Realizing compactly generated pseudo-groups of dimension one

Gaël Meigniez

To cite this version:

Gaël Meigniez. Realizing compactly generated pseudo-groups of dimension one. 2014. hal01058874v1

HAL Id: hal-01058874
https://hal.science/hal-01058874v1
Preprint submitted on 28 Aug 2014 (v1), last revised 3 Mar 2015 (v3)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

REALIZING COMPACTLY GENERATED PSEUDO-GROUPS OF DIMENSION ONE

Abstract

Many compactly generated pseudo-groups of local transformations on 1-manifolds are realizable as the transverse dynamic of a foliation of codimension 1 on a compact manifold of dimension 3 or 4 .

Ga'el Meigniez ${ }^{1}$

After C. Ehresmann, [2], given a foliation \mathcal{F} of codimension q on a compact manifold M, its transverse dynamics is represented by its holonomy pseudo-group of local transformations on any exhaustive transversal T. The inverse problem has been raised by A. Haefliger: given a pseudo-group of local transformation of some manifold of dimension q, realize it, if possible, as the dynamic of some foliation of codimension q on some compact manifold. The difficulty here lies in the compacity. More precisely, Haefliger discovered a necessary condition: the pseudo-group must be compactly generated [5][7]. He asked if this condition is sufficient.

The present paper intends to study the case $q=1$.
A counterexample is known: there exists a compactly generated pseudogroup of local transformations of the line, which is not realizable. It contains a paradoxical Reeb component: a full subpseudo-group equivalent to the holonomy of a Reeb component, but whose boundary orbit has some complicated isotropy group on the exterior side [8].

The object of the present paper is, on the contrary, to give a positive answer to Haefliger's question for many pseudo-groups of dimension one.

Recall that a codimension- 1 foliation is (topologically) taut if through every point there passes a transverse loop, or a transverse path with extremities on ∂M (we refer e.g. to [1] for elements on foliations) . Equivalently, the foliation has no dead end component. These notions are easily translated for pseudo-groups: one has the notions of tautness and of dead end components for a pseudo-group of dimension 1 (see paragraph 1.3 below). It turns out that, to realize a given compactly generated pseudo-group of dimension 1 , the extra necessary and/or sufficient conditions that we find, bear on the isotropy groups of the closed orbits bounding the dead end components, if any.

We also pay attention to the dimension of the realization. Of course, a pseudo-group which is realized by some foliation \mathcal{F} on some manifold M, is also realized by the pullback of \mathcal{F} into $M \times \mathbf{S}^{1}$. One can ask to realize a

[^0]pseudo-group, if possible, in the smallest possible dimension. The dynamics of the foliations on surfaces being very constraint, the dimension 3 will be in general the first candidate.

There is a well-known constraint specific to dimension 3 in the nontaut case. Namely, remember that for elementary Euler characteristic reasons, in every compact foliated 3 -manifold which is not taut, every leaf bounding a dead end component is a 2-torus, an annulus, a Klein bottle, or a M'obius strip (S. Goodman) [1]. This phenomenon has a counterpart in the holonomy pseudo-group: for every orbit bounding a dead end component, its isotropy group is commutative of rank at most two.

A few precisions must be given before the results.
Equivalence: the pseudo-groups must be considered up to an equivalence called Haefliger equivalence. Given two different exhaustive transversals for a same foliated manifold, the two holonomy pseudo-groups are Haefligerequivalent $[5][6][7]$. A foliated manifold is said to realize a pseudo-group G if its holonomy pseudo-group on any exhaustive transversal is Haefligerequivalent to G.

Differentiability: The given pseudo-group being of class $C^{r}, 0 \leq r \leq \infty$, the realizing foliation will be $C^{\infty, r}$, that is, globally C^{r} and tangentially smooth [1]. We also consider the pseudo-groups of class $P L$: the realizing foliations will be $C^{\infty, P L}$.

Orientation: for simplicity, we consider only the orientable pseudo-groups of dimension one, corresponding to the transversely orientable foliations of codimension one. However, we don't always ask the realizing foliations to be tangentially orientable, nor, equivalently, the ambient manifolds to be orientable.

Boundaries: by a "foliated manifold", we understand a manifold M with a smooth boundary (maybe empty), endowed with a foliation \mathcal{F} such that each connected component of ∂M is either a leaf of \mathcal{F} or transverse to \mathcal{F}. So, ∂M splits into a tangential boundary $\partial_{\|} M$, which is seen in the holonomy pseudo-group, and a transverse boundary $\partial_{\pitchfork} M$, which is not. However, in the realization problem, the choice of allowing a transverse boundary or not, only affects the dimension of the realization. For, if G is realized by some foliation \mathcal{F} on some manifold M, with some transverse boundary components, then it is also realized, without transverse boundary components, by the pullback of \mathcal{F} in a manifold of one more dimension, namely:

$$
\left(M \times \mathbf{S}^{1}\right) \cup_{\left(\partial_{\pitchfork} M \times \mathbf{S}^{1}\right)}\left(\partial_{\pitchfork} M \times \mathbf{D}^{2}\right)
$$

THEOREM A. Every orientable pseudo-group of dimension 1 which is compactly generated and taut, is realized by some foliated compact orientable 3 -manifold, without transverse boundary.

Essentially, our method is that the pseudo-group is first easily realized as the dynamic of a Morse-singular foliation on a compact 3 -manifold. The singularities are of Morse indices 1 and 2 , in equal number. Then, thanks
to tautness, from every singularity of index 2 there is a positively transverse path to some (distant) singularity of index 1 . Thanks to some geometric manifestation of compact generation, the pair is cancelled, not in Morse's way, but rather by the means of an elementary surgery of index 2 performed on the manifold, without changing the dynamic of the foliation.

We also get a characterization of the dynamics of all foliations, taut or not, on compact 3 -manifolds. It turns out that there is an interplay between the conditions of orientability and boundaries.

THEOREM B. Let G be an orientable pseudo-group of dimension 1 . Then, the three following properties are equivalent.
(1) G is realizable by some foliated compact 3-manifold (orientable, possibly with a transverse boundary).
(2) G is realizable by some foliated compact 3-manifold (without transverse boundary, possibly nonorientable).
(3) G is compactly generated; and for every orbit of G in the boundary of every dead end component, its isotropy group is commutative of rank at most 2 .

As a basic but fundamental example, the pseudo-group of local transformations of the real line generated by two homotheties $t \mapsto \lambda t, t \mapsto \mu t$, with $\lambda, \mu>0$ and $\log \mu / \log \lambda \notin \mathbf{Q}$, verifies the conditions of theorem B , and is not realizable by any foliated compact orientable 3 -manifold without boundary - see [ref]. We know no simple, necessary and sufficient conditions for realizing a pseudo-group on an orientable, compact 3-manifold without transverse boundary.

More generally, skipping the condition of rank at most 2 :
THEOREM C. Let G be an orientable pseudo-group of dimension 1 which is compactly generated and such that, for every orbit in the boundary of every dead end component, its isotropy group is commutative. Then, G is realizable by some foliated compact orientable 4-manifold, without transverse boundary.

COROLLARY 0.1. Every orientable pseudo-group of dimension 1 and of class $P L$ which is compactly generated, is realizable (in dimension 4).

There remain several open questions between these positive results and the negative result of [8].

Regarding the isotropy groups of the orbits bounding the dead end components, the zoology of the groups that always allow a realization in high dimension, remains obscure (and may be intractable).

Consider a pseudo-group G of dimension 1 which is compactly generated. If G is real analytic, is it necessarily realizable? If G is realizable, is it necessarily realizable in dimension 4 ?

Also, beyond the realization problem itself, one can ask for a more universal property. Call G universally realizable if there is a system of foliated
compact manifolds, each realizing G, and of foliation-preserving embeddings, whose inductive limit is a Haefliger classifying space for G. One can prove (not tackled in the present paper) that every compactly generated pseudo-group of dimension one and class $P L$ is universally realizable. What if we change $P L$ for "taut"? for "real analytic"?

The problem is that the method of the present paper, essentially the cancellation of a pair of distant singularities of indices 1 and $n-1$ in a Morse-singular foliation on a n-manifold by an elementary surgery without changing the dynamic, is very specific to these indices, and we know no equivalent e.g. for a pair of singularities of index 2 in ambient dimension 4 .

1. Preliminaries on pseudo-Groups

In the two first paragraphs 1.1 and 1.2 , we recall concepts and facts about Haefliger equivalence and compact generation, in a form that fits our purposes. The material here is essentially due to Haefliger. In the third paragraph 1.3 , we translate into the frame of pseudo-groups of dimension 1 , the notion of topological tautness, which is classical in the frame of foliations of codimension 1.

In \mathbf{R}^{n}, one writes \mathbf{D}^{n} the compact unit ball; \mathbf{S}^{n-1} its boundary; * the basepoint $(1,0, \ldots, 0) \in \mathbf{S}^{n-1}$; and $d x_{n}$ the foliation $x_{n}=$ constant . "Smooth" means C^{∞}.
1.1. Pseudo-groups and Haefliger equivalences. An arbitrary differentiability class is understood. Let T, T^{\prime} be manifolds of the same dimension, not necessarily compact. Smooth boundaries are allowed.

A local transformation from T to T^{\prime} is a diffeomorphism γ between two nonempty, topologically open subsets $\operatorname{Dom}(\gamma) \subset T, \operatorname{Im}(\gamma) \subset T^{\prime}$. Note that the boundary is necessarily invariant :

$$
\operatorname{Dom}(\gamma) \cap \partial T=\gamma^{-1}\left(\partial T^{\prime}\right)
$$

Given also a local transformation γ^{\prime} from T^{\prime} to $T^{\prime \prime}$, the compose $\gamma^{\prime} \gamma$ is defined whenever $\operatorname{Im}(\gamma)$ meets $\operatorname{Dom}\left(\gamma^{\prime}\right)$ (an inclusion is not necessary), and one has :

$$
\operatorname{Dom}\left(\gamma^{\prime} \gamma\right)=\gamma^{-1}\left(\operatorname{Dom}\left(\gamma^{\prime}\right)\right)
$$

Given two sets of local transformations A, B, as usual, $A B$ denotes the set of the composes of all composable pairs $\alpha \beta$, where $\alpha \in A$ and $\beta \in B$. Also, 1_{U} denotes the identity map of the set U.

DEFINITION 1.1. [10] A pseudo-group on a manifold T is a set G of local self-transformations of T such that :
(1) For every nonempty, topologically open $U \subset T$, the identity map 1_{U} belongs to G;
(2) $G G=G^{-1}=G$;
(3) For every local self-transformation γ of T, if $\operatorname{Dom}(\gamma)$ admits an open cover $\left(U_{i}\right)$ such that every restriction $\gamma \mid U_{i}$ belongs to G, then γ belongs to G.

Then, by (1) and (2), G is also stable by restrictions: if γ belongs to G and if $U \subset \operatorname{Dom}(\gamma)$ is nonempty open, then $\gamma \mid U$ belongs to G.

Example 1. Every set S of local self-transformations of T is contained in a smallest pseudo-group $\langle S\rangle$ containing S, called the pseudo-group generated by S. A local transformation γ of T belongs to $\langle S\rangle$ if and only if, in a neighborhood of every point in its domain, γ splits as a compose $\sigma_{\ell} \ldots \sigma_{1}$, with $\ell \geq 0$ and $\sigma_{1}, \ldots, \sigma_{\ell} \in\left(S \cup S^{-1}\right)$.

Example 2. Given a pseudo-group (G, T), and a nonempty open subset $U \subset T$, one has on U a restricted pseudo-group $G \mid U:=1_{U} G 1_{U}$: the set of the elements of G whose domains and images are both contained in U.

Example 3. More generally, given a pseudo-group (G, T), a manifold T^{\prime}, and a set F of local transformations from T^{\prime} to T, one has on T^{\prime} a pullback pseudo-group $F^{*}(G):=<F^{-1} G F>$.

Under a pseudo-group (G, T), every point $t \in T$ has :
(1) An orbit $G(t)$: the set of the images $\gamma(t)$ through the local transformations $\gamma \in G$ defined at t;
(2) An isotropy group G_{t} : the group of the germs at t of the local transformations $\gamma \in G$ defined at t and fixing t.
Call an open subset $T^{\prime} \subset T$ exhaustive if T^{\prime} meets every orbit. Call the pseudo-group G cocompact if T admits a relatively compact exhaustive open subset. Call the pseudo-group G connected if every two points of T are linked by a finite sequence of points of T, of which every two consecutive ones lie in the same orbit or in the same connected component of T. Obviously, every pseudo-group splits as a disjoint sum of connected ones.

Let (M, \mathcal{F}) be a manifold foliated in codimension q. A smooth boundary is allowed, in which case each connected component of ∂M must be tangent to \mathcal{F} or transverse to \mathcal{F}. One writes $\partial_{\|} M$ the union of the tangential components. By a transversal, one means a q-manifold T immersed into M transversely to \mathcal{F}, not necessarily compact, and such that $\partial T=T \cap \partial_{\|} M$. One calls T exhaustive (or total) if it meets every leaf.
DEfinition 1.2. [2] The holonomy pseudo-group $\operatorname{Hol}(\mathcal{F}, T)$ of a foliation \mathcal{F} on an exhaustive transversal T is the pseudo-group generated by the local transformations γ of T for which there exists a map

$$
f_{\gamma}:[0,1] \times \operatorname{Dom}(\gamma) \rightarrow M
$$

such that:

- $f_{\gamma} \pitchfork \mathcal{F}$ and $f_{\gamma}^{*} \mathcal{F}$ is the slice foliation on $[0,1] \times \operatorname{Dom}(\gamma)$, whose leaves are the $[0,1] \times$ t's $(t \in \operatorname{Dom}(\gamma))$;
- $f_{\gamma}(0, t)=t$ and $f_{\gamma}(1, t)=\gamma(t)$, for every $t \in \operatorname{Dom}(\gamma)$.

This holonomy pseudo-group does represent the dynamic of the foliation: there is a one-to-one correspondence $L \mapsto L \cap T$ between the leaves of \mathcal{F} and the orbits of $\operatorname{Hol}(\mathcal{F}, T)$; a topologically closed orbit corresponds to a topologically closed leaf; the isotropy group of $\operatorname{Hol}(\mathcal{F}, T)$ at any point is isomorphic with the holonomy group of the corresponding leaf; etc.
definition 1.3. [4] A Haefliger equivalence between two pseudo-groups $\left(T_{i}, G_{i}\right)$ $(i=0,1)$ is a pseudo-group G on the disjoint union $T_{0} \sqcup T_{1}$, such that $G \mid T_{i}=G_{i}(i=0,1)$ and that every orbit of G meets both T_{0} and T_{1}.

Example 1. The two holonomy pseudo-groups of a same foliation on two exhaustive transversals are Haefliger equivalent.

Example 2. The restriction of a pseudo-group (G, T) to any exhaustive open subset of T is Haefliger-equivalent to (G, T).

Example 3. More generally, let (G, T) be a pseudo-group, and let F be a set of local transformations from T^{\prime} to T. Assume that:
(1) $F F^{-1} \subset G$;
(2) $\cup_{\phi \in F} \operatorname{Dom}(\phi)=T^{\prime}$;
(3) $\cup_{\phi \in F} \operatorname{Im}(\phi)$ is G-exhaustive in T.

Then, the pseudo-group $<F \cup G>$ on $T \sqcup T^{\prime}$ is a Haefliger equivalence between (G, T) and $\left(F^{*}(G), T^{\prime}\right)$.

The Haefliger equivalence is actually an equivalence relation between pseudo-groups. Given two Haefliger equivalences: G between $\left(T_{0}, G_{0}\right)$ and $\left(T_{1}, G_{1}\right)$, and G^{\prime} between $\left(T_{1}, G_{1}\right)$ and $\left(T_{2}, G_{2}\right)$, one forms the pseudo-group $<G \cup G^{\prime}>$ on $T_{0} \sqcup T_{1} \sqcup T_{2}$. Then, $<G \cup G^{\prime}>\mid\left(T_{0} \sqcup T_{2}\right)$ is a Haefliger equivalence between $\left(T_{0}, G_{0}\right)$ and $\left(T_{2}, G_{2}\right)$.

Every Haefliger equivalence induces a one-to-one correspondence between the orbit spaces $T_{i} / G_{i}(i=0,1)$. A closed orbit corresponds to a closed orbit. The isotropy groups at points on corresponding orbits are isomorphic.
1.2. Compact generation. Let (T, G) be a pseudo-group. We say that $\gamma \in G$ is (G-) extendable if there exists some $\bar{\gamma} \in G$ such that $\operatorname{Dom}(\gamma)$ is contained and relatively compact in $\operatorname{Dom}(\bar{\gamma})$, and that $\gamma=\bar{\gamma} \mid \operatorname{Dom}(\gamma)$. The compose of two extendable elements is also extendable. The inverse of an extendable element is also extendable.

DEFINITION 1.4. (Haefliger)[5] A pseudo-group (T, G) is compactly generated if there are an exhaustive, relatively compact, open subset $T^{\prime} \subset T$, and finitely many elements of $G \mid T^{\prime}$ which are G-extendable, and which generate $G \mid T^{\prime}$.

PROPOSITION 1.5. (Haefliger)[5][7] Compact generation is invariant by Haefliger equivalence.

PROPOSITION 1.6. (Haefliger)[5][7] The holonomy pseudo-group of every foliated compact manifold is compactly generated.

We shall also use the following fact, which amounts to say that the choice of T^{\prime} is arbitrary.
lemma 1.7. [5][7] Let (T, G) be a compactly generated pseudo-group, and $T " \subset T$ be any exhaustive, relatively compact, open subset. Then there are finitely many elements of $G \mid T$ " that are extendable in G, and that generate $G \mid T^{\prime \prime}$.

Note: pseudo-groups vs. groupoids. Despite some appearances, the above definition of compact generation is relevant; in particular because it is preserved through Haefliger equivalences. Recently, N. Raimbaud has shown that compact generation has a somewhat more natural generalization in the frame of topological groupoids. Write $\Gamma(T)$ the topological groupoid of the germs of local transformations of T. Let G be any pseudo-group on T. Then, the set Γ of germs $[g]_{t}$, for all $g \in G$ and all $t \in \operatorname{Dom}(g)$, is in $\Gamma(T)$ an open subgroupoid whose space of objects is the all of T. It is easily verified that one gets this way a bijection between the set of pseudo-groups on T and the set of open subgroupoids in $\Gamma(T)$ whose space of objects is T. The pseudo-group G is compactly generated if and only if the topological groupoid Γ contains an exhaustive, relatively compact, open subset, which generates a full subgroupoid [9].
1.3. Tautness for pseudo-groups of dimension 1 . We now consider a pseudo-group (G, T) of dimension 1 , that is, $\operatorname{dim} T=1$, and oriented, that is, T is oriented and G is orientation-preserving. From now on, all pseudo-groups will be understood of dimension 1 and oriented.

By a positive arc $\left[t, t^{\prime}\right]$ of origin t and extremity t^{\prime}, we mean an orientationpreserving embedding of the interval $[0,1]$ into T sending 0 to t and 1 to t^{\prime}.

A positive chain is a finite sequence of positive arcs, such that the extremity of each (but the last) lies on the same orbit as the origin of the next. A positive loop is a positive chain such that the extremity of the last arc lies on the same orbit at the origin of the first.

DEfinition 1.8. A oriented pseudo-group (G, T) of dimension 1 is taut if every point of T lies either on a positive chain whose origin and extremity belong to ∂T, or on a positive loop.
proposition 1.9. Let (G, T) be a cocompact, oriented pseudo-group of dimension 1. Then, (G, T) is taut if and only if it is Haefliger-equivalent to some pseudo-group $\left(G^{\prime}, T^{\prime}\right)$ s.t. T^{\prime} is a finite disjoint union of compact intervals and circles.

Proof. One first easily verifies that tautness is invariant by Haefliger equivalence. "If" follows.

Conversely, given a taut cocompact pseudo-group (T, G), by cocompacity there is a finite family C of positive chains, each being a loop or having
extremities on ∂T, such that every orbit of G meets on at least one of them.

Consider one of these chains $c=\left(\left[t_{i}, t_{i}^{\prime}\right]\right)(0 \leq i \leq \ell(c))$ which is not a loop: its origin t_{0} and extremity $t_{\ell(c)}^{\prime}$ lie on ∂T. For every $1 \leq i \leq \ell(c)$, one has $t_{i}=g_{i}\left(t_{i-1}^{\prime}\right)$ for some $g_{i} \in G$ whose domain and image are small. Let

$$
\begin{aligned}
U_{0} & :=\left[t_{0}, t_{0}^{\prime}\right] \cup \operatorname{Dom}\left(g_{1}\right) \\
U_{\ell(c)} & :=\operatorname{Im}\left(g_{\ell(c)}\right) \cup\left[t_{\ell(c)}, t_{\ell(c)}^{\prime}\right]
\end{aligned}
$$

and for each $1 \leq i \leq \ell(c)-1$, let

$$
U_{i}:=\operatorname{Im}\left(g_{i}\right) \cup\left[t_{i}, t_{i}^{\prime}\right] \cup \operatorname{Dom}\left(g_{i+1}\right)
$$

One makes an abstract copy U_{i}^{\prime} of each U_{i}. Write $f_{c, i}: U_{i}^{\prime} \rightarrow U_{i}$ the identity. These abstract copies are glued together by means of the g_{i} 's into a single compact segment T_{c}^{\prime}. Thus, T_{c}^{\prime} has an atlas of maps which are local transformations $f_{c, i}(0 \leq i \leq \ell(c))$ from T_{c}^{\prime} onto T, such that every change of map $g_{i}=f_{i} f_{i-1}^{-1}$ belongs to G. The images of the f_{i} 's cover the chain c.

In the same way, for every $c \in C$ which is a loop, one makes a circle T_{c}^{\prime} together with an atlas $f_{c, i}(0 \leq i \leq \ell(c))$ of maps which are local transformations from T_{c}^{\prime} to T, such that every change of map belongs to G. The images of the maps cover the chain c.

Let T^{\prime} be the disjoint union of the T_{c}^{\prime} 's, for $c \in C$. By the example 3 above after the definition $1.3, G$ is Haefliger-equivalent to the pseudo-group $F^{*}(G)$ of local transformations of T^{\prime}.

In case (G, T) is connected, one can be more precise (left as an exercise):
PROPOSITION 1.10. Let (G, T) be a connected, cocompact, oriented pseudogroup of dimension 1. Then, (G, T) is taut if and only if it is Haefligerequivalent to some pseudo-group $\left(G^{\prime}, T^{\prime}\right)$ s.t. T^{\prime} is either a finite disjoint union of compact intervals, or a single circle.

Our last lemma has no relation to tautness. For a compactly generated pseudo-group of dimension one, one can give a more precise form to the generating system defining compact generation:

LEMMA 1.11. Let (T, G) be a compactly generated pseudo-group of dimension 1. Then:
(1) There is a G-exhaustive, open, relatively compact $T^{\prime} \subset T$ which has finitely many connected components;
(2) For every T^{\prime} as above, $G \mid T^{\prime}$ admits a finite set of G-extendable generators whose domains and images are intervals.

Proof. (1) The pseudo-group G being compactly generated, is in particular cocompact: there is a compact $K \subset T$ meeting every orbit. Being compact, K meets only finitely many connected components T_{i} of T. For each i, let $T_{i}^{\prime} \subset T_{i}$ be relatively compact, open, connected, and contain $K \cap T_{i}$. Then,
$T^{\prime}:=\cup_{i} T_{i}^{\prime}$ is G-exhaustive, open, relatively compact, and has finitely many connected components.
(2) By the lemma 1.7, $G \mid T^{\prime}$ admits a finite set $\left(g_{i}\right)(i=1, \ldots, p)$ of G extendable generators. For each $1 \leq i \leq p$, let \bar{g}_{i} be a G-extension of g_{i}. Let $U_{i} \subset \operatorname{Dom}\left(\bar{g}_{i}\right)$ be open, relatively compact, contain $\operatorname{Dom}\left(g_{i}\right)$, and have finitely many connected components. Then, $U_{i} \cap T^{\prime}$ has finitely many connected components. Each of these components is either an interval or a circle. In the second case, we cover this circle by two open intervals. We get a cover of $U_{i} \cap T^{\prime}$ by a finite family $\left(I_{j}\right)\left(j \in J_{i}\right)$ of intervals open and relatively compact in $\operatorname{Dom}\left(\bar{g}_{i}\right)$. The finite family $\left(\bar{g}_{i} \mid I_{j}\right)\left(1 \leq i \leq p, j \in J_{i}\right)$ is G-extendable and generates $G \mid T^{\prime}$.

2. Proof of theorem A

We are given a taut, compactly generated pseudo-group (G, T) of dimension 1 and class $C^{r}, 0 \leq r \leq \infty$, or $P L$. We have to realize G as the holonomy pseudo-group of some foliated compact 3 -manifold. By proposition 1.9, we can assume that T is compact: a finite disjoint union of compact intervals and circles. By lemma 1.11 applied to $T^{\prime}=T$, the pseudo-group G admits a finite system g_{1}, \ldots, g_{p} of G-extendable generators whose domains and images are intervals.

The proof uses Morse-singular foliations. It would be natural to define them as the Haefliger structures whose singularities are quadratic, but this would lead to irrelevant technicalities. A simpler concept will do.
definition 2.1. A Morse foliation \mathcal{F} on a smooth n-manifold M is a foliation of codimension one and class $C^{\infty, r}$ on the complement of finitely many singular points, such that on some open neighborhood of each, \mathcal{F} is conjugate to the level hypersurfaces of some nondegenerate quadratic form on some neighborhood of 0 in \mathbf{R}^{n}. The conjugation must be C^{0}; it must be smooth except maybe at the singular point.

We write $\operatorname{Sing}(\mathcal{F}) \subset M$ the finite set of singularities. Note that \mathcal{F} is smooth on some neighborhood of $\operatorname{Sing}(\mathcal{F})$, minus $\operatorname{Sing}(\mathcal{F})$. The holonomy pseudo-group of \mathcal{F} is defined, on any exhaustive transversal disjoint from the singularities, as the holonomy pseudo-group of the regular foliation $\mathcal{F} \mid(M \backslash$ $\operatorname{Sing}(\mathcal{F}))$.

We shall first realize (G, T) as the holonomy pseudo-group of a Morse foliation on a compact 3 -manifold. Then, compact generation will allow us to surgerize this manifold and regularize the foliation, without changing its transverse structure.

To fix ideas, in a first time we assume that T is without boundary: that is, a finite disjoint union of circles.

Let $M_{0}:=\mathbf{S}^{2} \times T$ and let \mathcal{F}_{0} be the foliation of M_{0} by 2 -spheres: its holonomy pseudo-group on the exhaustive transversal $* \times T$ is the trivial pseudo-group. Write $\mathrm{pr}_{2}: M_{0} \rightarrow T$ the second projection.

For every $1 \leq i \leq p$, write $\left(u_{i}, u_{i}^{\prime}\right) \subset T$ the open interval that is the domain of g_{i}, and write (v_{i}, v_{i}^{\prime}) the image of g_{i}. Fix some extension $\bar{g}_{i} \in G$.

Choose two embeddings $e_{i}: \mathbf{D}^{3} \rightarrow M_{0}$ and $f_{i}: \mathbf{D}^{3} \rightarrow M_{0}$ s.t.
(1) $e_{i}\left(\mathbf{D}^{3}\right)$ and $f_{i}\left(\mathbf{D}^{3}\right)$ are disjoint from each other and from $T \times *$;
(2) $\operatorname{pr}_{2}\left(e_{i}\left(\mathbf{D}^{3}\right)\right)=\left[u_{i}, u_{i}^{\prime}\right]$ and $\operatorname{pr}_{2}\left(f_{i}\left(\mathbf{D}^{3}\right)\right)=\left[v_{i}, v_{i}^{\prime}\right]$;
(3) $e_{i}^{*} \mathcal{F}_{0}=f_{i}^{*} \mathcal{F}_{0}$ is the trivial foliation $d x_{3} \mid \mathbf{D}^{3}$;
(4) $\mathrm{pr}_{2} \circ f_{i}=\bar{g}_{i} \circ \mathrm{pr}_{2} \circ e_{i}$.

We perform on M_{0} an elementary surgery of index 1 by cutting the interiors of $e_{i}\left(\mathbf{D}^{3}\right)$ and of $f_{i}\left(\mathbf{D}^{3}\right)$, and by pasting their boundary 2 -spheres. The points $e_{i}(x)$ and $f_{i}(x)$ are pasted, for every $x \in \partial \mathbf{D}^{3}$.

We perform such a surgery on M_{0} for every $1 \leq i \leq p$, choosing of course the embeddings e_{i}, f_{i} two by two disjoint. Let M_{1} be the surgerized manifold.

Obviously, \mathcal{F}_{0} induces on M_{1} a Morse foliation \mathcal{F}_{1}, with $2 p$ singularities, one at every point $s_{i}:=e_{i}(0,0,-1)=f_{i}(0,0,-1)$, of Morse index 1 ; and one at every point $s_{i}^{\prime}:=e_{i}(0,0,+1)=f_{i}(0,0,+1)$, of Morse index 2 . It is easy and standard to endow M_{1} with a smooth structure, such that \mathcal{F}_{1} is of class $C^{\infty, r}$, and smooth in a neighborhood of the singularities, minus the singularities.

By (4), the holonomy of \mathcal{F}_{1} on the transversal $T \times * \cong T$ is generated by the local transformations g_{i}. That is, it coincides with G.

Up to now, we have not used fully the fact that G is compactly generated. Now, we point a consequence of this fact, which is actually its geometric translation.

Consider in general some Morse foliation \mathcal{X} on some 3 -manifold X, and some singularity s of index 1 . On some neighborhood of s, the Morse foliation \mathcal{X} admits the first integral $Q:=-x_{0}^{2}+x_{1}^{2}+x_{2}^{2}$ in some continuous local coordinates x_{0}, x_{1}, x_{2}, smooth except maybe at the singularity. The two components of the singular cone at s, namely $Q^{-1}(0) \cap\left\{x_{0}<0\right\}$ and $Q^{-1}(0) \cap\left\{x_{0}>0\right\}$, may either belong to the same leaf of the regular foliation $\mathcal{X} \mid(X \backslash \operatorname{Sing}(\mathcal{X}))$, or not. If they do, then there is a loop $\lambda:[0,1] \rightarrow X$ s.t.

- $\lambda(0)=\lambda(1)=s ;$
- λ is tangential to \mathcal{X};
- $\lambda(t) \notin \operatorname{Sing}(\mathcal{X})$ for every $0<t<1$;
- $x_{0}(\lambda(t)) \leq 0$ (resp. ≥ 0) for every t close enough to 0 (resp. 1).

Such a loop has a holonomy germ $h(\lambda)$ on the pseudo-transversal arc $x_{0}=x_{1}=0, x_{2} \geq 0$. This is the germ at 0 of some homeomorphism of the nonnegative half-line.

DEFINITION 2.2. If moreover the holonomy $h(\lambda)$ is the identity, then we call λa Levitt loop for \mathcal{X} at s.

In the same way, at every singularity of index 2 , the Morse foliation \mathcal{X} admits the first integral $Q^{\prime}:=x_{0}^{2}-x_{1}^{2}-x_{2}^{2}$ in some local coordinates x_{0},
x_{1}, x_{2}. The notion of a Levitt loop is defined symmetrically by reversing the transverse orientation of \mathcal{X}.
lemma 2.3. The Morse foliation \mathcal{F}_{1} admits a Levitt loop at every singularity.
Proof. Consider e.g. a singularity s_{i} of index 1 . In M_{0}, let a be a path from the point $\left(u_{i}, *\right)$ to the point $e_{i}(0,0,-1)$ in the sphere $u_{i} \times \mathbf{S}^{2}$; and let b be a path from $\left(v_{i}, *\right)$ to $f_{i}(0,0,-1)$ in the sphere $v_{i} \times \mathbf{S}^{2}$. Then, in M_{1}, the path $a b^{-1}$ is tangential to \mathcal{F}_{1} and passes through s_{i}. Obviously, the holonomy $h\left(a b^{-1}\right)$ of \mathcal{F}_{1} on $T \times * \cong T$ along this path is well-defined on the right-hand side of u_{i}. That is, $h\left(a b^{-1}\right)$ is a germ of homeomorphism of T from some interval $\left[u_{i}, u_{i}+\epsilon\right) \subset T$ onto some interval $\left[v_{i}, v_{i}+\eta\right) \subset T$. By properties (2) through (4) above,

$$
h\left(a b^{-1}\right)=g_{i} \mid\left[u_{i}, u_{i}+\epsilon\right)
$$

On the other hand, recall that $\bar{g}_{i} \in G$. Since G is the holonomy pseudogroup of \mathcal{F}_{1} on $T \times *$, there is in $M \backslash \operatorname{Sing}\left(\mathcal{F}_{1}\right)$, a path c from u_{i} to v_{i}, tangential to \mathcal{F}_{1}, and whose holonomy on $T \times *$ is the germ of \bar{g}_{i} at u_{i}. Then, $\lambda:=a^{-1} c b$ is a Levitt loop at s_{i}.

To simplify the argument in the rest of the construction, it is convenient (although in fact not necessary) that \mathcal{F}_{1} admit at each singularity a simple Levitt loop. We can get this extra property as follows. Let s be a singularity of \mathcal{F}_{1}, let λ be a Levitt loop for \mathcal{F}_{1} at s, and let L be the leaf singular at s, containing λ. After a generic perturbation of λ in L, the loop λ is immersed and self-transverse in L. Let x be a self-intersection point of λ. Since \mathcal{F}_{1} is taut, there passes through x an embedded transverse circle $C \subset M_{1}$, disjoint from $T \times *$. We surgerize M_{1}, cutting a small tubular neighborhood $N \cong \mathbf{D}^{2} \times \mathbf{S}^{1}$ of C in M_{1}, in which \mathcal{F}_{1} is the foliation by the $\mathbf{D}^{2} \times t$'s; and we glue $\Sigma \times \mathbf{S}^{1}$, where Σ is the compact connected orientable surface of genus 1 bounded by one circle, foliated by the $\Sigma \times t$'s. The holonomy pseudo-group of the foliation \mathcal{F}_{1} on $T \times *$ is not changed. After the surgery, there is at s a Levitt loop with one less self-intersection. Of the two pieces of λ that passed through x, now one passes in the new handle and is disjoint from the other.

After a finite number of such surgeries, for every $1 \leq i \leq p$, the Morse foliation \mathcal{F}_{1} admits at the singularity s_{i} (resp. s_{i}^{\prime}) a simple Levitt loop λ_{i} (resp. λ_{i}^{\prime}).

Fix some $1 \leq i \leq p$. We shall somewhat cancel the pair of singularities s_{i} and s_{i}^{\prime} of \mathcal{F}_{1}, at the price of a surgery on M_{1}, without changing the transverse structure of \mathcal{F}_{1}.

First, we use fully the fact that G is taut: there is a path $p_{i}:[0,1] \rightarrow M_{1}$ from $p_{i}(0)=s_{i}^{\prime}$ to $p_{i}(1)=s_{i}$, and positively transverse to \mathcal{F}_{1} except at its endpoints.

The geometry is as follows (figure 1). Let $Q\left(x_{1}, x_{2}, x_{3}\right)$ be a quadratic form of Morse index 1 w.r.t. some local system of coordinates at s_{i}, which is a local first integral for \mathcal{F}_{1}. Then, p_{i} arrives at s_{i} by one of the two

Figure 1
components of the cone $Q<0$. Reversing if necessary the orientation of λ_{i}, one can arrange that λ_{i} quits s_{i} in the boundary of the same half cone. Symmetrically, let $Q^{\prime}\left(x_{1}, x_{2}, x_{3}\right)$ be a quadratic form of Morse index 2 w.r.t. some local system of coordinates at s_{i}^{\prime}, which is a local first integral for \mathcal{F}_{1}. Then, p_{i} quits s_{i}^{\prime} by one of the two components of the cone $Q^{\prime}>0$. Reversing if necessary the orientation of λ_{i}^{\prime}, one can arrange that λ_{i}^{\prime} arrives at s_{i}^{\prime} in the boundary of the same half cone.

We shall surgerize M_{1}, and modify \mathcal{F}_{1}, in an arbitrarily small neighborhood of $\lambda_{i}^{\prime} \cup p_{i} \cup \lambda_{i}$, to cancel the singularities s_{i}, s_{i}^{\prime}, without changing the holonomy pseudo-group of the foliation.

To this aim, the composed path $\lambda_{i}^{\prime} p_{i} \lambda_{i}$ (that is, λ_{i}^{\prime} followed by p_{i} followed by λ_{i}) is homotoped, relatively to its endpoints, into some path q_{i} also
positively transverse to \mathcal{F}_{1}, except at its endpoints $q_{i}(0)=s_{i}^{\prime}$ and $q_{i}(1)=s_{i}$. The homotopy consists in pushing the two tangential Levitt loops to some nearby, positively transverse paths, and in rounding the two corners; it is C^{0}-small.

Notice that p_{i} and q_{i} arrive at s_{i} by the two opposed components of the cone $Q<0$. Symmetrically, p_{i} and q_{i} quit s_{i}^{\prime} by the two opposed components of the cone $Q^{\prime}>0$.

By construction, q_{i} is \mathcal{F}_{1}-equivalent to p_{i}, that is, the diffeomorphism $p_{i}(t) \mapsto q_{i}(t)$ belongs to the holonomy pseudo-group of \mathcal{F}_{1} on the union of the two transversal open arcs $p_{i} \cup q_{i} \backslash\left\{s_{i}, s_{i}^{\prime}\right\}$. Indeed, this diffeomorphism coincides with the holonomy of the loop λ_{i} (resp. λ_{i}^{\prime}) for t close to 1 (resp. 0); and with the identity for the other values of t.

After a small, generic perturbation of p_{i} and q_{i} relative to their endpoints, we arrange that p_{i} and q_{i} are two embeddings of the interval into M_{1}; that they are disjoint, but at their endpoints; and also that they are disjoint from p_{j}, q_{j} for every $j \neq i$, and also disjoint from the transversal $T \times *$. After a C^{r}-small perturbation of \mathcal{F}_{1} in some small neighborhood of p_{i} and q_{i}, relative to some small neighborhoods of their endpoints, \mathcal{F} is smooth in some neighborhood of $p_{i} \cup q_{i}$.

Now, we shall perform on M_{1} an elementary surgery of index 2 along every embedded circle $p_{i} \cup q_{i}(1 \leq i \leq p)$ (figure 2$)$. That is, we cut some small tubular neighborhood $N_{i} \cong \mathbf{S}^{1} \times \mathbf{D}^{2}$ of $p_{i} \cup q_{i}$, and we paste $\mathbf{D}^{2} \times \mathbf{S}^{1}$ (here the choice of the framing is irrelevant). We shall obtain a closed 3manifold M. We shall, for a convenient choice of the N_{i} 's, extend the foliation $\mathcal{F}_{1} \mid\left(M_{1} \backslash \cup_{i} N_{i}\right)$ to M, as a (regular) foliation \mathcal{F}, still admitting $T \times *$ as an exhaustive transversal, and whose holonomy pseudo-group on $T \times *$ will still be G.

To this end, first notice that, by definition 2.2, and since λ_{i} (resp. λ_{i}^{\prime}) is a simple loop, there is some small open neighborhood U_{i} (resp. U_{i}^{\prime}) of λ_{i} (resp. λ_{i}^{\prime}) in M_{1}, such that the foliation \mathcal{F}_{1} admits in $U_{i} \backslash s_{i}\left(\right.$ resp. $\left.U_{i}^{\prime} \backslash s_{i}^{\prime}\right)$ a first integral F_{i} (resp. F_{i}^{\prime}) whose level sets are connected. Precisely, for every $t<F_{i}\left(s_{i}\right)\left(\right.$ resp. $\left.t>F_{i}^{\prime}\left(s_{i}^{\prime}\right)\right)$, the level set $F_{i}^{-1}(t)\left(\right.$ resp. $\left.F_{i}^{\prime-1}(t)\right)$ is an open disk. For every $t>F_{i}\left(s_{i}\right)$ (resp. $t<F_{i}^{\prime}\left(s_{i}^{\prime}\right)$), the level set $F_{i}^{-1}(t)$ (resp. $\left.F_{i}^{\prime-1}(t)\right)$ is the connected orientable open surface of genus one with one end.

Choose a compact 3-ball $B_{i} \subset U_{i}$ containing s_{i} and such that $F_{i} \mid B_{i}$ is topologically conjugate to a quadratic form Q of signature -++ , with three different eigenvalues, on the unit ball. Choose a compact 3-ball $B_{i}^{\prime} \subset U_{i}^{\prime}$ containing s_{i}^{\prime} and such that $F_{i}^{\prime} \mid B_{i}^{\prime}$ is topologically conjugate to a quadratic form Q^{\prime} of signature --+ , with three different eigenvalues, on the unit ball. Choose some tubular neighborhood S_{i} of the circle $p_{i} \cup q_{i}$, so thin that $S_{i} \cap \partial B_{i}$ (resp. $S_{i} \cap \partial B_{i}^{\prime}$) is contained in the cone $Q<0$ (resp. $Q^{\prime}>0$), and such that $\mathcal{F}_{1} \mid S_{i}$ is a foliation by disks, except on the intersections of S_{i}

Figure 2
with $Q \geq 0$ and with $Q^{\prime} \leq 0$. Define $N_{i}:=B_{i} \cup B_{i}^{\prime} \cup S_{i}$. We can arrange that N_{i} is a smooth solid torus.

Then, after reparametrizing the values of F_{i} and of F_{i}^{\prime}, they obviously extend to a function $F_{i}^{\prime \prime}$ on $N_{i} \backslash\left\{s_{i}, s_{i}^{\prime}\right\}$ as follows.
(1) $F_{i}^{\prime \prime}$ is a first integral for \mathcal{F}_{1} on $N_{i} \backslash\left\{s_{i}, s_{i}^{\prime}\right\}$;
(2) $F_{i}^{\prime \prime}$ coincides with F_{i} on B_{i} and with F_{i}^{\prime} on B_{i}^{\prime};
(3) $F_{i}^{\prime \prime} \mid \partial N_{i}$ has exactly eight Morse critical points: two minima and two critical points of index 1 on ∂B_{i}^{\prime}, two critical points of index 1 and two maxima on ∂B_{i};
(4) The values of $F_{i}^{\prime \prime}$ at these critical points are respectively $-2,-2$, $-1,-1,1,1,2,2$;
(5) The sign of the tangency between $F_{i}^{\prime \prime}$ and ∂N_{i} at each critical point is as follows: the descending gradient of $F_{i}^{\prime \prime}$ exits N_{i} at the four critical points on ∂B_{i}^{\prime}, and enters N_{i} at the four critical points on ∂B_{i};
(6) One has $F_{i}^{\prime \prime}\left(p_{i}(u)\right)=F_{i}^{\prime \prime}\left(q_{i}(u)\right)$ for every $u \in[0,1]$.

On the other hand, in the handle $H_{i}:=\mathbf{D}^{2} \times \mathbf{S}^{1}$, one has the function $h:=x_{2}\left(1+y_{1}^{2}\right)$, where $\mathbf{D}^{2} \subset \mathbf{R}^{2}\left(\right.$ resp. $\left.\mathbf{S}^{1} \subset \mathbf{R}^{2}\right)$ is defined by $x_{1}^{2}+x_{2}^{2} \leq 1$ (resp. $y_{1}^{2}+y_{2}^{2}=1$). By (3), (4) and elementary Morse theory, $h \mid \partial H_{i}$ is smoothly conjugate to $F_{i}^{\prime \prime} \mid \partial N_{i}$. We attach H_{i} to $M \backslash \operatorname{Int}\left(N_{i}\right)$ so that the functions $F_{i}^{\prime \prime}$ and h coincide on $\partial N_{i} \cong \partial H_{i}$. We extend \mathcal{F}_{1} inside H_{i} as the foliation defined by h. By (5), the sign of the tangency between h and ∂H_{i} at each singularity is the same as the sign of the tangency between $F_{i}^{\prime \prime}$ and ∂N_{i}. So, the resulting foliation is regular.

Having done this for every pair of singularity $s_{i}, s_{i}^{\prime}, i=1, \ldots, p$, we get a regular foliation \mathcal{F} on a closed 3 -manifold M.

We claim that \mathcal{F} admits $T \times *$ as an exhaustive transversal, and has the same holonomy pseudo-group G as \mathcal{F}_{1} on $T \times *$. Obviously, \mathcal{F} has no leaf contained in any H_{i}. So, the claim amounts to verify the following. Let $\gamma:[0,1] \rightarrow M_{1}($ resp. $M)$ be a path tangential to \mathcal{F}_{1} (resp. \mathcal{F}) and whose endpoints belong to $M_{1} \backslash \cup_{i} \operatorname{Int}\left(N_{i}\right)$. Then, there is a path $\gamma^{\prime}:[0,1] \rightarrow M$ (resp. M_{1}) tangential to \mathcal{F} (resp. \mathcal{F}_{1}) with the same endpoints, and such that the holonomy of \mathcal{F}_{1} (resp. \mathcal{F}) along γ is the same as the holonomy of $\mathcal{F}\left(\right.$ resp. $\left.\mathcal{F}_{1}\right)$ along γ^{\prime}.

We can assume that γ is contained in some N_{i} (resp. H_{i}), with endpoints on $\partial N_{i}=\partial H_{i}$. Let $t:=F_{i}^{\prime \prime}(\gamma(0))=h(\gamma(0))=F_{i}^{\prime \prime}(\gamma(1))=h(\gamma(1))$.

First, consider the case where γ is contained in N_{i} and tangential to \mathcal{F}_{1}. In the first subcase where $F_{i}^{\prime \prime}\left(s_{i}^{\prime}\right)<t<F_{i}^{\prime \prime}\left(s_{i}\right)$, the level set $F_{i}^{\prime \prime-1}(t)$ is the disjoint union of two disks, so γ has the same endpoints as some path γ^{\prime} contained in $\partial F_{i}^{\prime \prime-1}(t)$, and we are done. In the second subcase $t \geq F_{i}^{\prime \prime}\left(s_{i}\right)$, consider the level set $F_{i}^{-1}(t) \subset U_{i}$. Obviously, the intersection of this level set with $U_{i} \backslash \operatorname{Int}\left(B_{i}\right)$ is connected (a pair of pants). So, γ has the same endpoints as some path γ^{\prime} contained in this intersection, and we are done. (If the endpoints of γ do not lie on the same connected component of the boundary of the annulus $F_{i}^{-1}(t) \cap B_{i}$, then the path γ^{\prime} will be close to the Levitt loop λ_{i}). The third and last subcase $t \leq F_{i}^{\prime \prime}\left(s_{i}^{\prime}\right)$ is symmetric to the second.

Now, consider the second case where γ is contained in H_{i} and tangential to \mathcal{F}. In the first subcase where $F_{i}^{\prime \prime}\left(s_{i}^{\prime}\right)<t<F_{i}^{\prime \prime}\left(s_{i}\right)$, the level set $F_{i}^{\prime \prime-1}(t)$ is the disjoint union of two disks centered respectively at $p_{i}(u)$ and $q_{i}(u)$ for some $0<u<1$ (by (6)). If both endpoints of γ belong to the same disk, then they are also the endpoints of some path γ^{\prime} contained in $\partial F_{i}^{\prime \prime-1}(t)$, and we are done. If the endpoints of γ don't belong to the same disk, then recall that the diffeomorphism $p_{i}(u) \mapsto q_{i}(u)$ between the transversals p_{i} and q_{i} belongs to the holonomy pseudo-group of \mathcal{F}_{1} on $p_{i} \cup q_{i}$. By (6), we
are done. In the subcases $t \geq F_{i}^{\prime \prime}\left(s_{i}\right)$ and $t \leq F_{i}^{\prime \prime}\left(s_{i}^{\prime}\right)$, the argument is the same as in the first case.

Theorem A is proved in the case of a pseudo-group (G, T) without boundary.

Now, let us prove theorem A for a taut, compactly generated pseudogroup (G, T) such that T has a boundary. One can assume that (G, T) is connected. Thus, one is reduced to the case where T is a finite disjoint union of compact intervals (proposition 1.10).

The construction is much as in the case without boundary. We stress the few differences.

We start from the manifold $M_{0}:=\mathbf{S}^{2} \times T$. For some of the generators g_{i}, their domains and images meet the boundary, i.e. they are semi-open intervals. Consider for example a g_{i} whose domain meets the positive boundary $\partial_{+} T$ (the boundary points where the tangent vectors which are positive w.r.t. the orientation of T, exit from $T)$. That is, $\operatorname{Dom}\left(g_{i}\right)=\left(u_{i}, u_{i}^{\prime}\right]$ and $\operatorname{Im}\left(g_{i}\right)=\left(v_{i}, v_{i}^{\prime}\right]$ and $\operatorname{Dom}\left(g_{i}\right) \cap \partial T=u_{i}^{\prime}$ and $\operatorname{Im}\left(g_{i}\right) \cap \partial T=v_{i}^{\prime}$.

Such a generator will be introduced in the holonomy of the foliation by performing, somewhat, a half elementary surgery of index 1 on the manifold M_{0}. Put for every n :

$$
2^{-1} \mathbf{D}^{n}:=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbf{R}^{n} / x_{1}^{2}+\cdots+x_{n}^{2} \leq 1, x_{n} \leq 0\right\}
$$

Its boundary splits as the union of \mathbf{D}^{n-1} (the subset defined in $2^{-1} \mathbf{D}^{n}$ by $x_{3}=0$) and $2^{-1} \mathbf{S}^{n-1}$ (the subset defined in $2^{-1} \mathbf{D}^{n}$ by $x_{1}^{2}+\cdots+x_{n}^{2}=1$). Fix some extension $\bar{g}_{i} \in G$.

Choose two embeddings $e_{i}: 2^{-1} \mathbf{D}^{3} \rightarrow M_{0}$ and $f_{i}: 2^{-1} \mathbf{D}^{3} \rightarrow M_{0}$ s.t.
(1) $e_{i}^{-1}\left(\partial M_{0}\right)=f_{i}^{-1}\left(\partial M_{0}\right)=\mathbf{D}^{2}$;
(2) $e_{i}\left(2^{-1} \mathbf{D}^{3}\right)$ and $f_{i}\left(2^{-1} \mathbf{D}^{3}\right)$ are disjoint from each other and from $T \times$ *
(3) $\operatorname{pr}_{2}\left(e_{i}\left(2^{-1} \mathbf{D}^{3}\right)\right)=\left[u_{i}, u_{i}^{\prime}\right]$ and $\operatorname{pr}_{2}\left(f_{i}\left(2^{-1} \mathbf{D}^{3}\right)\right)=\left[v_{i}, v_{i}^{\prime}\right]$;
(4) $e_{i}^{*} \mathcal{F}_{0}=f_{i}^{*} \mathcal{F}_{0}$ is the trivial foliation $d x_{3}$ on $2^{-1} \mathbf{D}^{3}$;
(5) $\operatorname{pr}_{2} \circ f_{i}=\bar{g}_{i} \circ \mathrm{pr}_{2} \circ e_{i}$.

We perform on M_{0} a surgery by cutting $e_{i}\left(\mathbf{D}^{3} \backslash 2^{-1} \mathbf{S}^{2}\right)$ and $f_{i}\left(\mathbf{D}^{3} \backslash 2^{-1} \mathbf{S}^{2}\right)$ and by pasting $e_{i}\left(2^{-1} \mathbf{S}^{2}\right)$ with $f_{i}\left(2^{-1} \mathbf{S}^{2}\right)$. The points $e_{i}(x)$ and $f_{i}(x)$ are pasted, for every $x \in 2^{-1} \mathbf{S}^{2}$.

This surgery produces a single singularity $s_{i}:=e_{i}(0,0,-1)=f_{i}(0,0,-1)$, of Morse index 1 .

The case of a generator g_{i} whose domain meets $\partial_{-} T$ is of course symmetric.

After performing a surgery for every generator, we get a surgerized compact manifold M_{1}, and a Morse foliation \mathcal{F}_{1} induced by \mathcal{F}_{0} on M_{1}, with some singularities of indices 1 and 2 . The boundary of M_{1} is the disjoint union of two closed connected surfaces $\partial_{-} M_{1}, \partial_{+} M_{1}$, both tangential to \mathcal{F}_{1}.

At every point of $\partial_{-} M_{1}$ (resp. $\partial_{+} M_{1}$), the tangent vectors positively transverse to \mathcal{F}_{1} enter into (resp. exit from) M_{1}. The holonomy pseudo-group of \mathcal{F}_{1} on $T \times *$ coincides with G.

These singularities are eliminated one after the other (not by pairs). Let us eliminate e.g. a singularity s_{i} of index 1 .

On the one hand, by tautness, there is a path p_{i}, positively transverse to \mathcal{F}_{1} but at s_{i}, from $p_{i}(0) \in \partial_{-} M_{1}$ to $p_{i}(1)=s_{i}$.

On the other hand, by compact generation, \mathcal{F}_{1} admits a Levitt loop λ_{i} at s_{i}. We can arrange that λ_{i} is a simple loop: if it has a transverse selfintersection x, then, by tautness, through x there passes an arc A embedded in M_{1}, positively transverse to \mathcal{F}_{1}, and whose endpoints lie on ∂M_{1}. We surgerize M_{1} along A, cutting a small tubular neighborhood $\cong \mathbf{D}^{2} \times[0,1]$ and pasting $\Sigma \times[0,1]$ (recall that Σ is the disk endowed with a handle). The holonomy pseudo-group of the foliation is not changed. After the surgery, s_{i} admits a Levitt loop with one less self-intersection.

The composed path $p_{i} \lambda_{i}$ is homotoped to a path q_{i} positively transverse to \mathcal{F}_{1}, arriving at s_{i} through the component of the cone $Q<0$ opposed
 extremity endpoint s_{i} is fixed, but the origin endpoint moves in $\partial_{-} M_{1}$. One arranges that $p_{i} \cap q_{i}=s_{i}$.

The singularity s_{i} is eliminated by, somewhat, a half elementary surgery of index 2 along the $\operatorname{arc} p_{i} \cup q_{i}$: one cuts a small tubular neighborhood of this arc, $N_{i} \cong[0,1] \times \mathbf{D}^{2}$, such that $N_{i} \cap \partial M_{1} \cong\{0,1\} \times \mathbf{D}^{2}$; and one pastes $2^{-1} \mathbf{D}^{2} \times \mathbf{S}^{1}$ foliated by the restricted function $h \mid\left(2^{-1} \mathbf{D}^{2} \times \mathbf{S}^{1}\right)$. The details are just like in the case without boundary.

3. proof of theorems B and C

3.1. Examples: realizing the homothety pseudo-groups. First, we discuss the realization of some elementary but fundamental examples: the homothety pseudo-groups. They constitute the most simple nontaut, compactly generated pseudo-groups.

Given some positive real numbers $\lambda_{1}, \ldots, \lambda_{r}$, let $G\left(\lambda_{1}, \ldots, \lambda_{r}\right)$ be the pseudo-group of local transformations of the real line generated by the homotheties $t \mapsto \lambda_{1} t, \ldots, t \mapsto \lambda_{r} t$. We assume that the family $\log \lambda_{1}, \ldots$, $\log \lambda_{r}$ is of linear rank r over \mathbf{Q}.

For $r=1$, the pseudo-group $G\left(\lambda_{1}\right)$ has three obvious realizations of interest. The first is on the annulus $A:=\mathbf{S}^{1} \times[0,1]$. The compact leaf is $\mathbf{S}^{1} \times(1 / 2)$; the other leaves are transverse to ∂A and spiral towards $\mathbf{S}^{1} \times(1 / 2)$. The second realization is on the Klein bottle K. The closed leaf is a circle that splits K into two M'obius strips, in each of which the foliation is a twisted planar Reeb component. The third realization is on $\partial\left(A \times \mathbf{D}^{2}\right) \cong \mathbf{S}^{2} \times \mathbf{S}^{1}$. The compact leaf is a 2-torus, and splits $\mathbf{S}^{2} \times \mathbf{S}^{1}$ into two Reeb components.

On the contrary, $G\left(\lambda_{1}\right)$ is not realizable on T^{2}. Indeed, the foliation would be transversely oriented and have a single compact leaf, whose linear holonomy would be nontrivial, a contradiction.

The case $r=2$ is analogous. One realizes $G\left(\lambda_{1}, \lambda_{2}\right)$ on $V:=T^{2} \times[0,1]$ by a foliation $\mathcal{F}\left(\lambda_{1}, \lambda_{2}\right)$ transverse to both boundary tori, where its trace is the linear irrational foliation $d x \log \lambda_{1}+d y \log \lambda_{2}=0$. The torus $T^{2} \times(1 / 2)$ is a compact leaf; the other leaves spiral towards it. One has also a second realization by a foliation on $K \times \mathbf{S}^{1}$: one first pulls $\mathcal{F}\left(\lambda_{1}^{2}, \lambda_{2}\right)$ back into $T^{3}=$ $\partial(V \times[0,1])$, and then quotients by the involution $(x, y, t, i) \mapsto(-x, y, t, 1-i)$ of T^{3}.

Notice that $G\left(\lambda_{1}, \lambda_{2}\right)$ is not realizable by any foliation \mathcal{F} on any closed, orientable 3 -manifold M. For, by contradiction, \mathcal{F} would have a unique compact leaf L diffeomorphic to T^{2}, along which M would split into two compact 3-manifolds $M^{\prime}, M^{\prime \prime}$. On $\mathbf{R} \backslash 0$, the differential 1-form $d t / t$ is invariant by $G\left(\lambda_{1}, \lambda_{2}\right)$. There would correspond on $M \backslash L$ a nonsingular closed 1-form ω of rank $r=2$, such that $\mathcal{F} \mid(M \backslash L)=\operatorname{ker} \omega$. In $H^{1}\left(M^{\prime} ; \mathbf{R}\right)$, the de Rham cohomology class $[\omega]$ decomposes as $\left(\log \lambda_{1}\right) e_{1}+\left(\log \lambda_{2}\right) e_{2}$, with $e_{1}, e_{2} \in H^{1}\left(M^{\prime} ; \mathbf{Z}\right)$. The restriction $[\omega] \mid L \in H^{1}(L ; \mathbf{R})$ is of rank 2 , being the class of the linear holonomy of \mathcal{F} along L. Thus, $e_{1} \mid L$ and $e_{2} \mid L$ are not \mathbf{Q}-colinear in $H^{1}(L ; \mathbf{Q})$. Since L is a 2-torus, $\left(e_{1} \mid L\right) \wedge\left(e_{2} \mid L\right) \neq 0$ in $H^{2}(L ; \mathbf{Z})$. In other words, $e_{1} \wedge e_{2} \in H^{2}\left(M^{\prime} ; \mathbf{Z}\right)$ is nonnull on the fundamental class of ∂M^{\prime}. This contradicts Stokes theorem, M^{\prime} being an orientable compact 3-manifold.

For every $r \geq 2$, the pseudo-group $G\left(\lambda_{1}, \ldots, \lambda_{r}\right)$ is realizable on a closed orientable 4-manifold. Indeed, in a first place, for each $2 \leq i \leq r$, just as above, realize $G\left(\lambda_{1}, \lambda_{i}\right)$ by a foliation $\mathcal{F}\left(\lambda_{1}, \lambda_{i}\right)$ on $V:=T^{2} \times[0,1]$. So, $G\left(\lambda_{1}, \lambda_{i}\right)$ is also realized by the pullback \mathcal{F}_{i} of $\mathcal{F}\left(\lambda_{1}, \lambda_{i}\right)$ in the 4-manifold

$$
M_{i}:=\partial\left(V \times \mathbf{D}^{2}\right) \cong T^{2} \times \mathbf{S}^{2}
$$

The compact leaf L_{i} of \mathcal{F}_{i} is the 3 -torus $T^{2} \times \mathbf{S}^{1}$. For each $i=3, \ldots, r$, in L_{2} and in L_{i}, we pick some embedded circle $C_{i} \subset L_{2}\left(\right.$ resp. $\left.C_{i}^{\prime} \subset L_{i}\right)$ parallel to the first circle factor: the holonomy of \mathcal{F}_{2} (resp. \mathcal{F}_{i}) along C_{i} (resp. C_{i}^{\prime}) is the germ of $t \mapsto \lambda_{1} t$ at 0 . We arrange that C_{3}, \ldots, C_{r} are two by two disjoint. The loop C_{i} (resp. C_{i}^{\prime}) has in $M_{2}\left(\right.$ resp. $\left.M_{i}\right)$ a small tubular neighborhood $N_{i}\left(\right.$ resp. $\left.N_{i}^{\prime}\right) \cong \mathbf{D}^{3} \times \mathbf{S}^{1}$, on the boundary of which \mathcal{F}_{2} (resp. $\left.\mathcal{F}_{i}\right)$ traces a foliation composed of two Reeb components, realizing $G\left(\lambda_{1}\right)$. We cut from M_{2}, \ldots, M_{r} the interiors of $N_{3}, \ldots, N_{r}, N_{3}^{\prime}, \ldots, N_{r}^{\prime}$. We paste every ∂N_{i} with ∂N_{i}^{\prime}, such that $\mathcal{F}_{2} \mid \partial N_{i}$ matches $\mathcal{F}_{i} \mid \partial N_{i}^{\prime}$. We get a closed orientable 4-manifold with a foliation realizing $G\left(\lambda_{1}, \ldots, \lambda_{r}\right)$.

The realization of pseudo-groups of homotheties with boundary is much alike: let $2^{-1} G\left(\lambda_{1}, \ldots, \lambda_{r}\right)$ be the pseudo-group of local transformations of the half-line $\mathbf{R}_{\geq 0}$ generated by some family of homotheties $t \mapsto \lambda_{1} t, \ldots$, $t \mapsto \lambda_{r} t$, of rank r. Each of the above realizations of $G\left(\lambda_{1}, \ldots, \lambda_{r}\right)$ splits along its unique compact leaf into two realizations of $2^{-1} G\left(\lambda_{1}, \ldots, \lambda_{r}\right)$.
3.2. Novikov decomposition for pseudo-groups, and hinges. Let (G, T) be a compactly generated pseudo-group of dimension 1 .

We consider the closed orbits (the orbits topologically closed in T).
Lemma 3.1. The union of the closed orbits is topologically closed in T.
Proof. We know no proof for this fact in the pseudo-group frame. To prove it, we realize the pseudo-group, as in section 2 , by a Morse foliation \mathcal{F} on a compact manifold M. Since the homology of $M \backslash \operatorname{Sing}(\mathcal{F})$ is of finite rank, Haefliger's argument [3] applies and shows that the union of the closed leaves is closed.

We call a closed orbit isolated (resp. left isolated) (resp. right isolated) if it admits some neighborhood (resp. left neighborhood) (resp. right neighborhood) in T which meets no other closed orbit.

By a component of (G, T), one means a submanifold $T^{\prime} \subset T$ of dimension 1, topologically closed in T, and saturated for G.

By an I-bundle (resp. a \mathbf{S}^{1}-bundle) we mean the pseudo-group generated by a finite number r of global diffeomorphisms on the compact interval (resp. circle). It is of course realized on some compact 3 -manifold fibred over some closed surface ("suspension"). Every pseudo-group Haefliger-equivalent to an I-bundle (resp. a \mathbf{S}^{1}-bundle) is also called an I-bundle (resp. a \mathbf{S}^{1} bundle). The smallest possible r is the rank of the I-bundle (resp. $\mathbf{S}^{1}{ }^{1}$ bundle).

Any closed orbit whose isotropy group has infinitely many fix points bounds an I-bundle. Precisely,
Lemma 3.2. Let $G(t) \subset T$ be a closed orbit, and let h_{1}, \ldots, h_{r} be elements of G whose germs at t generate the isotropy group G_{t}. Assume that h_{1}, \ldots, h_{r} admit a sequence $\left(t_{n}\right)$ of common fix points other than t, decreasing (resp. increasing) to t. Put $I_{n}:=\left[t, t_{n}\right]$ (resp. $\left[t_{n}, t\right]$).

Then, for every n large enough,

- The restricted pseudo-group $\left(G \mid I_{n}, I_{n}\right)$ is generated by $h_{1} \mid I_{n}, \ldots$, $h_{r} \mid I_{n}$;
- The G-saturation of I_{n} is an I-bundle component of (G, T), Haefligerequivalent to $\left(G \mid I_{n}, I_{n}\right)$.
Proof. One first reduces oneself to the case where $G(t)=\{t\}$, as follows. Let $U:=T \backslash G(t) \cup t$. By Baire's theorem, every closed orbit is discrete. So, U is open in T and meets every orbit. We change (G, T) for $(G \mid U, U)$, which is also compactly generated by proposition 1.5.

So, we assume that $G(t)=\{t\}$.
Since G is compactly generated, one has a topologically open, relatively compact $T^{\prime} \subset T$ meeting every G-orbit (in particular $t \in T^{\prime}$) such that $G \mid T^{\prime}$ admits a system of generators g_{1}, \ldots, g_{p} which are G-extendable. Let \bar{g}_{1}, $\ldots, \bar{g}_{p} \in G$ be some extensions.

If t lies in the topological boundary of $\operatorname{Dom}\left(g_{i}\right)$ w.r.t. T, then we can avoid this by changing g_{i} for $\bar{g}_{i} \mid\left(\operatorname{Dom}\left(g_{i}\right) \cup\left(t-\epsilon, t+\epsilon^{\prime}\right)\right)$, where $\left(t-\epsilon, t+\epsilon^{\prime}\right)$
is relatively compact in $\operatorname{Dom}\left(\bar{g}_{i}\right) \cap T^{\prime}$. The like holds for $\operatorname{Im}\left(g_{i}\right)$. Thus, after permuting the generators, for some $0 \leq q \leq p$, the point t belongs to the domains and to the images of g_{1}, \ldots, g_{q}; but t does not belong, nor is adherent, to the domains nor to the images of g_{q+1}, \ldots, g_{p}.

Also, restricting the domain of each h_{i}, we arrange that $h_{i} \in G \mid T^{\prime}$ and that h_{i} is G-extendable. Then, we can add the family $\left(h_{i}\right)$ to the family of generators $\left(g_{i}\right)$. So, we can assume that $r \leq q$ and that $g_{1}=h_{1}, \ldots$, $g_{r}=h_{r}$.

Then, for every $r+1 \leq i \leq q$, the generator g_{i} coincides with some compose of g_{1}, \ldots, g_{r} on some small compact neighborhood N_{i} of t. We can change g_{i} for $g_{i} \mid\left(\operatorname{Dom}\left(g_{i}\right) \backslash N_{i}\right)$. Finally, we have obtained a family of generators g_{1}, \ldots, g_{p} for $G \mid T^{\prime}$, such that t belongs to the domains and to the images of $g_{1}=h_{1}, \ldots, g_{r}=h_{r}$; but that t does not belong, nor is adherent, to the domains nor to the images of g_{r+1}, \ldots, g_{p}.

For every n large enough, I_{n} is contained in T^{\prime} and in the domains of g_{1}, \ldots, g_{r}; and I_{n} is invariant by $g_{1}=h_{1}, \ldots, g_{r}=h_{r}$; and I_{n} is disjoint from the supports of g_{r+1}, \ldots, g_{p}. Thus, I_{n} is saturated for G, and $G \mid I_{n}$ is generated by $g_{1}\left|I_{n}, \ldots, g_{r}\right| I_{n}$. The interval I_{n} is an I-bundle component of G.

We call an orbit essential (w.r.t. (G, T)) if it meets no transverse positive loop and no transverse positive chain whose both endpoints lie on ∂T. Every essential orbit is closed (obviously). In the union of the closed orbits, the union of the essential orbits is topologically closed (obviously) and open (by lemma 3.2).

We call an I-bundle component of G essential (w.r.t. (G, T)) if its boundary orbits are essential w.r.t. (G, T). Then, every closed orbit interior to this I-bundle is also essential w.r.t. (G, T).

The "Novikov decomposition" is well-known for foliations on compact manifolds. Every compact connected manifold endowed with a transversely orientable foliation of codimension one, either is a \mathbf{S}^{1}-bundle, or splits along finitely many compact leaves bounding some dead end components, into compact components, such that each component is an I-bundle, or its interior is topologically taut. For compactly generated pseudo-groups, one has an analogous decomposition (exercise):
proposition 3.3. (Novikov decomposition) Let (G, T) be a connected, compactly generated, orientable pseudo-group of dimension 1. Assume that (G, T) is not a \mathbf{S}^{1}-bundle.

Then, T splits, along finitely many essential orbits, into finitely many components T_{i}, such that for each i :
(a) the component $\left(G \mid T_{i}, T_{i}\right)$ is an essential I-bundle,
or
(b) the interior of the component, $\left(G \mid \operatorname{Int}\left(T_{i}\right), \operatorname{Int}\left(T_{i}\right)\right)$, is taut.

Novikov decompositions are functorial with respect to Haefliger equivalences: given a Haefliger equivalence between two pseudo-groups, to every

Novikov decomposition of the one corresponds naturally a Novikov decomposition of the other.

We shall not use this decomposition under this form, nor prove it in general. We need, under the hypotheses of theorems B and C , the more precise form 3.7 below.

From now on, we assume moreover that in the orientable, compactly generated, 1-dimensionnal pseudo-group (G, T), every essential orbit is commutative, that is, its isotropy group is commutative. By the essential rank of (G, T), we mean the supremum of the ranks of the isotropy groups of the essential orbits.

The proof of theorems B and C somewhat consists in realizing independently every component of some Novikov decomposition, and pasting these realizations together. The interior of every component falling to (b) is realized on a closed 3-manifold, thanks to theorem A and to the following
LEmMA 3.4. Let (G, T) be a compactly generated pseudo-group of dimension 1 . Let $G\left(t_{0}\right) \subset T$ be an isolated closed orbit, whose isotropy group is commutative.

Then, the subpseudo-group $G \mid\left(T \backslash G\left(t_{0}\right)\right)$ is also compactly generated.
Proof. We treat the case where the orbit $G\left(t_{0}\right)$ is contained in $\partial_{-} T$. Of course, the case where it is contained in $\partial_{+} T$ is symmetric; and the case where it is contained in $\operatorname{Int}(T)$ is much alike.

Since G is compactly generated, one has a topologically open, relatively compact $T^{\prime} \subset T$ meeting every G-orbit such that $G \mid T^{\prime}$ admits a system of generators g_{1}, \ldots, g_{p} which are G-extendable.

Just as in the proof of lemma 3.2, one can arrange that $G\left(t_{0}\right)=\left\{t_{0}\right\}$ (in particular, $t_{0} \in T^{\prime}$); and that, for some $0 \leq r \leq p$, the point t_{0} belongs to the domains and to the images of g_{1}, \ldots, g_{r}; and that t_{0} does not belong, nor is adherent, to the domains nor to the images of g_{r+1}, \ldots, g_{p}.

Since t_{0} is isolated as a closed orbit of G, one has $r \geq 1$. We can arrange moreover, to simplify notations, that the family $\left(g_{i}\right)$ is symmetric: the inverse of every g_{i} is some g_{j}.

The isotropy group of t_{0} being commutative, there is a $u_{0}>t_{0}$ so close to t_{0} that
(1) For every $r+1 \leq i \leq p$, the interval $\left[t_{0}, u_{0}\right]$ does not meet $\operatorname{Dom}\left(g_{i}\right)$;
(2) For every $1 \leq i, j \leq r$ and every $t \in\left[t_{0}, u_{0}\right]$, one has $t \in \operatorname{Dom}\left(g_{i}\right)$ and $g_{i}(t) \in \operatorname{Dom}\left(g_{j}\right)$ and $g_{i} g_{j}(t)=g_{j} g_{i}(t)$.
Put $T^{\prime \prime}:=T^{\prime} \backslash\left[t_{0}, u_{0}\right]$ and $G_{0}:=G \mid\left(T \backslash t_{0}\right)$. We shall show that every orbit of G_{0} meets $T^{\prime \prime}$, and that the pseudo-group $G_{0} \mid T^{\prime \prime}$ is generated by $g_{1}\left|T^{\prime \prime}, \ldots, g_{p}\right| T^{\prime \prime}$. Every $g_{i} \mid T^{\prime \prime}$ being G_{0}-extendable, it will follow that G_{0} is compactly generated.

To this end, define by induction two sequences $u_{n} \in\left[t_{0}, u_{0}\right]$ and $1 \leq$ $i(n) \leq r$, such that $u_{n+1}:=g_{i(n)}\left(u_{n}\right)$ is the minimum of $g_{1}\left(u_{n}\right), \ldots$, $g_{r}\left(u_{n}\right)$. Because t_{0} is isolated as a closed orbit of G, there is no common
fixed point for g_{1}, \ldots, g_{r} in the interval $\left(t_{0}, u_{0}\right]$. Thus, $\left(u_{n}\right)$ decreases to t_{0}. Also, for every $n \geq 0$:

$$
\begin{equation*}
g_{i(n)}{ }^{-1}\left(\left(u_{n+1}, u_{0}\right]\right) \subset\left(u_{n}, u_{0}\right] \cup T^{\prime \prime} \tag{*}
\end{equation*}
$$

In particular, every orbit of G_{0} meets $T^{\prime \prime}$.
Consider the germ $[g]_{t}$ of some $g \in G_{0}$ at some point $t \in \operatorname{Dom}(g)$ such that $t \in T^{\prime \prime}$ and $g(t) \in T^{\prime \prime}$. Since the g_{i} 's generate $G \mid T^{\prime}$, this germ can be decomposed as a word w in the germs of the generators:

$$
[g]_{t}=\left[g_{j(\ell)}\right]_{t(\ell-1)} \cdots\left[g_{j(1)}\right]_{t(0)}
$$

where $1 \leq j(1), \ldots, j(\ell) \leq p$, where $t(0)=t$, and where for every $0 \leq k \leq \ell$ one has $t(k):=g_{j(k)} \circ \cdots \circ g_{j(1)}(t) \in T^{\prime}$.

We call the finite sequence $t(0), \ldots, t(\ell)$ the trace of w. We have to prove that $[g]_{t}$ admits also a second such decomposition, whose trace is moreover contained in $T^{\prime \prime}$.

We make a double induction: on the smallest integer $n \geq 0$ such that the trace of w is disjoint from $\left[t_{0}, u_{n}\right]$, and, if $n \geq 1$, on the number of k 's for which $t_{k} \in\left(u_{n}, u_{n-1}\right]$.

Assume that $n \geq 1$. Let $1 \leq k \leq \ell-1$ be an index for which $t_{k} \in$ (u_{n}, u_{n-1}]. Consider the word

$$
w^{\prime}:=g_{j(\ell)} \ldots g_{j(k+2)} g_{i(n-1)} g_{j(k+1)} g_{j(k)} g_{i(n-1)}{ }^{-1} g_{j(k-1)} \ldots g_{j(1)}
$$

By the property (2) above applied at the point t_{k} to the pair $g_{i(n-1)}{ }^{-1}, g_{j(k+1)}$ and to the pair $g_{i(n-1)}{ }^{-1}, g_{j(k)}{ }^{-1}$, the compose w^{\prime} is defined at t, and w^{\prime} has the same germ at t as w.

The trace of w^{\prime} at t is the same as the trace of w, except that $t(k)$ has been changed for the three points $g_{i(n-1)}^{-1}(t(k-1)), g_{i(n-1)}{ }^{-1}(t(k))$ and $g_{i(n-1)}{ }^{-1}(t(k+1))$. By $\left({ }^{*}\right)$, none of the three lies in $\left[t_{0}, u_{n}\right]$. The induction is complete.

The pasting of the realizations of the Novikov components will be a little delicate. The following notion allows us to take in account, with every commutative closed orbit, its isotropy group; and with every commutative I-bundle, the holonomy of its boundary orbits on the exterior side.

DEFINITION 3.5. We call an oriented pseudo-group (Γ, Ω) of dimension 1 a hinge if Ω is an interval, either open, or compact, or semi-open; and if there exist $a \Gamma$-invariant compact interval $[a, b] \subset \Omega$, with $a \leq b$, and a system of generators $\gamma_{1}, \ldots, \gamma_{r}$ for Γ, s.t.
(1) The domains and the images of $\gamma_{1}, \ldots, \gamma_{r}$ are intervals containing $[a, b]$;
(2) For every $\gamma, \eta \in \Gamma$, one has $\gamma \eta=\eta \gamma$ and $\gamma^{-1} \eta=\eta \gamma^{-1}$ and $\gamma^{-1} \eta^{-1}=\eta^{-1} \gamma^{-1}$ wherever both composes are defined;
(3) Every orbit of Γ meets every neighborhood of $[a, b]$ in Ω.

We call $[a, b]$ the core. The hinge is degenerate if $a=b$, in which case $a=b$ is a closed orbit of (Γ, Ω). The hinge is nondegenerate if $a<b$, in which case $[a, b]$ is an I-bundle component of (Γ, Ω). The smallest possible r is the rank of (Γ, Ω). Notice that by (3), in the nondegenerate (resp. degenerate) case, the boundary $\partial \Omega$ of Ω as a manifold is contained in $\{a, b\}$ (resp. is empty).

Every hinge is easily realized:
lemma 3.6. Let (Γ, Ω) be a hinge of rank $r \geq 1$. Assume that $\partial \Omega=\emptyset$ (resp. $\partial \Omega=\{a\}$ or $\{b\}$) (resp. $\partial \Omega=\{a, b\})$. Then, (Γ, Ω) is realized:
(1) If $r \leq 2$, on $T^{2} \times[0,1]$, with two (resp. one) (resp. zero) transverse boundary components;
(2) If $r \leq 2$, on $K \times \mathbf{S}^{1}$ (resp. $M \times \mathbf{S}^{1}$) (resp. $A \times \mathbf{S}^{1}$), where K (resp. M) (resp. A) is the Klein bottle (resp. the compact M'obius strip) (resp. the compact annulus), without transverse boundary component;
(3) For every r, on some orientable compact 4-manifold, without transverse boundary component.
Proof. The realization is just like in the particular case of the homothety pseudo-groups, seen above at paragraph 3.1. Assume for example that $\partial \Omega=$ \emptyset and that $r=2$, and let us realize (Γ, Ω) on $T^{2} \times[0,1](1)$.

The suspension of γ_{1} and γ_{2} over T^{2} provides, in $T^{2} \times \Omega$, a foliation \mathcal{F} on some open neighborhood U of $T^{2} \times[a, b]$. By property (3), γ_{1} and γ_{2} have no common fix point outside $[a, b]$. Consequently, one has an embedding of $T^{2} \times[0,1]$ into U containing $T^{2} \times[a, b]$ in its interior, and meeting every leaf of \mathcal{F}, and such that $T^{2} \times 0$ and $T^{2} \times 1$ are embedded transversely to \mathcal{F}. It is easily verified that $\mathcal{F} \mid\left(T^{2} \times[0,1]\right)$ realizes (Γ, Ω).
proposition 3.7. Let (G, T) be a compactly generated, oriented pseudogroup of dimension 1, in which every essential orbit is commutative.

Then, after a Haefliger equivalence, T splits as a disjoint union

$$
T=T_{0} \sqcup \Omega_{1} \sqcup \cdots \sqcup \Omega_{\ell}
$$

such that
(1) T_{0} is a finite disjoint union of circles and compact intervals;
(2) Each $\Omega_{k}(1 \leq k \leq \ell)$ is the domain of a hinge $\Gamma_{k} \subset G$ whose rank is at most the essential rank of (G, T);
(3) Each core $\left[a_{k}, b_{k}\right] \subset \Omega_{k}$ is G-saturated;
(4) For every $t \in \Omega_{k} \backslash\left[a_{k}, b_{k}\right](1 \leq k \leq \ell)$, the orbit $G(t)$ meets T_{0}.

We begin to prove proposition 3.7.
By a subpseudo-group in (G, T), we mean a pseudo-group (Γ, Ω) such that $\Omega \subset T$ is topologically open, and that $\Gamma \subset G \mid \Omega$.
definition 3.8. Let $(\Gamma, \Omega) \subset(G, T)$ be a hinge subpseudo-group. Let $[a, b] \subset$ Ω be its core.
(a) Assume that (Γ, Ω) is degenerate $(a=b)$. We call the hinge subpseudogroup faithful if $G(a)$ is closed in T and if $\Gamma_{a}=G_{a}$ (isotropy groups).
(b) Assume that (Γ, Ω) is nondegenerate $(a \neq b)$. We call the hinge subpseudo-group faithful if the G-saturation of $[a, b]$ is a component of G, if $\Gamma|[a, b]=G|[a, b]$, if $\Gamma_{a}=G_{a}$, and if $\Gamma_{b}=G_{b}$.

In case (b), the G-saturation of $[a, b]$ is necessarily an I-bundle component of G.

The notion of subpseudo-group is not functorial with respect to the Haefliger equivalences. The following notion solves this difficulty.
definition 3.9. Given two pseudo-groups (G, T) and (Γ, Ω), an extension of (G, T) by (Γ, Ω) is a pseudo-group \bar{G} on the disjoint union $\bar{T}:=T \sqcup \Omega$ s.t.

- T is exhaustive for \bar{G};
- $G=\bar{G} \mid T$;
- $\Gamma \subset \bar{G}$.

In particular, (\bar{G}, \bar{T}) is Haefliger-equivalent to (G, T), and (Γ, Ω) is a subpseudo-group of (\bar{G}, \bar{T}).

For example, given two pseudo-groups $(G, T),(\Gamma, \Omega)$ and given a Haefliger equivalence ($\bar{\Gamma}, \Omega \sqcup \Omega_{0}$) between (Γ, Ω) and some subpseudo-group $\left(\Gamma_{0}, \Omega_{0}\right) \subset$ (G, T), one has a natural extension of (G, T) by (Γ, Ω) : namely, \bar{G} is the pseudo-group on $T \sqcup \Omega$ generated by $G \cup \bar{\Gamma}$.

An extension (\bar{G}, \bar{T}) of a pseudo-group (G, T) by a hinge (Γ, Ω) is called faithful if $(\Gamma, \Omega) \subset(\bar{G}, \bar{T})$ is faithful; essential if its core is an essential orbit or an essential I-bundle in (\bar{G}, \bar{T}).
lemma 3.10. For every $t \in T$ such that $G(t)$ is essential, there is an essential faithful extension (\bar{G}, \bar{T}) of (G, T) by a hinge (Γ, Ω) s.t:

- The rank of the hinge (Γ, Ω) is at most the essential rank of (G, T);
- The core of (Γ, Ω) meets $\bar{G}(t)$;
- The core of (Γ, Ω) meets also every essential orbit of \bar{G} close enough to $\bar{G}(t)$.
Proof. First case: $G(t)$ is not contained in any I-bundle component of (G, T) of rank 0 .

In this case, we shall actually find a faithful hinge subpseudo-group in (G, T) whose core meets $G(t)$ and every neighboring essential orbit.

Let $r:=\operatorname{rank}\left(G_{t}\right)$ and choose $h_{1}, \ldots, h_{r} \in G$ such that their germs at t are a basis of G_{t}. Let Ω be a small interval containing t, topologically open in T, and contained in the intersection of the domains and of the images of h_{1}, \ldots, h_{r}. Put $\gamma_{i}:=h_{i} \mid\left(\Omega \cap h_{i}^{-1}(\Omega)\right)(i=1, \ldots, r)$ and $\Gamma:=<\gamma_{1}, \ldots, \gamma_{r}>$. For Ω small enough, the properties (1) and (2) of definition 3.5 are fulfilled.

First subcase: $G(t)$ is isolated. Put $a=b:=t$. For Ω small enough, by lemma $3.2, h_{1}, \ldots, h_{r}$ have no common fix point in Ω. In consequence, for every $t^{\prime} \in \Omega \backslash\{t\}$, there is an i for which one of the four following properties holds: $t^{\prime} \in \operatorname{Dom}\left(\gamma_{i}\right)$ and $t<\gamma_{i}\left(t^{\prime}\right)<t^{\prime}$, or $t^{\prime} \in \operatorname{Dom}\left(\gamma_{i}^{-1}\right)$ and $t<\gamma_{i}^{-1}\left(t^{\prime}\right)<t^{\prime}$, or $t^{\prime} \in \operatorname{Dom}\left(\gamma_{i}\right)$ and $t^{\prime}<\gamma_{i}\left(t^{\prime}\right)<t$, or $t^{\prime} \in \operatorname{Dom}\left(\gamma_{i}^{-1}\right)$ and $t^{\prime}<\gamma_{i}^{-1}\left(t^{\prime}\right)<t$. The property (3) of definition 3.5 follows.

Second subcase: $G(t)$ is not isolated from either side. In that subcase, by lemma 3.2, we can shorten Ω to arrange that moreover none of the endpoints of Ω is a fix point common to h_{1}, \ldots, h_{r}. Let a and b be the smallest and the largest fix points common to h_{1}, \ldots, h_{r} in Ω. Then, $a<t<b$. For every $t^{\prime} \in \Omega \backslash[a, b]$, there is an i for which one of the four following properties holds: $t^{\prime} \in \operatorname{Dom}\left(\gamma_{i}\right)$ and $b<\gamma_{i}\left(t^{\prime}\right)<t^{\prime}$, or $t^{\prime} \in \operatorname{Dom}\left(\gamma_{i}^{-1}\right)$ and $b<\gamma_{i}^{-1}\left(t^{\prime}\right)<t^{\prime}$, or $t^{\prime} \in \operatorname{Dom}\left(\gamma_{i}\right)$ and $t^{\prime}<\gamma_{i}\left(t^{\prime}\right)<a$, or $t^{\prime} \in \operatorname{Dom}\left(\gamma_{i}^{-1}\right)$ and $t^{\prime}<\gamma_{i}^{-1}\left(t^{\prime}\right)<a$. The property (3) of definition 3.5 follows.

Third subcase: $G(t)$ is isolated from exactly one side. The argument is similar to the two first subcases.

Second case: $G(t)$ is contained in a I-bundle component $C \subset T$ of rank 0 . That is, C is a 1-manifold, topologically closed in T, and $G \mid C$ is Haefligerequivalent to the trivial pseudo-group on the interval $[0,1] \subset \mathbf{R}$. In other words, one has an orientation-preserving etale map $f: C \rightarrow[0,1]$; and the Haefliger equivalence is nothing but the pseudo-group on the disjoint union $C \sqcup[0,1]$ generated by the set of the local sections of f. The boundary ∂C is made of of two orbits $\partial_{-} C=G\left(t_{0}\right)$ and $\partial_{+} C=G\left(t_{1}\right)$. We can assume that C is maximal among the I-bundle components of rank 0 . Assume also, to fix ideas, that C is interior to T (the other cases being alike and simpler). Thus, the isotropy group of G at t_{0} (resp. t_{1}) is nontrivial on the left (resp. right).

Pick some small open interval $\left(u_{0}, v_{0}\right) \subset T$ containing t_{0} and whose intersection with C is $\left[t_{0}, v_{0}\right)$; and pick some small open interval $\left(u_{1}, v_{1}\right) \subset T$ containing t_{1} and whose intersection with C is $\left(u_{1}, t_{1}\right]$. Take the intervals so small that $f\left(v_{0}\right)<f\left(u_{1}\right)$. One extends $f \mid\left[t_{0}, v_{0}\right)$ into a diffeomorphism f_{0} from the interval $\left(u_{0}, v_{0}\right)$ onto the interval $\left(-\infty, f\left(v_{0}\right)\right)$. The choice among the extensions is arbitrary. Similarly, one extends $f \mid\left(u_{1}, t_{1}\right]$ into a diffeomorphism f_{1} from the interval $\left(u_{1}, v_{1}\right)$ onto the interval $\left(f\left(u_{1}\right),+\infty\right)$. Let T^{\prime} be the disjoint union $T \sqcup \mathbf{R}$. Let G^{\prime} be the pseudo-group on T^{\prime} generated by G, f, f_{0}, and f_{1}. Obviously, T is exhaustive in $\left(G^{\prime}, T^{\prime}\right)$, and $G=G^{\prime} \mid T$, and $G^{\prime} \mid[0,1]$ is the trivial pseudo-group on $[0,1]$, and the orbit $G^{\prime}(t)$ meets $[0,1]$ at $f(t)$. Let $r:=\max \left(\operatorname{rank}\left(G_{0}^{\prime}\right), \operatorname{rank}\left(G_{1}^{\prime}\right)\right)$. One immediately makes $h_{1}, \ldots, h_{r} \in G^{\prime} \mid \mathbf{R}$ whose domains and images contain $[0,1]$, which are the identity on $(0,1)$, whose germs at 0 generate G_{0}^{\prime}, and whose germs at 1 generate G_{1}^{\prime}. Let $\Omega \subset \mathbf{R}$ be an open interval containing $[0,1]$, and contained in the intersection of the domains and of the images of h_{1}, \ldots, h_{r}. For Ω small enough, the property (2) of definition 3.5 is fulfilled. By lemma 3.2, we can moreover shorten Ω to arrange that none of its endpoints is a fix point common to h_{1}, \ldots, h_{r}. Put $\gamma_{i}:=h_{i} \mid\left(\Omega \cap h_{i}^{-1}(\Omega)\right)(i=1, \ldots, r)$ and $\Gamma:=<\gamma_{1}, \ldots, \gamma_{r}>$. Let a and b be the smallest and the largest fix points common to h_{1}, \ldots, h_{r} in Ω. The property (3) of definition 3.5 is fulfilled. The pseudo-group $\left(G^{\prime} \mid(T \sqcup \Omega), \Omega\right)$ is a faithful extension of (G, T) by the hinge (Γ, Ω).

Proof. of proposition 3.7. The pseudo-group (G, T) being cocompact, and the union of the essential leaves being topologically closed in T, one has a compact $K \subset T$ whose G-saturation coincides with this union. By lemma 3.10, every point of K has a neighborhood in K whose orbits meet the core of the hinge after one essential, faithful hinge extension, whose rank is at most the essential rank of (G, T). One extracts a finite subcover. There corresponds a finite sequence of essential faithful extensions by hinges $\left(\Gamma_{k}, \Omega_{k}\right)(1 \leq k \leq \ell)$, whose ranks are at most the essential rank of (G, T). Let (\bar{G}, \bar{T}) be the resulting global extension of (G, T); let $\left[a_{k}, b_{k}\right]$ be the core of $\left(\Gamma_{k}, \Omega_{k}\right)$; and let $C_{k} \subset \bar{T}$ be the \bar{G}-saturation of $\left[a_{k}, b_{k}\right]$. It is easy to arrange that C_{1}, \ldots, C_{ℓ} are two by two disjoint. A closed orbit of \bar{G} is contained in $C_{1} \cup \cdots \cup C_{\ell}$ iff it is essential. Consequently, the pseudo-group $(\bar{G}|U=G| U, U)$ is taut, where

$$
U:=T \backslash\left(\left(C_{1} \cup \cdots \cup C_{\ell}\right) \cap T\right)
$$

Also, the topological closure \bar{U} of U in T being a component of (G, T), the restricted pseudo-group $(G \mid \bar{U}, \bar{U})$ is compactly generated. By lemma 3.4, $(G \mid U, U)$ is also compactly generated. By proposition 1.9, $(G \mid U, U)$ is Haefliger-equivalent to some pseudo-group $\left(G_{0}, T_{0}\right)$ on a finite disjoint union T_{0} of compact intervals and circles. By the example that follows the definition 3.9 above, we get an extension (\tilde{G}, \tilde{T}) of (\bar{G}, \bar{T}) by $\left(G_{0}, T_{0}\right)$. One has $\tilde{T}=\bar{T} \sqcup T_{0}$. Let

$$
\tilde{T}^{\prime}:=T_{0} \sqcup \Omega_{1} \cdots \sqcup \Omega_{\ell} \subset \tilde{T}
$$

By construction, \tilde{T}^{\prime} is exhaustive in (\tilde{G}, \tilde{T}). We change (G, T) for $\left(\tilde{G} \mid \tilde{T}^{\prime}, \tilde{T}^{\prime}\right)$. The properties of proposition 3.7 are fulfilled.
3.3. End of the proofs of theorems B and C. Let, as before, (G, T) be an oriented, compactly generated pseudo-group of dimension 1 , in which every essential orbit is commutative. Our task is to realize (G, T), in dimension 3 if possible, and 4 if not.

Without loss of generality, (G, T) is under the form described by proposition 3.7. We shall first realize separately $\left(G \mid T_{0}, T_{0}\right),\left(\Gamma_{1}, \Omega_{1}\right), \ldots,\left(\Gamma_{\ell}, \Omega_{\ell}\right)$; and then surgerize along some loops in the realizations, transverse to the foliations. It is convenient to begin with introducing these loops into the pseudo-group.

For each k, if $a_{k} \notin \partial_{-} \Omega_{k}$ (resp. $b_{k} \notin \partial_{+} \Omega_{k}$), write Ω_{k}^{-}(resp. Ω_{k}^{+}) the connected component of $\Omega_{k} \backslash\left[a_{k}, b_{k}\right]$ on the left of a_{k} (resp. on the right of b_{k}).

Lemma 3.11. a) In case $a_{k} \notin \partial_{-} \Omega_{k}$, there exist in Ω_{k}^{-}two points $a_{k}^{\prime}<a_{k}^{\prime \prime}<$ a_{k}, and $\phi_{k} \in \Gamma_{k}$, s.t.
i) The interval ($a_{k}^{\prime}, a_{k}^{\prime \prime}$) is exhaustive for $\Gamma_{k} \mid \Omega_{k}^{-}$;
ii) $\left[a_{k}^{\prime}, a_{k}^{\prime \prime}\right] \subset \operatorname{Dom}\left(\psi_{k}\right) \cap \operatorname{Im}\left(\psi_{k}\right)$;
iii) $\phi_{k}(t)>t$ for every $t \in\left[a_{k}^{\prime}, a_{k}^{\prime \prime}\right]$;
iv) $\phi_{k}\left(a_{k}^{\prime}\right)<a_{k}^{\prime \prime}$.
b) Symmetrically, in case $b_{k} \notin \partial_{+} \Omega_{k}$, there exist in Ω_{k}^{+}two points $b_{k}<$ $b_{k}^{\prime}<b_{k}^{\prime \prime}$, and $\psi_{k} \in \Gamma_{k}$, s.t.
i) The interval $\left(b_{k}^{\prime}, b_{k}^{\prime \prime}\right)$ is exhaustive for $\Gamma_{k} \mid \Omega_{k}^{+}$;
ii) $\left[b_{k}^{\prime}, b_{k}^{\prime \prime}\right] \subset \operatorname{Dom}\left(\psi_{k}\right) \cap \operatorname{Im}\left(\psi_{k}\right)$;
iii) $\psi_{k}(t)>t$ for every $t \in\left[b_{k}^{\prime}, b_{k}^{\prime \prime}\right]$;
iv) $\psi_{k}\left(b_{k}^{\prime}\right)<b_{k}^{\prime \prime}$.

Proof. of a). Recall $\gamma_{1}, \ldots, \gamma_{r}$ of definition 3.5. Choose $a_{k}^{\prime}<a_{k}$, so close to a_{k} that it belongs to the domain and to the image of γ_{i}, for every $1 \leq i \leq r$. Let $\gamma_{j}^{\epsilon_{j}}\left(a_{k}^{\prime}\right)$ be the maximum of the values $\gamma_{i}\left(a_{k}^{\prime}\right), \gamma_{i}^{-1}\left(a_{k}^{\prime}\right)(1 \leq i \leq r)$. Put $\phi_{k}:=\gamma_{j}^{\epsilon_{j}}$. Choose $a_{k}^{\prime \prime}$ in the interval $\left(\gamma_{j}^{\epsilon_{j}}\left(a_{k}^{\prime}\right), a_{k}\right)$, so close to $\gamma_{j}^{\epsilon_{j}}\left(a_{k}^{\prime}\right)$ that iii) holds. The properties i), ii) and iv) are obvious.

For each $k=1, \ldots, \ell$, it follows from ii), iii) and iv) that, in case $a_{k} \notin$ $\partial_{-} \Omega_{k}$ (resp. $b_{k} \notin \partial_{+} \Omega_{k}$), the subpseudo-group of (Γ_{k}, Ω_{k}) generated by $\phi_{k} \mid\left(a_{k}^{\prime}, a_{k}^{\prime \prime}\right)$ (resp. $\left.\psi_{k} \mid\left(b_{k}^{\prime}, b_{k}^{\prime \prime}\right)\right)$ is Haefliger-equivalent to the trivial pseudogroup on the circle. In case $\partial \Omega_{k}=\emptyset$ (resp. $\left\{a_{k}\right\}$) (resp. $\left\{b_{k}\right\}$) (resp. $\left.\left\{a_{k}, b_{k}\right\}\right)$, by the example following the definition 3.9, we get an extension $\left(\hat{\Gamma}_{k}, \hat{\Omega}_{k}\right)$ of the hinge $\left(\Gamma_{k}, \Omega_{k}\right)$ by the trivial pseudo-group on the disjoint union of two circles $S_{k}^{-} \sqcup S_{k}^{+}$(resp. one circle S_{k}^{+}) (resp. one circle S_{k}^{-}) (resp. Ø).

In other words, we have an extension (\hat{G}, \hat{T}) of (G, T) by the trivial pseudo-group on the disjoint union S of all the $S_{k}^{ \pm}$s $(1 \leq k \leq \ell)$. In particular, $\hat{T}=T \sqcup S$. Write $\hat{T}_{0}:=T_{0} \sqcup S \subset \hat{T}$ and $\hat{G}_{0}:=\hat{G} \mid \hat{T}_{0}$. Also write

$$
A:=\left[a_{1}, b_{1}\right] \cup \cdots \cup\left[a_{\ell}, b_{\ell}\right]
$$

LEMMA 3.12. The pseudo-group \hat{G} on \hat{T} is generated by \hat{G}_{0}, by $\hat{\Gamma}_{1}$, ..., and by $\hat{\Gamma}_{\ell}$.

Proof. We have to verify that the germ $[g]_{t}$ of every $g \in \hat{G}$ at every $t \in$ $\operatorname{Dom}(g)$, is generated by \hat{G}_{0} and the $\hat{\Gamma}_{k}$'s.

If $t \in \Omega_{k} \backslash\left[a_{k}, b_{k}\right]$, then (lemma 3.11, i)) there is some $\gamma \in \Gamma_{k}$ s.t. $\gamma(t) \in$ $\left(a_{k}^{\prime}, a_{k}^{\prime \prime}\right)$ or $\gamma(t) \in\left(b_{k}^{\prime}, b_{k}^{\prime \prime}\right)$, and thus some $\hat{\gamma} \in \hat{\Gamma}_{k}$ s.t. $\hat{\gamma}(t) \in S_{k}^{ \pm}$. We are thus reduced to the case $t \in \hat{T}_{0} \cup A$. Symmetrically, one can assume also that $g(t) \in \hat{T}_{0} \cup A$.

By proposition 3.7, (3), either $t, g(t) \in \hat{T}_{0}$ (and thus $[g]_{t} \in \hat{G}_{0}$) or $t, g(t) \in$ [a_{k}, b_{k}] for some $1 \leq k \leq \ell$. In that second case, the extension of (G, T) by $\left(\Gamma_{k}, \Omega_{k}\right)$ being faithful, $g \in \Gamma_{k}$.

Proof. that (3) implies (1) in theorem B. Start from a pseudo-group (\hat{G}, \hat{T}) as in lemma 3.12, Haefliger-equivalent to (G, T).

On the one hand, the restriction $\hat{G} \mid(\hat{T} \backslash \operatorname{Int}(A))$, being a component of (\hat{G}, \hat{T}), is also compactly generated. By lemma 3.4 , the restriction of \hat{G} to $\hat{T} \backslash \operatorname{Int}(A)$ is compactly generated. Since $\hat{T}_{0} \subset \hat{T} \backslash \operatorname{Int}(A)$ is exhaustive, $\left(\hat{G}_{0}, \hat{T}_{0}\right)$ is compactly generated. This pseudo-group is also taut, \hat{T}_{0} being
a disjoint union of circles and compact intervals. By theorem $\mathrm{A},\left(\hat{G}_{0}, \hat{T}_{0}\right)$ is realized by a foliated compact 3 -manifold $\left(M_{0}, \mathcal{F}_{0}\right)$, without transverse boundary. More precisely, from the proof of theorem A, \hat{T}_{0} is embedded into M_{0} as an exhaustive transversal to \mathcal{F}_{0}, and \hat{G}_{0} is the holonomy pseudogroup of \mathcal{F}_{0} on \hat{T}_{0}. One takes off from M_{0} a small open tubular neighborhood N_{0} of S, s.t. $\mathcal{F}_{0} \mid \partial N_{0}$ is the trivial foliation by 2 -spheres.

On the other hand, for each $k=1, \ldots, \ell$, one realizes $\left(\Gamma_{k}, \Omega_{k}\right)$ by a foliation \mathcal{F}_{k} on $M_{k}:=T^{2} \times[0,1]$ (lemma 3.6). Obviously, \mathcal{F}_{k} admits transverse loops corresponding to $S_{k}^{ \pm}$, in the sense that $\hat{\Omega}_{k}$ embeds into M_{k} as an exhaustive transversal to \mathcal{F}_{k}, and $\hat{\Gamma}_{k}$ is the holonomy pseudo-group of \mathcal{F}_{k} on $\hat{\Omega}_{k}$. One takes off from M_{k} a small open tubular neighborhood N_{k} of $S_{k}^{ \pm}$, s.t. $\mathcal{F}_{k} \mid \partial N_{k}$ is the trivial foliation by 2 -spheres.

One pastes $\sqcup_{1 \leq k \leq \ell} \partial N_{k} \cong \mathbf{S}^{2} \times S$ with $\partial N_{0} \cong \mathbf{S}^{2} \times S$, w.r.t. the identity of S. One gets a foliation \mathcal{F} on

$$
M_{0} \cup_{\mathbf{S}^{2} \times S}\left(M_{1} \sqcup \cdots \sqcup M_{\ell}\right)
$$

whose holonomy on the exhaustive transversal T coincides with G, by lemma 3.12 .

Proof. that (3) implies (2) in theorem B. The same as for (3) implies (1), but instead of $T^{2} \times[0,1]$, we use $K \times \mathbf{S}^{1}$, where K is the Klein bottle.

Proof. of theorem C. The same as for (3) implies (1) in theorem B, but instead of the foliated 3 -manifold $\left(M_{0}, \mathcal{F}_{0}\right)$, we use the foliated 4-manifold $\left(M_{0} \times \mathbf{S}^{1}, p r_{1}^{*}\left(\mathcal{F}_{0}\right)\right)$; and instead of $T^{2} \times[0,1]$, we use a 4-dimensional realization of $\left(\Gamma_{k}, \Omega_{k}\right)$ (lemma 3.6).

References

[1] A. Candel, L. Conlon, Foliations I, Amer. Math. Soc. Graduate studies in Math. 23, Providence (2000).
[2] C. Ehresmann, Structures locales, Annali di Mat. (1954), 133-142.
[3] A. Haefliger, Variétés feuilletées, Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 3, t. 16, no. 4 (1962).
[4] A. Haefliger, Groupoïde d'holonomie et classifiants, in Structure transverse des feuilletages, Toulouse (1982); ed. J. Pradines, Astérisque 116 (1984), 70-97.
[5] A. Haefliger, Pseudogroups of local isometries, in Proc. Vth. Coll. in Differential Geometry, Santiago de Compostella, ed. L.A. Cordero, Research Notes in Math. 131, Pitman (1985), 174-197.
[6] A. Haefliger, E. Salem, Pseudogroupes d'holonomie des feuilletages riemanniens sur des varits compactes 1-connexes, in Géométrie différentielle, Paris (1986); Travaux en cours 33, Hermann, Paris (1988), 146-160.
[7] A. Haefliger, Foliations and compactly generated pseudo-groups, in Foliations, Geometry and Dynamics, Warsaw (2000); ed. P. Walczac et al., World Scientific (2002), 275-295.
[8] G. Meigniez, A compactly generated pseudogroup which is not realizable, J. Math. Soc. Japan, vol. 62, no. 4 (2010), 1205-1218.
[9] N. Raimbaud, Compact generation for topological groupoids, in Foliations 2012, Lodz, ed. P. Walczac et al, World Scientific (Singapore 2013), 139-162.
[10] O. Veblen, J.H.C. Whitehead, A set of axioms for differential geometry, Proc. Nat. Acad. Sci. 17 (1931), 551-561.

Université de Bretagne Sud
Université Européenne de Bretagne
Laboratoire de Mathématiques de Bretagne Atlantique, UMR 6205
Postal adress: UBS, LMBA, Bâtiment Yves Coppens, Tohannic
B.P. 573

F-56019 VANNES CEDEX, France
Gael.Meigniez@univ-ubs.fr

[^0]: Key words and phrases. Pseudo-group, compactly generated, foliation, taut, holonomy pseudo-group, realization of pseudo-groups.
 ${ }^{1}$ Partially supported by the Japan Society for Promoting Science, No. L03514

