) = 0, or ∂/∂xj (∂ui/∂z) = 0, hence
∂ui/∂z is a constant Ci independent of r, ∂ui/∂z = Ci,
and ui(r) = Ciz+D+ui(x, y). Note that the Cxz, Cyz and
uz(x, y) contributions correspond to shear strains (εxz,
εyz) and are often excluded by symmetry. Finally, the
equilibrium with respect to a translation along the NW
axis requires that the longitudinal stress integrated over
the NW section be zero.

Once determined the displacement field u(r) obeying
the Lamé-Clapeyron-Navier equation and the boundary
conditions, the strain tensor can be introduced into the so-
called deformation potentials [11] and the possible piezo-
electric field is calculated; the positions of the conduction
and valence band edges follow.

2.2 The simple case of elastically isotropic materials

The solution for an infinitely long, circular core-shell
structure made of elastically isotropic materials, is well
known [5]. We briefly recall the main results, our goal be-
ing to examine what will remain valid if materials with a
lower symmetry are involved.

The Lamé-Clapeyron-Navier equation writes:

μ
∑

j

∂2ui

∂x2
j

+ (λ + μ)
∑

j

∂2uj

∂xi∂xj
= 0, (2)

which contains three equations, for xi = x, y and z, respec-
tively. A more compact form better evidences the spherical
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symmetry:

μΔu + (λ + μ)∇(∇ · u) = 0. (3)

Here the stiffness tensor has only two independent com-
ponents: the so-called Lamé coefficients μ = cijij = cijji

and λ = ciijj for i �= j, with ciiii = λ + 2μ. All other
components vanish.

If we omit the terms which vanish due to the invariance
by translation or would correspond to axial shear strains
(according to the discussion in the previous section), the
Lamé-Clapeyron-Navier equation restricts to:

μ

(
∂2

∂y2
+

∂2

∂x2

)

ux + (λ + μ)
∂

∂x

(
∂ux

∂x
+

∂uy

∂y

)

= 0,

μ

(
∂2

∂y2
+

∂2

∂x2

)

uy + (λ + μ)
∂

∂y

(
∂ux

∂x
+

∂uy

∂y

)

= 0,

μ

(
∂2

∂y2
+

∂2

∂x2

)

uz = 0. (4)

As the strained system obviously retains the cylindrical
symmetry, we write the displacement field in cylindrical
coordinates, keeping only the relevant variables: ur(r),
uθ = 0, with ux = ur(r) cos θ and uy = ur(r) sin θ.
An in-plane dependence of uz would imply shear strain
components εrz which are excluded, hence uz(z) =
Cz + D. Finally the Lamé-Clapeyron-Navier equation is
reduced to equating to zero the Laplacian of the in-plane
displacement, hence d2ur/dr2 + dur/rdr − ur/r2 = 0,
and ur(r) = Ar + Br2

c/r, with parameters A, B, C and
D to be determined in each material. The non-vanishing
components of the strain tensor are thus the longitudi-
nal expansion εzz = duz/dz = C, the radial expansion
εrr = dur/dr = A − Br2

c/r2, and the angular expansion
εθθ = ur/r = A + Br2

c/r2. Note that B vanishes in the
core (to avoid diverging terms at the axis, r = 0); also, D
represents a global displacement of the core or the shell,
hence D = 0. As a result, see Figure 1, the strain (and
the stress) are uniform in the core; in the shell, there is
also a uniform component, and a non-uniform shear com-
ponent, rotating around the interface and close to it. Note
that the stress component σc

zz is uniform also in the shell
(the non-uniform Br2

c/r2 terms in εs
θθ and εs

rr cancel each
other when applying the Hooke’s law).

The two parameters Ac and Cc in the core, and the
three parameters As, Bs and Cs in the shell, are deter-
mined from the boundary conditions. At the interface, the
matching along z (written on uz or εzz) implies Cc−Cs =
f‖, and the matching in the plane is realized simultane-
ously on ur and εθθ if Ac − As − Bs = f⊥. We identify
the mismatch f‖ in the direction of the NW axis, and
the mismatch f⊥ in the plane perpendicular to the axis:
although this is not done usually – and not needed for
isotropic materials – that will allow a better understand-
ing of the result. The stress components are such that
σc

rr(rc) − σs
rr(rc) = 0 at the interface and σs

rr(rs) = 0 at
the sidewall. The other components (σrθ and σrz) auto-
matically vanish. The longitudinal stress integrated over
the NW section vanishes: as both σs

zz and σc
zz are uniform,

the condition is simply ησc
zz + (1 − η)σs

zz = 0 where η is
the ratio of the core to NW cross-section areas (for a NW
with circular cross-section, η = r2

c/r2
s).

A straightforward calculation then gives the complete
set of strain components:

εc
zz = (1 − η)f‖

εs
zz = −ηf‖

εs
θθ − εs

rr

2
= Bs

r2
c

r2

εc
θθ = εc

rr = (1 − η)(f⊥ + Bs)
εs
θθ + εs

rr

2
= −η(f⊥ + Bs), (5)

where

Bs = −2(λ + μ)f⊥ + λf‖
2(λ + 2μ)

(f⊥ + Bs) =
2μf⊥ − λf‖
2(λ + 2μ)

. (6)

The longitudinal strain εzz (red arrows in Fig. 1) results
from the lattice mismatch in the direction of the NW axis,
which is shared between the core and the shell with a
weight inversely proportional to their area (in a way sim-
ilar to the strain distribution in a free-standing superlat-
tice, where the lattice mismatch is shared with a weight
inversely proportional to the thickness of each layer).
A narrow core is fully strained to the thick shell (and a thin
shell to a wide core). The main part of the in-plane lat-
tice mismatch is accommodated by the shear strain in the
shell rotating around the interface (green arrows in Fig. 1).
The rest of the in-plane strain consists in a uniform in-
plane strain in the core and a uniform component in the
shell (blue arrows in Fig. 1): these components result from
the competition between a direct effect of the lattice mis-
match in the plane, and an indirect effect of the longitu-
dinal strain. As a result, they can be quite small.

For a thin shell, η = 1, the core is unstrained, and the
shell strain writes εs

zz = εs
θθ = −f , εs

rr = [2λ/(λ + 2μ)]f ,
which is the result for a thin epitaxial layer on a plane
substrate.

The previous result can be extended [12] to the case of
two isotropic materials with different values of the shear
modulus, but the same value of the Poisson ratio. In terms
of Lamé coefficients, that means λs/λc = μs/μc. Complete
expressions of the stress tensor are given in reference [12].
We will generalize these expressions in the following
section taking into account the crystal structure.

2.3 The effect on the electronic properties

Two mechanisms affecting the electronic properties of a
core-shell NW are determined by the strain configuration.

– there is a direct effect of strain on the bands of a
semiconductor; around the band edges, it is described
phenomenologically by the so-called deformation po-
tentials. For instance, in a zinc-blende semiconductor,
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z

r

rs

rc

Fig. 1. Strain distribution in a cylindrical core-shell NW. Arrows indicate the longitudinal strain (in red), the inhomogeneous
shear strain in the shell (in green), and the rest of the strain – uniform and isotropic in the plane (in blue). The lattice parameter
is assumed to be smaller in the shell than in the core (f < 0).

the isotropic strain (change of volume), (εxx + εyy +
εzz), induces a shift of the conduction band and an
average shift of the valence band at the center of the
Brillouin zone. A shear strain, such as (2εzz−εxx−εyy)
induces a splitting of the valence band edge;

– when NWs are grown along a polar axis, they are ex-
pected to present a polarization due to the piezoelec-
tric effect. This is the case of NWs with the wurtzite
structure grown along the c-axis, as well as NWs with
the zinc-blende structure grown along the 〈1 1 1〉 axis.
The relevant strain components entering the longitu-
dinal polarization are [3] εzz and (εrr +εθθ) in the first
case, and (2εzz − εxx − εyy) in the second case.

In addition, confinement effects should be taken into ac-
count if the NW radius is small enough, and the confining
potential is modified by these two mechanisms.

It is interesting to compare the results for a thin core
and that for a thin epitaxial layer, both considered as the
active medium of the structure. In both cases there is an
isotropic strain and a shear strain. The isotropic strain
is (εxx + εyy + εzz) or (εrr + εθθ + εzz) = [4μ/(λ + 2μ)]f
in both cases. The shear strain is (2εzz − εxx − εyy) =
−2[(3λ + 2μ)/(λ + 2μ)]f in the thin epitaxial layer, and
(2εzz −εrr −εθθ) = [(3λ+2μ)/(λ+2μ)]f . The same result
holds for a thick core, with f replaced by ηf . Hence the
ratio of the valence band splitting to the shift is (1) of op-
posite sign, and (2) twice smaller, in the core of a NW than
in an epitaxial layer made of elastically isotropic materi-
als. This property will be checked below in the presence
of crystalline anisotropy: we will show that the factor is
not exactly two.

2.4 Crystalline semiconductor NWs

Our goal is to take into account the crystal structure of
the semiconductors, by using the stiffness tensor with the

appropriate symmetry. We will consider explicitly three
cases: hexagonal (wurtzite) structure with the NW axis
along the c-axis, and cubic (zinc-blende or diamond) struc-
ture with the NW axis along 〈0 0 1〉 or 〈1 1 1〉. We ig-
nore facetting and consider a NW with a circular cylinder
shape. We will show that:
– in the case of a wurtzite NW grown along the six-fold

axis, the transversely isotropic solution is exact;
– in the case of a zinc-blende NW grown along a trigo-

nal axis, the transversely isotropic solution is an excel-
lent approximation, which reproduces quantitatively
the results of numerical approaches. Deviations due to
the cubic anisotropy appear in the form of a warp-
ing along the axis, of three-fold symmetry, and can be
found as the response of an elastically isotropic system
to a distribution of body forces parallel to the NW axis;

– in the case of a zinc-blende NW grown along a tetrago-
nal axis, a transversely isotropic approximation is pro-
posed. Deviations with four-fold symmetry are found
and calculated as the response to a distribution of body
forces perpendicular to the NW axis.

The stiffness tensor is written using the Voigt notation,
ε1 = εxx,. . . , ε4 = εyz + εzy,. . . , and cxxxx = c11, czzzz =
c33, cyzyz = c44, cxyxy = c66 and so on.

The stiffness tensor for the zinc-blende structure re-
flects the cubic symmetry [8]. It contains three indepen-
dent terms and the Voigt notation in the cubic axes is:

⎛

⎜
⎜
⎜
⎜
⎜
⎝

c11 c12 c12 0 0 0
c12 c11 c12 0 0 0
c12 c12 c11 0 0 0
0 0 0 c44 0 0
0 0 0 0 c44 0
0 0 0 0 0 c44

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. (7)

The anisotropy is characterized by the parameter c =
(c11 −c12 −2c44). If c = 0, the energy of a tetragonal shear
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strain (characterized by c11 − c12) equals that of a trigo-
nal shear strain (characterized by 2c44) and the spherical
symmetry is restored. Usual semiconductors have c < 0:
they are harder against a trigonal stress, which directly in-
volves a change of bond length, than against a tetragonal
stress which is accommodated mainly by bond rotation.
As a result, they are harder along a 〈1 1 1〉 direction and
softer along a 〈0 0 1〉 direction, with 〈1 1 0〉 in between [13].

In the wurtzite structure, with z along the c-axis and
x, y in the perpendicular plane, symmetry considerations
imply identities such as c22 = c11 or c66 = (c11 − c12)/2,
so that the stiffness tensor has five independent compo-
nents [8]:

⎛

⎜
⎜
⎜
⎜
⎜
⎝

c11 c12 c13 0 0 0
c12 c11 c13 0 0 0
c13 c13 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c44 0
0 0 0 0 0 c11−c12

2

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. (8)

It is invariant under any rotation around the c-axis.

3 Hexagonal semiconductors along the c-axis

We consider a NW with the wurtzite structure, and its
axis parallel to the c axis. We take the z axis along this
axis, and x and y two arbitrary axes in the basal plane.
Note that the lattice mismatch along the c-axis, f‖, and
perpendicular to it, f⊥, may be different.

3.1 Calculation

Our calculation is similar to that of reference [14], where
the stress is calculated for coaxial cylinders with trans-
verse isotropy: indeed this is the case for hexagonal semi-
conductors around the c-axis. In this section, we give the
full expressions of the strain, which are the useful parame-
ters to calculate the local potential and the piezoelectric
field. Moreover, this part constitutes our first step for the
calculation of strain in systems lacking transverse isotropy.

The complete Lamé-Clapeyron-Navier equation
(Eq. (1)) is written in Appendix A (Eq. (A.1)).
Omitting terms which vanish due to invariance by trans-
lation, we obtain:

c11 − c12

2

(
∂2

∂y2
+

∂2

∂x2

)

ux

+
c11 + c12

2
∂

∂x

(
∂ux

∂x
+

∂uy

∂y

)

= 0

c11 − c12

2

(
∂2

∂y2
+

∂2

∂x2

)

uy

+
c11 + c12

2
∂

∂y

(
∂ux

∂x
+

∂uy

∂y

)

= 0
(

∂2

∂y2
+

∂2

∂x2

)

uz = 0. (9)

It reproduces exactly the Lamé-Clapeyron-Navier equa-
tion of an elastically isotropic material, equation (4).
Hence, as the boundary conditions are invariant under a
rotation around the NW axis (this is due to the invari-
ance of the stiffness tensor noted above), the general solu-
tion for equation (9) is the same as that of equation (4),
uz(z) = Cz and ur(r) = Ar+Br2

c/r. Furthermore, as this
solution is such that the terms of equation (A.1) omitted
in equation (9) all vanish, it is the exact solution of the
complete equation, equation (A.1).

Applying the Hooke’s law to the boundary conditions
of a core-shell NW as in the previous section (at the inter-
face, step in uz/z = εzz and in ur/r = εθθ to accommo-
date the lattice mismatch f‖ and f⊥ with no misfit disloca-
tion, and equilibrium of σrr; at the sidewall, σs

rr(rs) = 0;
along the z-axis, ησc

zz + (1 − η)σs
zz = 0), we obtain the

strain tensor by inverting a system of linear equations:
⎛

⎜
⎜
⎜
⎝

0 0 0 1 −1
1 −1 −1 0 0

(cc
11 + cc

12) −(cs
11 + cs

12) (cs
11 − cs

12) cc
13 −cs

13

η2cc
13 (1 − η)2cs

13 0 ηcc
33 (1 − η)cs

33

0 (cs
11 + cs

12) −η(cs
11 − cs

12) 0 cs
13

⎞

⎟
⎟
⎟
⎠

×

⎛

⎜
⎜
⎜
⎝

Ac

As

Bs

Cc

Cs

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

f‖
f⊥
0
0
0

⎞

⎟
⎟
⎟
⎠

. (10)

A direct numerical calculation is possible, however it is in-
teresting to write the boundary conditions using a trans-
fer matrix method, which can be generalized to multishell
NWs [9]: then, we have to solve a system of two linear
equations, instead of 5 for a core-shell NW and (3n + 2)
for a NW with (n − 1) shells.

3.1.1 Transfer matrix

We thus consider a multishell NW made of a core of radius
r0, and several layers of radius ri and lattice mismatch f‖i

and f⊥i with respect to the core material, with a uniform
stiffness tensor over the whole NW. The radius of the last
layer, i = s, is the NW radius. The relative cross-section
area of each layer is ηi = (r2

i − r2
i−1)/(r2

s).
Within each material, we define a matrix M(ρ) relating

the relevant components of displacement and stress to the
A, B, C parameters, with ρ = r/r0:

⎛

⎝

uz

z
ur

r
σrr

⎞

⎠ = M(ρ)

⎛

⎝
C
A
B

⎞

⎠

with

M(ρ) =

⎛

⎝
1 0 0
0 1 ρ−2

c13 (c11 + c12) −(c11 − c12)ρ−2

⎞

⎠

= M(1)

⎛

⎝
1 0 0
0 1 0
0 0 ρ−2

⎞

⎠
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and

M−1(ρ) =
1

2c11

⎛

⎝
2c11 0 0
−c13 (c11 − c12) 1
c13ρ

2 (c11 + c12)ρ2 −ρ2

⎞

⎠ .

In the general case, the values of the stiffness constants
are specific to the material which makes the layer i, and
accordingly there is a matrix Mi appropriate to each ma-
terial.

The boundary condition at the interface between layers
i and (i + 1), at ρ = ρi, is:

Mi+1(ρi)

⎛

⎝
Ci+1

Ai+1

Bi+1

⎞

⎠=Mi(ρi)

⎛

⎝
Ci

Ai

Bi

⎞

⎠−
⎛

⎝
f‖(i+1)

f⊥(i+1)

0

⎞

⎠+

⎛

⎝
f‖i

f⊥i
0

⎞

⎠.

(11)
This condition can be re-written:

⎛

⎝
Ci+1

Ai+1

Bi+1

⎞

⎠ = M−1
i+1(ρi)Mi(ρi)

⎛

⎝
Ci

Ai

Bi

⎞

⎠

−M−1
i+1(ρi)

⎡

⎣

⎛

⎝
f‖(i+1)

f⊥(i+1)

0

⎞

⎠ −
⎛

⎝
f‖i

f⊥i
0

⎞

⎠

⎤

⎦. (12)

Equation (12) establishes a relation of recurrence from the
parameters on the inner side of the interface, to those on
the outer side. Repeating equation (12) from shell to shell,
we obtain the set of parameters (Ci, Ai, Bi) as a function
of those of the core, (C0, A0, with B0 = 0). The two core
parameters are finally determined by the two boundary
conditions on the stress at the sidewall and along z.

The first boundary conditions, σrr = 0 at the sidewall,
is written using the projection tPr =

(
0 0 1

)
,

tPr

⎛

⎝

uz

z
ur

r
σrr

⎞

⎠ = 0,

at the surface (r = rs), hence

tPrMs(ρs)

⎛

⎝
Cs

As

Bs

⎞

⎠ = 0. (13)

The last condition, on σzz integrated over the NW cross-
section, is:

s∑

i=0

ηi
tPiz

⎛

⎝
Ci

Ai

Bi

⎞

⎠ = 0, (14)

with tPiz =
(
c33 2c13 0

)
written with the values of stiff-

ness constants appropriate to the material in layer i. Com-
bining equations (12)–(14) we obtain a set of two linear
equations for A0 and C0.

3.1.2 The case of uniform Poisson ratios

If we assume a common value of the Poisson ratios in the
different materials, as in reference [12] (i.e., if ci

ijkl/c0
ijkl

takes a single value χi), several explicit expressions are
obtained.

With this assumption, the continuity of σrr at the in-
terface at ri (last line of Eq. (11), multiplied by ρ2

i ) is:

χi

[
c13Ciρ

2
i + (c11 + c12)Aiρ

2
i − (c11 − c12)Bi

]

= χi+1

[
c13Ci+1ρ

2
i + (c11 + c12)Ai+1ρ

2
i

− (c11 − c12)Bi+1] . (15)

Adding these equations for all interfaces, including the
surface for which the right-hand member is zero, and using
ηi = (ρ2

i − ρ2
i−1)/ρ2

s, we obtain:

c13

s∑

i=0

Ciχiηi + (c11 + c12)
s∑

i=0

Aiχiηi = 0.

The second condition is that the integral of σzz over the
NW cross-section vanishes:

c33

s∑

i=0

Ciχiηi + 2c13

s∑

i=0

Aiχiηi = 0.

Hence the two sums must vanish independently:

s∑

i=0

Ciχiηi = 0,

s∑

i=0

Aiχiηi = 0. (16)

Another simple result is obtained for the strain along the
axis. The first line of equation (11) or (12), Ci+1 = Ci −
f‖i+1 + f‖i, results in Ci = C0 − f‖i and finally, using the
first sum rule

∑s
i=0 Ciχiηi = 0,

Ci =
s∑

j=0

χjηjf‖j − f‖i. (17)

The recurrence on the in-plane strain is not as simple.
Indeed the transfer matrix in equation (12) is:

M−1
i+1(ρi)Mi(ρi) = 1

+
χi − χi+1

χi+1

1
2c11

⎛

⎝
0 0 0

c13 (c11 + c12) −(c11 − c12)
−c13ρ

2 −(c11 + c12)ρ2 (c11 − c12)ρ2

⎞

⎠,

which shows that if χi+1 �= χi, only the recurrence on Ci

is simple.
It is worth however to write the result for the sim-

ple core-shell NW. Simplifying the notation, with η = η0,
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χ = χs, χ0 = 1, f = fs),

εc
zz =

(1 − η)χ
η + (1 − η)χ

f‖

εs
zz =

−η

η + (1 − η)χ
f‖

εc
θθ − εc

rr

2
= 0

εs
θθ − εs

rr

2
= Bs

r2
c

r2

εc
θθ + εc

rr

2
=

(1 − η)χ
η + (1 − η)χ

(f⊥ + Bs)

εs
θθ + εs

rr

2
=

−η

η + (1 − η)χ
(f⊥ + Bs), (18)

where

Bs = − (c11 + c12)f⊥ + c13f‖
(c11 − c12)[η + (1 − η)χ] + (c11 + c12)

f⊥ + Bs =
(c11 − c12)[η + (1 − η)χ]f⊥ − c13f‖

(c11 − c12)[η + (1 − η)χ] + (c11 + c12)
.(19)

3.1.3 The case of a uniform stiffness tensor

If all materials have the same values of stiffness constants
(all χi = 1), all Mi matrices are identical. The recurrence
relation (Eq. (12)) is simply:

⎛

⎝
Ci+1

Ai+1

Bi+1

⎞

⎠ =

⎛

⎝
Ci

Ai

Bi

⎞

⎠

− M−1(ρi)

⎡

⎣

⎛

⎝
f‖(i+1)

f⊥(i+1)

0

⎞

⎠ −
⎛

⎝
f‖i

f⊥i
0

⎞

⎠

⎤

⎦ , (20)

or

Ci+1 = Ci + f‖i − f‖(i+1)

Ai+1 = Ai +
c11 − c12

2c11

(
f⊥i − f⊥(i+1)

)

− c13

2c11

(
f‖i − f‖(i+1)

)

Bi+1 = Bi +
c11 + c12

2c11

(
f⊥i − f⊥(i+1)

)
ρ2

i

+
c13

2c11

(
f‖i − f‖(i+1)

)
ρ2

i , (21)

so that

Ci = C0 − f‖i

Ai = A0 − c11 − c12

2c11
f⊥i +

c13

2c11
f‖i

Bi =
c11 + c12

2c11

⎡

⎣
i−1∑

j=0

ηjf⊥jρ
2
s − f⊥iρ

2
i−1

⎤

⎦

+
c13

2c11

⎡

⎣
i−1∑

j=0

ηjf‖jρ
2
s − f‖iρ

2
i−1

⎤

⎦ , (22)

and finally, using equation (16):

Ci =
s∑

j=0

ηjf‖j − f‖i

Ai =
(c11 − c12)

2c11

⎡

⎣
s∑

j=0

ηjf⊥j − f⊥i

⎤

⎦

− c13

2c11

⎡

⎣
s∑

j=0

ηjf‖j − f‖i

⎤

⎦ . (23)

The strain configuration is thus:

(εzz)i =
s∑

j=0

ηjf‖j − f‖i

(
εθθ − εrr

2

)

i

=
c11 + c12

2c11

×
⎡

⎣
i−1∑

j=0

ηjf⊥j

(rs

r

)2

− f⊥i

(ri−1

r

)2

⎤

⎦

+
c13

2c11

⎡

⎣
i−1∑

j=0

ηjf‖j

(rs

r

)2

− f‖i

(ri−1

r

)2

⎤

⎦

(
εθθ + εrr

2

)

i

=
(c11 − c12)

2c11

⎡

⎣
s∑

j=0

ηjf⊥j − f⊥i

⎤

⎦

− c13

2c11

⎡

⎣
s∑

j=0

ηjf‖j − f‖i

⎤

⎦ . (24)

It can be applied to a multishell structure such as in
reference [15].

In the case of the simple core-shell NW, we recover the
usual expressions, equation (5):

εc
zz = (1 − η)f‖

εs
zz = −ηf‖

εs
θθ − εs

rr

2
= Bs

r2
c

r2

εc
θθ = εc

rr = (1 − η)(f⊥ + Bs)
εs
θθ + εs

rr

2
= −η(f⊥ + Bs), (25)

where

Bs = − (c11 + c12)f⊥ + c13f‖
2c11

f⊥ + Bs =
(c11 − c12)f⊥ − c13f‖

2c11
. (26)

A comparison between the expressions for εzz in
equations (18)–(19) and equations (25)–(26) illustrates the
effect of a different hardness of the two materials: in the
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sharing of lattice mismatch, the weight is defined by the
area ratio multiplied by the hardness ratio. In particular,
for a thin layer (η ≈ 1), the strain in the core is multiplied
by χ, while for a thick layer (η � 1), the strain in the
shell is divided by χ.

Note also that equation (24) can be used to describe
a continuous distribution in a NW, just by replacing the
discrete sums by integrals:

C0 =
s∑

j=0

ηjf‖j →
∫

f‖(r)
2rdr

r2
s

A0 =
(c11 − c12)

2c11

s∑

j=0

ηjf⊥j − c13

2c11

s∑

j=0

ηjf‖j

→ (c11 − c12)
2c11

∫

f⊥(r)
2rdr

r2
s

− c13

2c11

∫

f‖(r)
2rdr

r2
s

.

(27)

An interesting consequence is that the strain in the core
of a core-shell NW (for instance, GaAs-Ga1−xAlxAs) or in
a multishell NW, is determined by the composition inte-
grated over the shell(s), and not by the exact distribution
within the shell(s). The analogy with the Gauss theorem
of electrostatics is not fortuitous and it has been discussed
in reference [16] for a quantum dot buried in an isotropic
material. However it applies only in special cases where
the (vectorial) Lamé-Clapeyron-Navier equation can be
mapped onto the scalar Poisson equation, with the local
mismatch defining the equivalent of the electric charge.

3.1.4 Summary and electronic properties

To sum up, the strain configuration in a core-shell NW
grown along the hexagonal direction of wurtzite cry-
stal is transversely isotropic. It is given by equations (25)
and (26) if the two materials have the same hardness, and
equations (18) and (19) for a hardness ratio χ �= 1. An ex-
plicit expression, equation (24), also exists for a multishell
NW if the stiffness constants are identical over the NW.

The potential configuration for the bottom of the con-
duction band and the top of the valence band near the
center of the Brillouin zone is obtained from these expres-
sions using the Bir-Pikus phenomenological coupling [11].
In the core, the non-vanishing strain components are εzz

and 1
2 (εrr + εθθ) so that the Bir-Pikus Hamiltonian [11]

has only diagonal elements in the usual basis quantized
along the c-axis. Note however that the resulting matrix
elements may be of the same order as the other terms de-
scribing the top of the valence band and the excitons (spin-
orbit coupling, crystal field splitting and exchange terms).
In the shell (s), the in-plane shear strain 1

2 (εrr − εθθ) in-
troduces non-diagonal terms, which mix the valence band
states initially quantized along the c-axis. Actually, this
term may give the main contribution to the hole poten-
tial in the shell. Interestingly, it splits the hole multiplet
in such a way that one type of holes is confined in the
vicinity of the interface, far from the sidewall.

Fig. 2. Strain in the core of a GaN-AlN NW, as a function
of the area ratio. Solid symbols, microscopic calculation, open
symbols, electron microscopy data, both from reference [17];
lines, present calculation.

The piezoelectric effect is described by an axial polar-
ization, determined by the two strain components εzz and
1
2 (εrr + εθθ). There is no coupling to the in-plane shear
strain.

The present study also confirms that GaN-InN multi-
quantum-well NWs [15] should indeed feature no built-in
piezoelectric field perpendicular to the QWs, but an in-
plane shear-strain different from well to well.

3.2 Application to real systems

3.2.1 GaN-AlN nanowires

The strain in the core of single GaN-AlN core-shell NWs
grown by plasma-assisted molecular beam epitaxy was
measured by resonant X-ray diffraction, Raman spectros-
copy and high resolution transmission electron micros-
copy [17]: for unrelaxed NWs, it favorably compares to
the results of a microscopic calculation using the valence-
force-field model, and to a macroscopic calculation assum-
ing uniform strain along the c-axis and vanishing strain
in the plane. Complementary results are given in
reference [18].

The stiffness constants of GaN and AlN [19–21] are
quite similar, hence we take χ = 1. The lattice mismatch
is slightly anisotropic, f⊥ = −2.5% and f‖ = −4.0%.
The present calculation predicts a uniform strain in the
core, εc

zz = f⊥(1−η) along the NW axis and 1
2 (εc

θθ+εc
rr) =

−(1 − η) × 0.25% in the plane. The agreement with the
results of reference [17] is excellent, see Figure 2.

Note that the small value of the in-plane strain is due
to a compensation between the Poisson effect of the longi-
tudinal mismatch f‖ and the direct effect of the in-plane
mismatch f⊥, see f⊥ + Bs in equation (26).
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Fig. 3. Strain in the core of a ZnO-(Zn,Mg)O NW, divided by
the shell/NW area ratio (1−η), as a function of the Mg content
x. The values of the lattice mismatch along the NW axis and
perpendicular to it are the experimental values of reference [17]
and are opposite in sign. Open symbols, longitudinal and in-
plane strain. Full symbols, shear strain and volume change.

3.2.2 ZnO nanowires

ZnO is such that c11 − c12 < c13 [22]: for an isotropic lat-
tice mismatch, the Poisson effect prevails in the in-plane
strain. ZnO cores are often associated to a strongly mis-
matched shell and in this case the structure is no more
coherent. A moderate mismatch exists in ZnO-(Zn,Mg)O.
According to a synchrotron X-ray study of polycrystalline
wurtzite (Zn,Mg)O [23], it is strongly anisotropic, with
f⊥ and f‖ opposite in sign: this is attributed to a change
in the ionicity. As a result (Fig. 3), the core experiences
a significant shear strain with a 10 times smaller volume
change. In other words, the c/a ratio, which represents
the deviation from “ideal” wurtzite, is changed at almost
constant volume. Note that a non-linear character of the
piezoelectric effect has been measured in CdTe [24] and
predicted for other semiconductors as well [25]. As it is
attributed to a dependence of the piezoelectric coefficient
on the hydrostatic strain, this non-linear character should
not show up in a ZnO-(Zn,Mg)O NW.

4 Cubic semiconductors along 〈1 1 1〉

We now consider NWs of semiconductors with the zinc-
blende or diamond structure, grown along a trigonal axis.
The (1 1 1) plane is known to be isotropic with respect
to some mechanical properties, so that the cylindrical ap-
proximation is quite natural for such NWs. We use it first,
and compare its results to data known for real systems.
However the shear strain present in the shell gives rise to
warping, with a three-fold symmetry, which is calculated
analytically in Section 4.3.2.

4.1 Cylindrical approximation

4.1.1 Calculation

If the parameter c is not zero, the stiffness tensor must
be calculated in the relevant axes. It can be done on the
cijkl tensor, or directly in the Voigt notation using the
rotation rules described in reference [13]. We take the basis
defined by the three vectors x = [11̄0], y = [112̄], z =
[1 1 1], identical to that in reference [6] but different from
reference [26]. Then [8] the stiffness matrix is:

⎛

⎜
⎜
⎜
⎜
⎜
⎝

c̃11 c̃12 c̃13 c̃14 0 0
c̃12 c̃11 c̃13 −c̃14 0 0
c̃13 c̃13 c̃33 0 0 0
c̃14 −c̃14 0 c̃44 0 0
0 0 0 0 c̃44 c̃14

0 0 0 0 c̃14
c̃11−c̃12

2

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. (28)

The six components are not independent since they can
be expressed using the three coefficients c11, c12 and c44

relevant for the cubic symmetry [6]:

c̃11 = c11 − 1
2
c =

1
2
c11 +

1
2
c12 + c44

c̃33 = c11 − 2
3
c =

1
3
c11 +

2
3
c12 +

4
3
c44

c̃12 = c12 +
1
6
c =

1
6
c11 +

5
6
c12 − 2

6
c44

c̃13 = c12 +
1
3
c =

1
3
c11 +

2
3
c12 − 2

3
c44

c̃44 = c44 +
1
3
c =

1
3
c11 − 1

3
c12 +

1
3
c44

c̃14 =
1

3
√

2
c =

1
3
√

2
(c11 − c12 − 2c44). (29)

The stiffness tensor reflects the threefold symmetry of the
trigonal axis: it is quite similar to that of the wurtzite
structure along the c-axis. However there is a set of ad-
ditional terms, c̃14. To better understand these terms, we
can write the stiffness matrix in the er, eθ, ez axes, rotated
with respect to the previous one by an angle θ around the
〈1 1 1〉 (or ez) axis:

⎛

⎜
⎜
⎜
⎜
⎜
⎝

c̃11 c̃12 c̃13 0 0 0
c̃12 c̃11 c̃13 0 0 0
c̃13 c̃13 c̃33 0 0 0
0 0 0 c̃44 0 0
0 0 0 0 c̃44 0
0 0 0 0 0 c̃11−c̃12

2

⎞

⎟
⎟
⎟
⎟
⎟
⎠

+

c̃14

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 cos 3θ sin 3θ 0
0 0 0 − cos 3θ − sin 3θ 0
0 0 0 0 0 0

cos 3θ − cos 3θ 0 0 0 sin 3θ
sin 3θ − sin 3θ 0 0 0 cos 3θ

0 0 0 sin 3θ cos 3θ 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.(30)

The trigonal symmetry of the c̃14 terms is clear, as noted
in reference [27]. Note that these contributions average to
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zero over a complete 2π-turn. Moreover, they are quite
small: for instance in GaAs, c̃14/(c̃11 + 2c̃12) = −0.05.

The complete Lamé-Clapeyron-Navier equation in the
x, y, z basis, equation (1), is written in Appendix A.
Omitting terms excluded by the invariance by translation,
we obtain:

c̃11 − c̃12

2

(
∂2

∂y2
+

∂2

∂x2

)

ux

+
c̃11 + c̃12

2
∂

∂x

(
∂ux

∂x
+

∂uy

∂y

)

+ 2c̃14

(
∂2ux

∂y∂z
+

∂2uy

∂z∂x
+

∂2uz

∂x∂y

)

= 0

c̃11 − c̃12

2

(
∂2

∂y2
+

∂2

∂x2

)

uy

+
c̃11 + c̃12

2
∂

∂y

(
∂ux

∂x
+

∂uy

∂y

)

+ c̃14

(

2
∂2ux

∂z∂x
+

∂2uz

∂x2
− 2

∂2uy

∂y∂z
− ∂2uz

∂y2

)

= 0

c̃44

(
∂2

∂y2
+

∂2

∂x2

)

uz

+ c̃14

(

2
∂2ux

∂x∂y
+

∂2uy

∂x2
− ∂2uy

∂y2

)

= 0. (31)

The effect of the c̃14 terms will be described in
Section 4.3.2. Ignoring these terms for a while, the equa-
tion is the same as in the wurtzite case. Then the solution
is obtained by replacing the cij in equations (18) and (19)
by the c̃ij and their expression (Eq. 29). The result is
identical to equation (18), but with f‖ = f⊥ = f , and:

Bs =

− 3(c11 + 2c12)
(c11 − c12 + 4c44)[η + (1 − η)χ] + (2c11 + 4c12 + 2c44)

f

f + Bs =
(c11 − c12 + 4c44)[η + (1 − η)χ] − (c11 + 2c12 − 2c44)
(c11 − c12 + 4c44)[η + (1 − η)χ] + (2c11 + 4c12 + 2c44)

f.

(32)

If the stiffness constants are identical in the two materials,
we recover the same expression as above (Eq. (5)), with:

Bs = −f
c11 + 2c12

c11 + c12 + 2c44

(f + Bs) = f
−c12 + 2c44

c11 + c12 + 2c44
. (33)

In the core, the strain corresponds to a uniform hydrosta-
tic strain εhydro = εzz + εrr + εθθ and a uniform trigonal
shear strain εshear = 2εzz − εrr − εθθ. It should be kept in
mind that the axis used in these expression are x = [1 1̄ 0],
y = [1 1 2̄], z = [1 1 1]; in the cubic axes, x′, y′, z′, the pre-
vious results means, for the core, εx′x′ = εy′y′ = εz′z′ =
1
3εhydro and εx′y′ = εy′z′ = εz′x′ = 1

6εshear.

Fig. 4. Strain in a GaAs core, as a function of area ratio
(1−η) times the lattice mismatch f . Symbols are the numerical
calculation of reference [28], lines are the present calculation.

4.1.2 Excitons

Finally, we consider the exciton energy in the core of
a core-shell NW, in the absence of confinement effects.
In a strained semiconductor, it is expected at EX = E0

X −
(a′ + a) εhydro ± 1

2b εshear (for a tetragonal shear strain)
or EX = E0

X − (a′ + a) εhydro ± 1
2 (d/

√
3) εshear (for a

trigonal shear strain). The coefficient a′ describes the cou-
pling of conduction electrons to strain, and a, b, d describe
the coupling of holes (Bir-Pikus Hamiltonian [11]). Using
equation (33) we obtain:

EX = E0
X − (a′ + a)

(c11 − c12 + 6c44)
c11 + c12 + 2c44

(1 − η)f

± d√
3

(c11 + 2c12)
c11 + c12 + 2c44

(1 − η)f. (34)

The sign + is for the exciton formed with the light hole
(moment ± 1

2 along the NW axis), the sign – for the heavy
hole (± 3

2 ) exciton. A more complete analysis is given at
the end of Section 4.3.2.

4.2 Application to real systems

4.2.1 GaAs-based nanowires

The calculation for a GaAs-Ga0.65Al0.35As NW with
hexagonal cross-section, using the valence force field
model, Figure 3c of reference [28], fully agrees (Fig. 4)
with the present value εc

zz = (1− η)f . The in-plane strain
is “four times smaller” [28], which also agrees with the
ratio 0.22 obtained in the present calculation using the
stiffness constants of (Ga,Al)As [29], with χ = 1.

In GaAs-GaP NWs, the lattice mismatch is 3.6%, and
the stiffness constants differ by a factor χ ≈ 1.10 to
1.17 [30]. NWs with either a circular or a hexagonal cross-
sections have been modeled by Grönqvist et al. [6] us-
ing both the valence force field model and a finite ele-
ment treatment of the continuum elasticity theory. Other
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Fig. 5. Strain in a GaAs core with a GaP shell, as a function
of area ratio (1 − η). Symbols are the numerical calculation of
reference [6] (square) and reference [31] (circles), lines are the
present calculation.

core-shell configurations with hexagonal cross-sections are
described in reference [31]. In the case of a circular cross-
section, it confirms the present result that the axial strain
is uniform in the core and in the shell, and that the in-
plane strain is also uniform in the core. Using the appro-
priate values of the area ratio, and the stiffness constant
values of GaP [30] with an average ratio χ = 1.14 for
GaAs-GaP, we calculate the solid lines shown in Figure 5,
in good agreement with numerical calculations. Note the
small but visible bowing which is due to the different val-
ues of the stiffness constants in GaAs and GaP.

4.2.2 InAs-based nanowires

Similar results are obtained in InAs-InP NWs. They fa-
vorably compare (Fig. 6) with the results of numerical
calculations [26]. We will come back to this system in the
section on warping (4.3.2).

In GaAs-InAs NWs, the approximation of a constant
Poisson ratio is not reasonable and a direct inversion of
the full matrix (Eq. (10) where the cij have been replaced
by the c̃ij , Eq. (29)), or the equivalent transfer matrix
method, should be used.

4.2.3 ZnTe nanowires

Photoluminescence and cathodoluminescence have been
measured on ZnTe-(Zn,Mg)Te core-shell NWs [1], with a
peak at 2.31 eV, i.e., a 60 meV redshift with respect to the
exciton in bulk ZnTe; this is a large shift, larger than usu-
ally observed in strained 2D layers. In bare ZnTe NWs [32],
a small (3 meV) blueshift is observed.

The values of the deformation potentials in ZnTe
are [33,34] a = 5.3 eV and d/

√
3 = 2.5 eV, and the

values of the stiffness constants [35], c11 = 73.7 GPa,
c12 = 42.3 GPa, and c44 = 32.1 GPa. Then the excitonic

emission of a 〈1 1 1〉 oriented cubic ZnTe NW is (in meV,
with f in %) ENW = 2381−88(1−η)f for the heavy hole
and ENW = 2381 − 44(1 − η)f for the light hole. Note
the large shift of the heavy-hole exciton, in sharp contrast
with the case of a 2D epitaxial where the effect of the hy-
drostatic strain and the shear strain almost compensate.
The heavy hole is the ground state, as found experimen-
tally in reference [1]. For the NWs studied in reference [1],
with rc = 35 nm, rs = 65 nm and f = 1.04% correspond-
ing to the lattice mismatch between a ZnTe core and a
Zn0.8Mg0.2Te shell [36], we obtain 2.31 eV for the heavy-
hole exciton, in agreement with the observed PL line, see
Figure 7. The small blueshift observed in bare ZnTe NW
was attributed to a small residual strain due to a thin
oxide shell [32].

4.3 Deviations from cylindrical symmetry

In this section we discuss the two simplifying assumptions
which allow us to derive the previous analytical expres-
sions: (1) NWs have a circular cross-section, and (2) in the
NWs with the zinc-blende structure, the deviation from
cylindrical symmetry is small.

4.3.1 Facets

Most of the numerical calculations consider NWs with an
hexagonal cross-sections, and actual NWs exhibit more
or less well-defined facets. The present calculation does
not reproduce the inhomogeneity of the in-plane strain
which is calculated for a hexagonal NW, but it was already
noted [37] that the central values of strain are quite sim-
ilar in hexagonal and circular cores. This was confirmed
in the very detailed study of reference [6], where NWs
with hexagonal and circular cross sections are compared.
Indeed the results of the present model compare fairly well
to the results of numerical calculations made for hexago-
nal NWs. Other approaches are reviewed in reference [7]
for the case of nanowires embedded in an infinite or semi-
infinite material.

4.3.2 Warping terms

The cylindrical symmetry is exact in the case of NWs
with the wurtzite structure, with the c-axis along the NW.
It is not for NWs with the zinc-blende structure. As a
result, the shell is warped, as evidenced in the numerical
treatment of reference [6]. We now describe the analytical
calculation of this additional contribution.

Indeed, when calculating the stress corresponding to
the cylindrical strain configuration, additional com-
ponents appear through the c̃14 terms in the stiffness ten-
sor: for instance, at the interface in the y-direction (x = 0,
y = rc), a stress component normal to the interface and
surface, σyz = c̃14(εxx −εyy)+2c̃44εzy, takes a finite value
if we use the strain of equations (18) and (32), or (25)
and (33). We thus expect an additional strain to appear,
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Fig. 6. Strain maps for an InAs core with an InP shell, with the same area ratio η = 0.2 as in reference [26]. The lattice mismatch
is f = −3.15%, stiffness ratio χ = 1.2, and Bsc̃14/c̃44 = −0.82%. Contour line spacings are 0.1%. The shear component εzz in
(a) and 1

2
(εxx + εyy) = 1

2
(εrr + εθθ) in (b) are uniform in the core and in the shell. A shear strain 1

2
(εrr − εθθ) is present in

the shell; it is rotationally invariant (c). Plotting εxx introduces an apparent dependence on θ. Maps of εxx − εyy, 2εxy and
εyy − εxx are identical, but for a rotation by π/4 or π/2. Maps (a), (b) and (d) can be compared to reference [26].

Fig. 7. Exciton energy in a ZnTe NW with a (Zn,Mg)Te shell,
as a function of area ratio (1 − η) times the Mg content x.
Confinement effects are ignored.

εzy = −c̃14(εxx−εyy)/2c̃44 where (εxx−εyy) is taken from
equation (18) and (32) or (25) and (33): it vanishes in the
core (where Bc = 0), but not in the shell where a non-
uniform shear strain (εs

θθ − εs
rr) exists. With c < 0, and

f < 0 (case of GaAs-GaP, InAs-GaAs, CdTe-ZnTe core-
shell NWs, not ZnTe-(Zn,Mg)Te), we expect a positive

εzy, i.e., the shell is pushed upward, towards [1 1 1]. Note
that other non-vanishing stress components are obtained
by re-introducing these warping terms into the calculation
of the stress, so that they are of second-order in c̃14.

Using the rotated stiffness tensor, equation (30), and
forcing the stress component σrz to be zero (and neglect-
ing a contribution of second-order in c̃14), we obtain εzr =
(c̃14/2c̃44)(εθθ − εrr) sin 3θ: the shell is alternately pushed
upward and downward, with the expected trigonal sym-
metry (Fig. 8).

To calculate the complete strain distribution, we must
re-calculate the displacement field thanks to the Lamé-
Clapeyron-Navier equation.

When introducing the cylindrical solution ur(r) =
Ar + Br2

c/r, uθ = 0, uz(z)) into the complete equation,
equation (31), the c̃14 terms vanish everywhere but in
the third equation for the shell. There, 2∂2ux/∂x∂y +
∂2uy/∂x2 − ∂2uy/∂y2 = 8Bsr

2
c sin 3θ/r3. In a treatment

to first-order in c̃14 (i.e, in the cubic anisotropy c), we have
to find an additional displacement δu which is solution of
the Lamé-Clapeyron-Navier equation for the transversely
isotropic NW, with no lattice mismatch (they are already
compensated) but with body forces Fx = 0, Fy = 0,
Fz = c̃148Bsr

2
c sin 3θ/r3 in the shell.

Thus, δu is the response of an isotropic system to an
axial shear strain [9] of trigonal symmetry (∼ sin 3θ).
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x

y

Fig. 8. Warping body forces in the shell of a core-shell NW
with f < 0, grown along 〈1 1 1〉, due to the trigonal symmetry
of the zinc-blende structure. The shell is pushed upward and
downward according to the red arrows. The tetrahedron of the
atomic structure is shown in green.

The solution is δux = 0, δuy = 0 and δuz such that:

c̃44

(
∂2

∂x2
+

∂2

∂y2

)

δuz = 0

c̃44

(
∂2

∂x2
+

∂2

∂y2

)

δuz + c̃148Bsr
2
c

sin 3θ

r3
= 0, (35)

in the core and in the shell, respectively. The result is of
trigonal symmetry and can be written, respectively (see
Appendix B for details):

δuz

rc
=

c̃14

c̃44
Bsα

c
3

r3

r3
c

sin 3θ

δuz

rc
=

c̃14

c̃44
Bs

(
rc

r
+ αs

3

r3

r3
c

+ αs
−3

r3
c

r3

)

sin 3θ, (36)

where we have used αc
−3 = 0 (no diverging term), and

the three parameters αc
3, αs

3, αs
−3 are determined by the

boundary conditions: the non-trivial boundary condi-
tions are that δuz and σrz = c̃14 sin 3θ(εrr − εθθ)+
c̃44

1
2∂(δuz)/∂r are continuous at the interface, and σrz

vanishes at the surface. The final result is:
[
δuz

rc

]

c

=
[

η2(1 − η)
r3

r3
c

]
c̃14

c̃44
Bs sin 3θ

[εrz]c =
3
2

[

η2(1 − η)
r2

r2
c

]
c̃14

c̃44
Bs sin 3θ

[εθz]c =
3
2

[

η2(1 − η)
r2

r2
c

]
c̃14

c̃44
Bs cos 3θ

[
δuz

rc

]

s

=
[
rc

r
− r3

c

r3
+ η2(1 − η)

r3

r3
c

]
c̃14

c̃44
Bs sin 3θ

[εrz]s =
3
2

[

− r2
c

3r2
+

r4
c

r4
+ η2(1 − η)

r2

r2
c

]
c̃14

c̃44
Bs sin 3θ

[εθz]s =
3
2

[
r2
c

r2
− r4

c

r4
+ η2(1 − η)

r2

r2
c

]
c̃14

c̃44
Bs cos 3θ, (37)

where

c̃14

c̃44
Bs = − f√

2
c11 − c12 − 2c44

c11 − c12 + c44
×

3(c11 + 2c12)
(c11 − c12 + 4c44)[η + (1 − η)χ] + (2c11 + 4c12 + 2c44)

.

The results are shown in Figure 9 for an InAs-InP NW
with the area ratio of reference [26], and for a thick shell.
Maps are shown in Figure 10. Note the discontinuity of
εrz at the interface, and its fast decay while εθz progres-
sively increases from zero and stays finite far into the shell.
There is a complete agreement with the results of numer-
ical calculations in reference [26].

Apart from the presence of this additional shear strain,
the other strain components are modified by terms of the
order of (c̃14/c̃11)2. Taking again GaAs parameters, we
find that these second order terms are of the order of
1%×f . As a result, the change of the core strain induced
by the c̃14 terms is negligible. Note also that the contri-
bution of the additional shear strain to σzz vanishes due
to the cos 3θ and sin 3θ factors.

4.4 Summary and electronic properties

To sum up, the strain configuration in a zinc-blende NW
grown along the 〈1 1 1〉 axis is described by a cylindrical
strain, equation (18) and (32) (or Eqs. (25) and (33) if χ =
1), complemented by an axial shear strain (“warping”),
equation (37).

The Bir-Pikus Hamiltonian describing the coupling of
holes to strain has the same symmetry as the Luttinger
Hamiltonian. When expressed in the present trigonal basis
(hole states |32 〉, |12 〉, |− 1

2 〉 and |− 3
2 〉 quantized along [1 1 1],

and strain tensor using the axes x = [1 1̄ 0], y = [1 1 2̄], z =
[1 1 1]), using the symmetry arguments of reference [38] as
described in reference [39], the Hamiltonian writes:

⎛

⎜
⎝

P + Q −S R 0
−S∗ P − Q 0 R
R∗ 0 P − Q S
0 R∗ S∗ P + Q

⎞

⎟
⎠ , (38)

with

P = −a(εxx + εyy + εzz)

Q =
d

2
√

3
(εxx + εyy − 2εzz)

R = −
√

3
6

(

b +
2d√

3

)

(εxx − εyy − 2iεxy)

+
2√
6

(

b − d√
3

)

(εxz + iεyz)
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Fig. 9. Warping strain due to the trigonal symmetry of the zinc-blende structure in an InAs-InP core shell NW. The lattice
mismatch is f = −3.15%, stiffness ratio χ = 1.2, and Bsc̃14/c̃44 = −0.82%. The radial dependence of the displacement along
the axis (top), the radial-axial shear strain (middle) and the tangential-axial shear strain (bottom) are shown for a NW with
finite shell radius (left column)and infinite shell radius (right column). The trigonal symmetry appears through the sin 3θ or
cos 3θ factor, as indicated.
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Fig. 10. Strain map for an InAs core with an InP shell, with the same area ratio η = 0.2 as in reference [26]. The lat-
tice mismatch is f = −3.15%, stiffness ratio χ = 1.2, and Bsc̃14/c̃44 = −0.82%. All contour line spacings are 0.05%.
The shear components εrz and εθz reveal the trigonal symmetry. This symmetry is masked if we plot εxz or εxz but these plots
can be compared qualitatively to reference [6], and quantitatively (but taking into account the different axes used) to
reference [26].

S =
√

3
3

(

2b +
d√
3

)

(εxz − iεyz)

− 1√
6

(

b − d√
3

)

(εxx − εyy + 2iεxy).

In the core, apart from a small axial shear strain, which
takes non-vanishing values close to the interface but re-
mains very small, the strain comprises the hydrostatic
strain (εxx + εyy + εzz) and the trigonal strain (εxx +
εyy − 2εzz). The Bir-Pikus Hamiltonian is diagonal in the
trigonal basis, with a splitting equal to 2Q; the Luttinger
Hamiltonian gives the effective masses of the eigenstates:
the mass along the NW axis (determining the density of
states and transport properties) is m∗ = m0/(γ1 − 2γ3)
for the |± 3

2 〉 holes, and m∗ = m0/(γ1 +2γ3) for the |± 1
2 〉

holes, the mass in the plane (governing confinement) being
m∗ = m0/(γ1 ± γ3). This was used in Section 4.1.2.

In the shell, close to the interface, the dominant con-
tribution is the shear strain with cylindrical symmetry: it
adds non-diagonal matrix elements (R and S) to the Bir-
Pikus Hamiltonian, which mixes the previous states. As in
the previous case of a wurtzite NW, half of the holes are
confined to the interface. If we consider the whole NW,
the axial symmetry is preserved, so that the eigenstates
in the core retain their symmetry, with some mixing ex-
pected to take place in narrow NWs. However, there is
also a contribution from the warping terms in the shell,
which adds a modulation with a three-fold symmetry to

the hole potential: this complex structure may contribute
to localization, particularly in NWs with a thick shell.

This deformation potential landscape is complemented
by the piezoelectric effect [26]. Again, the polarization
in the core is along the axis, determined by −e14(εxx +
εyy − 2εzz)/

√
3 where e14 is the unique coefficient of the

piezoelectric tensor (the indices refer to the cubic axes).
A complex lanscape however emerges in the shell from
the presence of in-plane and axial shear strains, and of
additional terms in the piezoelectric tensor written in the
trigonal axes [3,26,27].

5 Cubic semiconductors along 〈0 0 1〉
By contrast to the (1 1 1) plane of the zinc-blende struc-
ture, which is quite isotropic, the (0 0 1) plane is known
to be strongly anisotropic. This is obvious on the stiffness
tensor written in the er, eθ, ez axes, obtained by rotating
the cubic axes by an angle θ) around z (i.e., it is written
in cylindrical coordinates):

⎛

⎜
⎜
⎜
⎜
⎜
⎝

ĉ11 + c cos 4θ
4 ĉ12 − c cos 4θ

4 ĉ13 0 0 0
ĉ12 − c cos 4θ

4 ĉ11 + c cos 4θ
4 ĉ13 0 0 0

ĉ13 ĉ13 ĉ33 0 0 0
0 0 0 ĉ44 0 0
0 0 0 0 ĉ44 0
0 0 0 0 0 ĉ66 − c cos 4θ

4

⎞

⎟
⎟
⎟
⎟
⎟
⎠

30403-p15



The European Physical Journal Applied Physics

with

ĉ11 =
3c11 + c12 + 2c44

4

ĉ12 =
c11 + 3c12 − 2c44

4

ĉ66 =
c11 − c12 + 2c44

4
ĉ13 = c12, ĉ33 = c11, ĉ44 = c44. (39)

Reference [40] proposes a solution where one assumes the
cylindrical form of the displacement field, ur(r) = Ar +
B/r, and writes boundary conditions at the interfaces/
surfaces only in the cubic directions. Actually, as we show
now, the cylindrical displacement field is not a solution of
the Lamé-Clapeyron-Navier equation, and the boundary
conditions are not valid for other directions of the basal
plane. We thus propose a solution in two steps, along
the line we followed in the previous section for the NW
with trigonal axis. We thus identify the stiffness constants
which give the better approximation by a cylindrical so-
lution, and we calculate the additional strain with four-
fold symmetry, which is now a generalized in-plane shear
strain.

The present form of the stiffness tensor, equation (39),
identifies two contributions:

– one with cylindrical symmetry (that with the ĉ, note
that ĉ11 − ĉ12 = 2ĉ66); if we keep only this contribu-
tion, the strain configuration is that of equation (18)
or equation (25), where the cij ’s are replaced by the
ĉij ’s;

– one, proportional to c, with the expected fourfold sym-
metry around z. As mentioned earlier, with c < 0,
a zinc-blende crystal is softer against a pure tetra-
gonal stress (along a cubic axis, cos 4θ = 1) than
against any other stress, in particular along a 〈1 1 0〉
axis (cos 4θ = −1).

Omitting the terms violating the translation invariance
and identifying cylindrical contributions (in ĉ) and contri-
butions due to the cubic anisotropy (proportional
to c), we obtain for the Lamé-Clapeyron-Navier equation
in Cartesian coordinates:

ĉ11 − ĉ12

2

(
∂2

∂x2
+

∂2

∂y2

)

ux

+
ĉ11 + ĉ12

2
∂

∂x

(
∂ux

∂x
+

∂uy

∂y

)

+
c

4

(
∂2ux

∂x2
− ∂2ux

∂y2
− 2

∂2uy

∂x∂y

)

= 0

ĉ11 − ĉ12

2

(
∂2

∂x2
+

∂2

∂y2

)

uy

+
ĉ11 + ĉ12

2
∂

∂y

(
∂ux

∂x
+

∂uy

∂y

)

+
c

4

(
∂2uy

∂y2
− ∂2uy

∂x2
− 2

∂2ux

∂x∂y

)

= 0

[010]

[100]

Fig. 11. In-plane body forces in the shell of a 〈0 0 1〉 NW,
with f < 0, due to the four-fold symmetry of the zinc-blende
structure. The tetrahedron of the atomic structure is shown in
green.

∂2uz

∂x2
+

∂2uz

∂y2
= 0. (40)

Inserting the cylindrical solution ur(r) = Ar+B/r reveals
non-vanishing contributions from the terms proportional
to c. As in the previous case, in a calculation to first-order
in c, these terms act as body forces and generate an ad-
ditional displacement field δu, proportional to c. Even if
these terms look quite similar to those already encoun-
tered for the 〈1 1 1〉 NW (they amount to 8Br2

c sin 3θ/r3

for the first equation of Eq. (40) and −8Br2
c cos 3θ/r3 for

the second one), they appear as body forces in the basal
plane, organized as a transverse shear stress [9] with four-
fold symmetry :

Fr = c
2Bsr

2
c

r3
cos 4θ

Fθ = −c
2Bsr

2
c

r3
sin 4θ, (41)

in the shell, and zero in the core (Fig. 11). We thus have to
find an additional in-plane displacement δu(r, θ) which is
the response of the transversely isotropic system to these
forces. The relevant part of the Lamé-Clapeyron-Navier
equation is a two-dimensional equation:

ĉ11 − ĉ12

2
�δu +

ĉ11 + ĉ12

2
∇(∇ · δu) = F,

or, defining a Poisson ratio ν = ĉ12/(ĉ11 + ĉ12) = (c11 +
3c12 − 2c44)/4(c11 + c12),

(1 − 2ν)�δu + ∇(∇ · δu) =
2F

ĉ11 + ĉ12
. (42)
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Fig. 12. Strain maps for an InAs core with an InP shell, with the same area ratio η = 0.2 as in reference [26]. The NW axis
is 〈0 0 1〉 and we used χ = 1. The mismatch is f = −3.15% and Bsc/(c11 + c12) = −0.87%. The axial strain component εzz

is uniform. The contour line spacing is 0.05% for 1
2
(εrr + εθθ), 0.2% for 1

2
(εrr − εθθ), and 0.1% for εrθ. All in-plane strain

components exhibit a four-fold contribution due to the crystal anisotropy.

The solution is:

δur

rc
=

c

ĉ11 + ĉ12
Bsgr(r) cos 4θ

δuθ

rc
=

c

ĉ11 + ĉ12
Bsgθ(r) sin 4θ, (43)

where gr and gθ are two dimensionless functions of r/rc –
more precisely they are sums of five terms in (r/rc)n with
n = −1,±3,±5, which are given in Appendix B.

To sum up, the strain configuration in a core-shell NW
grown along 〈0 0 1〉 is given by equation (18), with:

Bs = − c11 + 2c12(
c11−c12

2 + c44

)
[η + (1 − η)χ] + (c11 + c12)

f

f⊥ + Bs =

(
c11−c12

2 + c44

)
[η + (1 − η)χ] − c12

(
c11−c12

2 + c44

)
[η + (1 − η)χ] + (c11 + c12)

f.

(44)

If the materials have the same hardness (χ = 1), this
reduces to equation (25) and,

Bs = − 2(c11 + 2c12)
3c11 + c12 + 2c44

f

f⊥ + Bs =
c11 − 3c12 + 2c44

3c11 + c12 + 2c44
f. (45)

This is complemented by an in-plane shear strain which
writes (for χ = 1):

εrr =
c

c11 + c12
Bs cos 4θgrr

(
r

rc

)

εrθ =
c

c11 + c12
Bs cos 4θgrθ

(
r

rc

)

εθθ =
c

c11 + c12
Bs sin 4θgθθ

(
r

rc

)

,

where gθθ = 4gθ + gr, and gr, gθ, grθ and grr are given in
Appendix B, equation (B.6) with the coefficients given in
(B.9) for the shell and the core.

Figure 12 shows the strain map for an InAs-InP NW
with the same area ratio η as in Figures 6 and 10, and ref-
erence [26], but with the NW axis along 〈0 0 1〉. Figure 13
displays the radial profiles of the in-plane displacement
field, the in-plane strain components (the cylindrical con-
tribution and the modulation in sin 4θ or cos 4θ due to
cubic anisotropy), and the axial strain. The cubic contri-
bution is negligible in the central part of the core, and
remains small close to the interface; in the shell, it takes
significant values, yet smaller than the cylindrical contri-
bution. Further contributions should bring terms of higher
order in 4θ, with the order of magnitude of the second-
order terms around c/4c11, i.e., again, a few % in GaAs.
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Fig. 13. Radial profile of the displacement field and the strain components for the same NW as in Figure 12. The NW axis is
〈0 0 1〉. The (black) central lines are the cylindrical contribution, the two other lines show the extreme values due to the cubic
anisotropy, with the dependence on polar angle as indicated (blue: sin 4θ or cos 4θ = 1; red: sin 4θ or cos 4θ = −1).
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6 Discussion and conclusion

The present study proposes an analytical treatment of
the strain distribution in core-shell and multishell NWs
with circular section. Several comparisons have been given
with numerical treatments using either a valence force field
model [2,3,6,17,26,28], or a finite element implementation
of continuum elasticity [26]. Even if commercial packages
now exist which will give the same results as these numer-
ical treatments, the analytical treatment remains faster,
and it favors a more comprehensive understanding.

It has been recognized for a long time [13] that the
(1 1 1) plane of a cubic crystal (in the present case, zinc-
blende or diamond semiconductor) is isotropic – and the
same property also holds for the (a, b) plane of the wurtzite
structure.

In a core-shell NW, this remains valid for a core-shell
NW oriented along the c-axis of the wurtzite structure.
This transverse isotropy has several consequences which
are reminiscent from the case of a fully isotropic material.

– the longitudinal strain is decoupled from the in-plane
strain. It is uniform in the core and in the shell, and
results from a sharing of the lattice mismatch along
the c axis, inversely proportional to the cross-section
areas;

– the in-plane strain in the core is isotropic and uniform.
It is the result of a partial compensation between the
direct effect of the in-plane lattice mismatch (the c13f⊥
contribution in Eq. (18) and the Poisson effect from the
longitudinal mismatch (the (c11−c12)f‖ contribution).
The simple result obtained for a fully isotropic material
(a factor of − 1

2 in the (shear strain)/(isotropic strain)
ratio when comparing the NW to the thin layer) must
be adapted to the relevant stiffness constants. In the
case of a GaN-AlN NW, the compensation is reinforced
by the different values of the lattice mismatch in the
two directions, so that the in-plane strain in the core
is reduced by one order of magnitude;

– actually the main part of the in-plane lattice mismatch
is accommodated by the in-plane shear strain, which
rotates around the interface so that the circular sym-
metry is maintained. The fact that this strain is re-
stricted to the vicinity of the interface is a consequence
of the Saint-Venant principle.

It is interesting to note that this shear strain induces a
potential which can be used to confine holes in the shell in
the vicinity of the interface, far from the sidewall. It thus
allows the design of type-II core-shell NWs where both
the electrons (in the core) and the holes (in the shell) are
kept away from surface defects.

The strain distribution in a NW oriented along the
〈1 1 1〉 axis of a semiconductor with the zinc-blende (or
diamond) structure is more complex. Shear strains and
shear stresses are expected, and they appear in the numer-
ical studies. They are due to the trigonal symmetry around
the 〈1 1 1〉 axis, and more precisely to the presence of tetra-
hedral building blocks with a single orientation – while
two orientations co-exist in the wurtzite structure [41].
The present analysis shows that these shear strain indeed

exist in the shell, and that their influence on the strain
in the core is small. The uniform strain, isotropic in the
plane, which exists in the core can be calculated analyti-
cally using the stiffness tensor appropriate for the 〈1 1 1〉
orientation.

The same method gives analytical results also in the
case of a NW with the zinc-blende (or diamond) struc-
ture grown along a cubic axis: then in-plane strain with
four-fold symmetry develops in addition to the cylindrical
configuration.

Note that with these two examples (NWs grown along
the trigonal or along the cubic axis of the zinc-blende/
diamond structure), we obtain the two possible types of
additional generalized shear strain (axial or in-plane).
NWs with other types of symmetry are expected to in-
volve combinations of these two types of generalized shear-
strain.

While the present study assumes a circular basis of the
NWs, numerical studies also reveals the role of facets: for
a hexagonal basis, the strain in the core is not uniform in
the corners of the hexagons. An analytical method has
been proposed for isotropic materials in reference [42].
Alternately, a possible extension of the present method
would be to express the difference between the NW with
a polygonal section and that with a circular one, as a field
of body forces, which would be localized at the corners of
the polygon; then, as we did for the crystalline anisotropy,
we could calculate the response of the system to that field.
Nevertheless, the comparison between the present calcu-
lation and the plateaus values from numerical studies sug-
gests again a quantitative agreement, which can be seen
as another consequence of the Saint-Venant’s principle.

Finally, multishell NWs are currently proposed for ap-
plications such as the direct-bandgap emission from 〈0 0 1〉
Si-Ge NWs [43], or a reduction of piezoelectric effects
in wurtzite or 〈1 1 1〉 zinc-blende NWs [15]. The present
study shows that a shear strain exists in such lateral QWs,
different from well to well. The transfer matrix method can
also be used to incorporate the effects of surface stress,
which may become significant in narrow NWs [44], or of
surface layers (oxide for instance), two effects which will
be difficult to disentangle.

This work was done in the joint CNRS-CEA group
“Nanophysique & semiconducteurs”, and in the frame of the
ANR project ”Magwires” (ANR-11-BS10-013). We thank
Yann-Michel Niquet, Möıra Hocevar and all the members of
the Magwires project for many discussions and for communi-
cating their results.
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Appendix

A Lamé-Clapeyron-Navier equations

The full Lamé-Clapeyron-Navier equations are written for
the three crystal structures and orientations.

A.1 Wurzite, c-axis

c11
∂2ux

∂x2
+

c11 − c12

2
∂2ux

∂y2
+ c44

∂2ux

∂z2

+
c11 + c12

2
∂2uy

∂x∂y
+ (c13 + c44)

∂2uz

∂x∂z
= 0,

c11 − c12

2
∂2uy

∂x2
+ c11

∂2uy

∂y2
+ c44

∂2uy

∂z2

+ (c13 + c44)
∂2uz

∂y∂z
+

c11 + c12

2
∂2ux

∂x∂y
= 0,

c44
∂2uz

∂x2
+ c44

∂2uz

∂y2
+ c33

∂2uz

∂z2

+ (c13 + c44)
∂2ux

∂x∂z
+ (c13 + c44)

∂2uy

∂y∂z
= 0. (A.1)

A.2 Zinc-blende, 〈1 1 1〉 axis

c̃11
∂2ux

∂x2
+

c̃11 − c̃12

2
∂2ux

∂y2
+ c̃44
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∂z2

+
c̃11 + c̃12
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+ 2c̃14
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+ 2c̃14
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∂2uy

∂y2
+ c̃44

∂2uy

∂z2

+ (c̃13 + c̃44)
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+ 2c̃14
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∂z∂x
+ c̃14
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− c̃14
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∂x2
− c̃14

∂2uy

∂y2
= 0, (A.2)

A.3 Zinc-blende, 〈0 0 1〉 axis

c11
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∂x2
+ c44
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∂y2
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= 0. (A.3)

B Generalized shear strains

The present study involves Lamé-Clapeyron-Navier equa-
tions describing the response of a system which is invari-
ant under a translation along the z-axis and isotropic
in the basal xy plane, to body forces which are peri-
odic in a rotation around the z-axis: Fz = F sin 3θ for
a zinc-blende NW along a 〈1 1 1〉 axis, and Fr = F cos 4θ,
Fθ = −F sin 4θ for a zinc-blende NW along a 〈0 0 1〉 axis.
Note that Fz = F cos(θ) over the whole structure de-
scribes a uniform axial shear strain applied to the system,
and Fr = F sin 2θ, Fθ = F cos 2θ a uniform transverse
shear strain: a transfer matrix method was proposed in
reference [9] for multishell NWs submitted to these two
types of shear strain. The present study involves simi-
lar body forces distributions with a faster dependence on
θ, localized in the shell: Fz = F sin pθ with p = 3, and
Fr = F cos pθ, Fθ = −F sin pθ with p = 4. Other orienta-
tions of the NWs will involve combinations of such body
forces distributions.

We thus have to calculate a displacement field δu, so-
lution of the Lamé-Clapeyron-Navier equation:

ĉ11 − ĉ12

2

(
∂2
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)
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+
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∂
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(
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+ Fy = 0,
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ĉ44

(
∂2

∂x2
+

∂2

∂y2

)

δuz + Fz = 0. (B.1)

As the response of a linear, transversely isotropic system
to an oscillating perturbation, the general solution is ex-
pected to show the same oscillatory behavior, in cos(pθ)
or sin pθ.

The boundary conditions are the continuity of the to-
tal displacement field, u + δu, at the interface, and that
the stress components acting on the interface and on the
sidewall surface (σrr, σrθ, σrz) all vanish. The last condi-
tion must be achieved for the total stress, corresponding
to u + δu. For the displacement field, it is sufficient to
write that the additional displacement field does not break
the contact which has been established by the cylindrical
displacement field, hence δu = 0. Note that the symme-
try of the system and that of the shear strain strongly
reduce the number of parameters to be determined from
boundary conditions. For instance, the condition that the
integral of σzz vanishes is automatically preserved by the
oscillating character of δu.

B.1 Axial shear strain and 〈1 1 1〉 NWs

In the absence of driving force in the basal plane, we keep
δur = 0 and δuθ = 0, and look for δuz = ϕ(r) sin pθ,
with ϕ(r) obeying equation (35). In cylindrical coordi-
nates, that reads:

c̃44

(
∂2

∂r2
+

1
r

∂

∂r
+

1
r2

∂2

∂θ2

)

[ϕ(r) sin pθ] + Fz = 0

or

c̃44

(
d2

dr2
+

1
r

d
dr

− p2

r2

)

ϕ(r) sin pθ + Fz = 0.

The general solution is the sum of functions ∼rn: n = −1
provides a particular solution which compensates for Fz,
and for n = ±p, the sum of derivatives vanishes.

With Fz = c̃148Bsr
2
c sin 3θ/r3 in the shell, we obtain:

δuz

rc
=

[
α3ρ

3 + α−3ρ
−3 + α−1ρ

−1
] c̃14

c̃44
Bs sin 3θ,

where ρ = r/rc, with αs
−1 = −1 in the shell and αc

−1 = 0
in the core. Also, αc

−3 = 0 in the core to avoid a singularity
at r = 0. The additional strain is thus:

δεrz =
1
2

∂

∂r
δuz

=
[
3α3ρ

2 − 3α−3ρ
−4 − α−1ρ

−2
] c̃14

c̃44
Bs sin 3θ,

and

σrz = 2c̃44δεrz + c̃14 sin 3θ(εrr − εθθ)
=

[
3α3ρ

2 − 3α−3ρ
−4 + (2 − α−1)ρ−2

]
c̃14Bs sin 3θ.

The three remaining parameters αc
3, αs

3 and αs
−3 are deter-

mined by the non-trivial boundary conditions, on uz (at

the interface) and σrz (at the interface and surface). It is
quite convenient to write these conditions using a transfer
matrix:

⎛

⎜
⎝

(
δuz

rc

)

(
σrz

c̃44

)

⎞

⎟
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c̃14
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(
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−3ρ−2

)

. (B.2)

At the interface (ρ = 1), if we omit the difference in stiff-
ness coefficients between the two materials:

(
1 1
3 −3

) (
αc

3

0

)

=
(

1 1
3 −3

) (
αs

3

αs
−3

)

+
(

1
−3

)

or (
αc

3

0

)

=
(

αs
3

αs
−3

)

+
(

0
1

)

.

At the surface, using equation (B.2) at r = rs (ρ = 1/
√

η),
and keeping only the second component of the vectors (the
stress which must be zero), we obtain:

0 = (αs
3 − η3αs

−3) − η2.

Hence αc
3 = αs

3 = η2(1 − η) and αs
−3 = −1.

If we assume a different hardness with a single factor χ
between the stiffness coefficients of the shell with respect
to those of the core material, equation (B.3) becomes:

(
1 1
3 −3

) (
αc

3

0

)

=
(

1 1
3χ −3χ

) (
αs

3

αs
−3

)

+
(

1
−3χ

)

,

and the result is:

αc
3 = η2(1 − η)

2χ

1 + χ + η3(1 − χ)

αs
3 = η2(1 − η)

1 + χ

1 + χ + η3(1 − χ)

αs
−3 = −1 − η2(1 − η)

1 − χ

1 + χ + η3(1 − χ)
.

The correction for χ non-unity is small for the actual NW
configurations considered here: with χ = 1.2 and η = 0.2,
the corrective factor is 10% for αc

3 and negligible for the
shell.

This result was used in the case of the 〈1 1 1〉 core-shell
NWs and it can be extended to multishell NWs.

B.2 Transverse shear strain and 〈0 0 1〉 NWs

The problem is similar to the previous one: we have to find
the response of a system with transverse isotropic charac-
ter, to a body force distribution F. The body forces F rep-
resent an in-plane shear strain, with a four-fold symmetry
due to the cos 4θ factor. A usual shear strain would have
a cos 2θ and sin 2θ factors, as described in reference [9].
The solution is a bit more complex than the response to
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axial shear because we are dealing with a 2D, not 1D,
problem.

The equation to be solved, equation (42), is, in polar
coordinates:
[

2(1 − ν)
(

∂2

∂r2
+

1
r

∂

∂r
− 1

r2

)

+ (1 − 2ν)
1
r2
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∂θ2

]

δur

+
[
1
r

∂2
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1
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∂
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]

δuθ +
2Fr
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1
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∂
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]

δur

+
[
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∂
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)

+ 2(1 − ν)
1
r2
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]

δuθ

+
2Fθ

ĉ11 + ĉ12
= 0. (B.3)

The general solution can be written:

δur

rc
=

c

ĉ11 + ĉ12
Bsgr(r) cos 4θ

δuθ

rc
=

c

ĉ11 + ĉ12
Bsgθ(r) sin 4θ. (B.4)

where gr and gθ are two dimensionless functions which are
sums of terms in ρn with ρ = r/rc and the n are integer
(positive or negative).

For functions ∼rn cos pθ or rn sin pθ, the derivative
contributions in equation (B.3) vanish if n2 = (p ± 1)2.
In the present case, p = 4 hence n = ±3,±5. In addition,
the prefactors αn and αn of rn for a given value of n are
linked since the two equations of equation ( B.3) must be
satisfied. Finally, the prefactors α−1 and α′

−1 are fully de-
termined by the fact that it is the r−1 contribution in gr

and gθ which makes equation (B.3) to be satisfied. As the
αn with negative indices all vanish in the core (to avoid
a singularity at r = 0), we have to determine six para-
meters, αc

3 and αc
5 in the core, αs

3, αs
−3, αs

5 and αs
−5 in

the shell.
Boundary conditions are the continuity of δu at the in-

terface, and the compensation of stress components acting
on the interface and sidewall surface. The relevant stress
components are, in the shell:

σrr = ĉ11δεrr + ĉ12δεθθ +
c

2
cos 4θ

εrr − εθθ

2

= ĉ11
∂

∂r
δur + ĉ12

(
∂

r∂θ
δuθ +

δur

r

)

− c

2
Bsρ

−2 cos 4θ

σrθ = ĉ66εrθ = ĉ66
1
2

(
∂

r∂θ
δur +

∂

∂r
δuθ − δuθ

r

)

.

They are similar in the core, but for Bc = 0.
That makes six boundary conditions.
Writing the two stress components:

σrθ

ĉ66
=

c

ĉ11 + ĉ12
Bsgrθ(r) cos 4θ

σrr

ĉ11 + ĉ12
=

c

ĉ11 + ĉ12
Bsgrr(r) sin 4θ. (B.5)

the four functions gr, gθ, grθ and grr which are submitted
to boundary conditions at the interface can be once again
expressed in the frame of a transfer matrix treatment.

⎛

⎜
⎜
⎝

gr

gθ

grθ

grr

⎞

⎟
⎟
⎠ = M (ρ)

⎛

⎜
⎜
⎝

α3

α−3

α5

α−5

⎞

⎟
⎟
⎠ + V(ρ) , (B.6)

where

M(1) =

⎛

⎜
⎜
⎝

1 (3 − 2ν) (1 + 2ν) 1
−1 2ν −2(2 − ν) 1
−3 −6 −10 −5

3(1 − 2ν) −9(1 − 2ν) 5(1 − 2ν) −5(1 − 2ν)

⎞

⎟
⎟
⎠

M(ρ) =

⎛

⎜
⎜
⎝

1 0 0 0
0 1 0 0
0 0 ρ−1 0
0 0 0 ρ−1

⎞

⎟
⎟
⎠M(1)

⎛

⎜
⎜
⎝

ρ3 0 0 0
0 ρ−3 0 0
0 0 ρ5 0
0 0 0 ρ−5

⎞

⎟
⎟
⎠

and

V(ρ) =
1

4(1 − 2ν)(1 − ν)

⎛

⎜
⎜
⎝

2(1 − ν)ρ−1

−(1 − 2ν)ρ−1

−(3 − 2ν)ρ−2

−4(1 − 2ν)ρ−2

⎞

⎟
⎟
⎠ .

in the shell, and V(ρ) = 0 in the core.
At the interface (ρ = 1),

⎛

⎜
⎜
⎝

gr

gθ

grθ

grr

⎞

⎟
⎟
⎠ = M(1)

⎛

⎜
⎜
⎝

αc
3

0
αc

5

0

⎞

⎟
⎟
⎠ = M(1)

⎛

⎜
⎜
⎝

αs
3

αs
−3

αs
5

αs
−5

⎞

⎟
⎟
⎠ + V(1), (B.7)

and at the surface (ρ = 1/
√

η):

⎛

⎜
⎜
⎝

gr

gθ

grθ

grr

⎞

⎟
⎟
⎠ = M

(
1√
η

)
⎛

⎜
⎜
⎝

αs
3

αs
−3

αs
5

αs
−5

⎞

⎟
⎟
⎠ + V

(
1√
η

)

.

The right-hand side can be written, using equation (B.7):

M

(
1√
η

)
⎛

⎜
⎜
⎝

αc
3

0
αc

5

0

⎞

⎟
⎟
⎠ + V

(
1√
η

)

− M

(
1√
η

)

M−1(1)V(1).

(B.8)
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The condition that and the stress at the interface van-
ishes implies that αs

3 and αs
5 are determined by equating

the last two lines of equation (B.8) to zero.
The final result is:

αc
3 =

−ν + η2[11 − 2ν − 20η + 3η2(3 + ν)]
12(1 − ν)(1 − 2ν)

αc
5 =

1 − η3[14 − 4ν − 25η + 4η2(3 + ν)]
40(1 − ν)(1 − 2ν)

αs
3 =

η2[11 − 2ν − 20η + 3η2(3 + ν)]
12(1 − ν)(1 − 2ν)

αs
−3 =

−5
24(1 − ν)(1 − 2ν)

αs
5 =

−η3[14 − 4ν − 25η + 4η2(3 + ν)]
40(1 − ν)(1 − 2ν)

αs
−5 =

3 + ν

20(1 − ν)(1 − 2ν)
. (B.9)

Here we have assumed that the stiffness constants are the
same in the core and in the shell. Different values of the
stiffness constants can be accommodated by writing dif-
ferent matrices Mc and Ms. And of course this transfer
matrix method can be extended to multishell NWs.
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