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Abstract

We use confocal microscopy and time-resolved light scattering to investigate plasticity in a col-

loidal polycrystal, following the evolution of the network of grain boundaries as the sample is

submitted to thousands of shear deformation cycles. The grain boundary motion is found to be

ballistic, with a velocity distribution function exhibiting non-trivial power law tails. The shear-

induced dynamics initially slow down, similarly to the aging of the spontaneous dynamics in glassy

materials, but eventually reach a steady state. Surprisingly, the cross-over time between the ini-

tial aging regime and the steady state decreases with increasing probed length scale, hinting at a

hierarchical organization of the grain boundary dynamics.
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The mechanical properties of amorphous solids are a topic of intense research. Recent

works focus on the irreversible (or plastic) rearrangements at the microscopic level [1–7],

resulting from an applied deformation or stress, which are ultimately responsible for the

macroscopic mechanical behavior. Research on amorphous solids is also relevant to crys-

talline materials [8]. On the one hand, simulations and experiments have revealed that

particles in the grain boundaries (GBs) separating crystalline grains exhibit glassy dynam-

ics [9, 10]. On the other hand, polycrystals may be regarded as an amorphous assembly of

crystalline grains separated by GBs. In fact, driven polycrystals display mechanical features

similar to those of amorphous solids [11] and GB process has been shown to be at the origin

of the plasticity of polycrystals in the limit of small grain sizes [11–15].

A large number of numerical works have explored the microscopic dynamics induced

in amorphous systems by a continuous shear, finding quite generally diffusive dynamics

at the particle level [1–3], once the affine component of the displacement is removed, as

also confirmed by experiments on sheared colloidal glasses [2, 7, 16]. By contrast, the

effect of a cyclic shear has been less investigated, in spite of its relevance to the fatigue

tests commonly adopted in material science. Furthermore, cyclic deformation tests allow

one to unambiguously identify irreversible rearrangements (as opposed to the non-affine

displacement measured in continuous shear, which may be reversible) and to follow the

evolution, or aging, of the dynamics as the sample is kept under an oscillatory deformation.

Similarly to the case of continuous shear, the microscopic dynamics in cyclically deformed

amorphous solids have been found to be diffusive (or even subdiffusive), in simulations [18,

19] as well as in experiments on colloids [2, 20] or granular matter [21, 22]. Aging effects

have been reported for macroscopic quantities, e.g. pressure or compacity [23, 24], or for

the microscopic dynamics. In the latter case, however, aging has been probed over a few

tens of cycles at most [22, 25].

In this Letter, we report on experiments probing the irreversible rearrangements induced

in a colloidal polycrystal by thousands of shear deformation cycles. Plasticity is investigated

by confocal microscopy and by an “echo” light scattering technique, inspired by previous

work on glassy colloids and emulsions [1, 2]. We find that plasticity slowly remodels the

network of GBs via previously unreported ballistic dynamics. A steady state is eventu-

ally reached at all probed length scales, preceded by an aging regime whose duration is

unexpectedly length-scale dependent.
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The system [27, 28] comprises water-based thermosensitive block-copolymers (Pluronics

F108) forming micelles arranged on a face-centered cubic lattice (lattice parameter dc = 32

nm), to which a small amount of nanoparticles (NPs) of diameter 2a ≈ dc is added. The NPs

act as impurities, segregated in the GBs upon crystallization. The polycrystal is transparent

to visible light; thus, microscopy and scattering experiments probe the network of GBs

where the NP accumulate. The sample is prepared and injected in the cell in a fluid state

at temperature T ≈ 2 ◦C; crystallization is induced in situ by rising T up to 20 ◦C. Thus,

no uncontrolled shear is imposed when loading the sample, as it is often the case for pasty

colloidal samples. The sample microstructure can be tuned by varying the NP concentration

and the rate Ṫ at which the temperature is increased to induce crystallization [29]. Here,

we fix Ṫ = 0.02◦C min−1. We impose a shear deformation by using a home-made shear

cell [30] where the sample is confined between two parallel glass plates separated by a gap

e (e = 1.58 mm and 250 µm for light scattering and microscopy, respectively). A motor is

used to displace one of the plates along the x direction by an amount δ, thereby imposing a

strain γ = δ/e. We cycle between sheared and unsheared states, as shown in Fig. 1(a). We

express time in units of full cycles, whose duration is 26 s.

A confocal microscopy image of a sample doped with fluorescent polystyrene NPs (2a =

36 nm, volume fraction ϕ = 0.05%) is shown in Fig. 1(b), where the network of GBs is clearly

visible. For samples at rest, no evolution of the GB network is observed, even after several

hours. This has to be contrasted with samples submitted to a cyclic shear. Figure 1(c)

shows an overlay of two images separated by a very large number (3710) of shear cycles.The

images overlap perfectly in regions where the deformation has been fully reversible, as in

the zone highlighted by the white circle. However, in most of the field of view the images do

not overlap, revealing GB migration, with displacements up to ∼ 10 µm, a sizeable fraction

of the grain size. Both the magnitude and the direction of the GB displacement vary across

the image, suggesting that plasticity involves a complex rearrangement of the whole network

of GBs, and not just the sliding or rotation of the crystallites, as reported for metals [31].

Remarkably, the GB trajectories are close to straight lines, ruling out shear-induced diffusive

motion. The observation of plasticity at a microscopic level is consistent with oscillatory

strain rheology measurements [30] that probe macroscopically the mechanical response of

the polycrystal, since in the range of γ probed here the elastic limit is exceeded.

While confocal microscopy provides valuable insight on plasticity on the scale of a few
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Figure 1: (Color online) (a) Typical time-dependent shear deformation imposed to the sample.

Time is expressed in units of the number of cycles, one cycle lasting 26 s. The crosses indicate

when images are taken in microscopy or light scattering experiments. Confocal (b,c) and light (d)

microscopy images of the grain boundary network of a colloidal polycrystal doped with fluorescent

polystyrene (b,c) or silica (d) particles. (b) Image at rest; (c) Overlay of two images taken after 1

(red) and 3711 (blue) shear cycles of amplitude γ = 3.6%. The yellow lines connect the position

of representative GBs at times t = 1, 112, 2617, 3130, and 3711 cycles.

grains, it cannot accurately measure small GB displacements when probing a large sample

area [30]. To provide a more quantitative account of the plasticity process, we couple the

shear cell to a low-angle light scattering setup designed to access the characteristic length

scale of the GB network [32]. We check that the apparatus is stable enough to reliably

probe the dynamics over thousands of cycles [30]. We use a polycrystal doped with silica
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NPs (2a = 30 nm, ϕ = 1%), yielding an average grain size of 10 µm (Fig. 1(d)). A CCD

camera records images of the speckle pattern scattered by the GB network at scattering

vectors q = 4πnλ−1 sin(θ/2) in the range 0.1 µm−1 < q < 4 µm−1, with n = 1.36 the

refractive index, λ = 632.8 nm the in-vacuo laser wavelength and θ the scattering angle.

The images are taken at each half cycle, while the sample is at rest (see Fig. 1(a)). Any

rearrangement in the sample is mirrored by a change in the speckle images, quantified by

the two-time intensity correlation function:

g2(t, τ)− 1 =
〈Ip(t)Ip(t+ τ)〉q
〈Ip(t)〉q〈Ip(t+ τ)〉q

− 1 = βf 2(q, t, τ) . (1)

Here, Ip(t) is the intensity of the p−th pixel at time t, 〈· · ·〉q indicates an average over

a set of pixels corresponding to a well-defined magnitude and orientation of q, β . 1 is

an instrumental constant [3], and f is the two-time intermediate scattering function that

quantifies the particle displacement projected on q [30]. In the following, we show data for

integer values of τ , corresponding to unsheared states of the sample, and report results for

the dynamics in the direction parallel to the imposed deformation (q//x); by analyzing DLS

and microscopy [30] data we have checked that the main findings are similar for q⊥x.

Figure 2 shows β−1(g2− 1) for a polycrystal submitted to shear cycles with strain ampli-

tude γ = 4.6%. At short time lags, a high correlation level is measured, indicating that the

GB network recovers its initial microscopic configuration after each shear cycle, hinting to a

purely elastic behavior. Remarkably, however, the correlation functions always fully decay

when probing the dynamics over a large number of cycles. This implies that the microscopic

configuration of the GB network is eventually modified over distances ∼ q−1 up to 8 µm,

comparable to the grain size, an unambiguous signature of plasticity. We check by static

light scattering and confocal microscopy that these rearrangements do not lead to a change

of the average grain size, differently from Ref. [34], where strain-induced grain growth was

observed. Figure 2(a) shows data for a representative scattering vector and for various ages

t, i.e. after submitting the sample to t deformation cycles. The shear-induced dynamics

are non-stationary, since the decay time grows as t increases. However, a stationary state is

eventually reached, since correlation functions for t ≥ 100 overlap. We investigate the length

scale dependence of the dynamics by plotting in Fig. 2(b) correlation functions measured

simultaneously for various q-vectors in the stationary regime. Overall, the decay of g2 − 1

shifts towards higher relaxation times when q decreases, as expected because smaller q’s
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Figure 2: (Color online) Intensity correlation functions for γ = 4.6%, (a) at a fixed wave vector

q = 1.58 µm−1 and for various aging times t, indicated by the legend, and (b) for various q’s, after a

fixed number of cycles t = 500, corresponding to the stationary regime. (Inset) Same data, plotted

against qτ . The continuous line is a compressed exponential fit yielding an exponent p = 1.54.

correspond to larger length scales. However, for q ≤ qc ≈ 0.5 µm−1 the correlation functions

depend only slightly on q, hinting at a peculiar length-scale dependence of the dynamics.

For q > qc, the correlation functions collapse onto a master curve when plotted vs qτ (inset

of Fig. 2(b)). This scaling rules out diffusive motion and unambiguously indicates that the

GBs undergo ballistic displacements [3, 30]. Further insight on these very unusual dynamics
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can be obtained by analyzing the shape of g2− 1, which is very well fitted by a ‘compressed’

exponential [35–37], g2 − 1 = exp[−(τ/τ0)
p], with p ≈ 1.5 > 1, as opposed to the more

usual p < 1 in the stretched exponential relaxation of, e.g., glassy systems. The probability

distribution function, PV (Vx), of the x component of the GB velocity can be obtained by

Fourier transforming f(q, τ) [30]. We find that PV is a Levy law [5], a highly non-trivial

distribution with a power law tail, PV (Vx) ∼ |Vx|−(p+1) at large |Vx|. The characteristic

GB velocity is very small [30], of order 5.6 × 10−4 µm per cycle, consistent with the fact

that substantial GB motion occurs only after thousands of cycles. These results are further

supported by the analysis of real space trajectories obtained by confocal microscopy [30]

and are also found for the other applied strains. Remarkably, the same qτ ballistic scaling

and a similar compressed exponential shape have been reported for the spontaneous (non-

driven) aging dynamics of a variety of out-of-equilibrium soft systems [35, 36, 39, 40], for

which these peculiar features have been ascribed to the dipolar displacement field due to

localized plastic rearrangements [37]. This analogy sheds light on the physical origin of the

shear-induced dynamics in our colloidal polycrystal: the energy injected in the system by

shearing does not act as a source of thermal-like noise, which would lead to diffusive motion.

Rather, the dynamics result from plastic events, as in the predictions of [37]. These events

are likely to continuously trigger further events by redistributing stresses throughout the

sample, a scenario envisioned by modern models of plasticity [41–43], thereby explaining

why a stationary regime is eventually reached.

In order to quantify the dynamics beyond the stationary regime discussed so far, we de-

termine the q-dependent characteristic relaxation time of the correlation functions, defined

as τR = β−1
∫

[g2(t, τ)− 1] dτ . We show in Fig. 3 the evolution of τR with t for various

scattering vectors, at a fixed strain amplitude, γ = 4.6%. For all q’s, τR initially increases

with t and then reaches a plateau after a critical number of shear cycles, corresponding

to the dynamical steady state where ballistic dynamics are observed. The overall shape of

τR(t) appears to be similar regardless of q, suggesting that data for difference scattering

vectors may be collapsed onto a master curve by choosing suitably renormalized variables.

We test successfully such a scaling by plotting τ ∗R ≡ τR/τ∞ vs t∗ ≡ t/tc (inset of Fig. 3),

where the scaling parameters τ∞ and tc are the relaxation time in the asymptotic, station-

ary regime (simply related to the compressed exponential fitting parameter τ0 introduced

above [30]) and the crossover time between the aging and the stationary regime, respectively.
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Figure 3: (Color online) Evolution with the number of shear cycles of the characteristic relaxation

time for various wave vectors q (same symbols as in fig. 2b). The strain amplitude is γ = 4.6%.

Inset: master curve obtained by using reduced variables, τR/τ∞ and t/tc, for various strain am-

plitudes as indicated in the legend. The different solid symbols correspond to various q’s (same

symbols as in the main plot).

Remarkably, we find that the same aging master curve holds to a very good approximation

irrespective of the amplitude of the applied strain, for 1.5% ≤ γ ≤ 5.2% (inset Fig. 3). This

aging master curve highlights the complex dynamics of the polycrystals, characterized by

marked aging dynamics (τ ∗R ∝ t∗ν with ν = 2.2± 0.3), followed by a steady state.

The strain and q-dependence of the relaxation time in the steady state, τ∞, is shown in

Fig. 4(a). At large q, τ∞ ∼ q−m, with m ≈ 1, a direct consequence of the qτ scaling discussed

in reference to Fig. 2(b). In this regime, the relaxation time tends to decrease with increasing

γ, a trend better seen when inspecting the characteristic GB velocity extracted from the

corresponding velocity distributions (Table SM4 in [30]). At low q, the same departure from

the τ∞ ∼ q−1 scaling observed for γ = 4.6% in Fig. 2 is also seen for all the other applied

strains. Although the data are somehow scattered, they suggest that the characteristic

relaxation time at low q tends to increase as γ decreases, while the crossover scattering
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Figure 4: (Color online) q dependence of the normalization constants τ∞ (a) and tc (b) used to

obtain the master curve shown in Fig. 3. Data are labeled by the strain amplitude, as indicated in

the legend. Inset of (b): γ dependence of the critical length scale introduced in the text.

vector appears to be rather γ-independent, with 2π/qc ' 12 µm on the order of the grain

size (10 µm).

The second scaling parameter, tc, corresponds to the number of cycles needed to reach

the steady state. Surprisingly, tc is found to steadily increase with q (Fig. 4(b)), indicating

that the time required to reach a steady state depends on the probed length scale, with

stationary dynamics first attained on large length scales, a somehow counterintuitive result.

To rationalize these findings, we assume that the applied shear allows the polycrystal to

explore regions in configuration space that were unaccessible to the spontaneous dynamics.
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Since the energy injected in the system by shearing is finite, these new configurations cannot

be arbitrarily different from the initial ones; in particular, they must be closer to the initial

ones at larger length scales, because the energetic cost of reconfiguring the sample over a

length scale Λ increases with Λ. Accordingly, stationary dynamics would be reached earlier

at small q, because at large length scale the set of configurations explored in the stationary

regime would be closer to the initial one. One can then define a critical length scale, Λc, such

that above it stationary dynamics are observed from the very beginning of the experiment

(i.e. from the first shear cycle). We take Λc = 2π/q∗, where q∗ is the wave vector for which

tc = 1. The inset of Fig. 4(b) shows that Λc grows with the strain amplitude, consistent

with the above picture, and is of the order of the grain size.

In conclusion, we have investigated plasticity in a cyclically sheared colloidal polycrystal.

Our main finding is that shear-induced rearrangements are ballistic, a behavior at odd

with previous simulations and with experiments on granular media and glassy colloids,

for which diffusive dynamics under shear were reported. By contrast, both the ballistic

dynamics and the compressed exponential relaxations found here are strongly reminiscent of

the spontaneous dynamics of many out-of-equilibrium materials [35, 36, 39, 40], in agreement

with mesoscopic models [37] and ongoing simulations [44] where the dynamics results from

the dipolar strain field set by localized plastic events. Finally, the transition between the

aging and the stationary regime exhibits an intriguing length scale dependence that, to our

knowledge, has not been reported previously. More theoretical and experimental work will

be needed to fully elucidate these surprising features.
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In this Supplemental Material we briefly discuss:

• the shear cell design;

• the measurements on purely elastic samples, to test the stability of the light scattering

apparatus;

• some rheological properties of the polycrystals (strain sweep);

• how the distribution function of the grain boundary (GBs) velocity is retrieved from

the dynamic structure factor measured by light scattering;

• a comparison between light scattering and microscopy data, showing that both tech-

niques lead to consistent results, both qualitatively (ballistic nature of the dynamics)

and quantitatively (velocity distribution of the GBs)

I. SHEAR CELL DESIGN

The shear cell is composed of two parallel microscope slides, which are sand-blasted (rms

roughness 1 µm) to prevent slipping, except for a small window of diameter ≈ 2 mm to

probe optically the sample. For light scattering experiments, the spacing between the two

slides is controlled by three stainless steel, high-precision ball bearings. The ball bearings

are embedded in a custom-made rectangular frame of polydimethylsiloxane (PDMS), which

contains the sample and avoids solvent evaporation. The PDMS frame is prepared by mixing

two fluid components (a base and a cross-linker) with a mass-ratio 50:1, yielding a material

with an elastic modulus of about 10 kPa. For microscopy observations, the two microscope

slides are separated by a 250 µm thick, 16 × 16mm2 double-adhesive gene frame (Thermo

Scientific), which acts as a spacer and avoids evaporation. A motor is used to displace one

of the plates along the x direction by an amount δ, thereby imposing a strain γ = δ/e, with

e the sample thickness. The motor speed during the displacement is 0.05 mm s−1.

For both light scattering and microscopy, we measure the thickness of the sample chamber

by microscopy, by measuring eobj, the vertical displacement of the microscope objective when

focusing the upper and lower plates, respectively, using a 20× air objective. The sample

thickness is obtained as e = neobj, where n = 1.38 is the sample refractive index. We

measure eobj at several locations separated by 1 cm, finding no difference to within the
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measurement uncertainty. This implies that the maximum deviation from parallelism over

1 cm is smaller than the measurement uncertainty (≤ 8 µm), corresponding to less than

5×10−4e (respectively, 1.3×10−3e) over the region sampled by light scattering (respectively,

microscopy).

II. LIGHT SCATTERING MEASUREMENTS ON A PURELY ELASTIC SAM-

PLE CYCLICALLY SHEARED

We test our light scattering set-up by measuring the correlation function g2 − 1 for a

sample whose mechanical response is purely elastic, a transparent PDMS elastomer, seeded

with copper particles of diameter 3 µm. Here, the scattering signal is dominated by the

contribution of the particles, whose microscopic configuration is essentially frozen due to

the stiffness of the elastomer, whose elastic modulus is G′ ≈ 500 kPa. We impose a cyclic

shear deformation of amplitude γ = 4.6 %. The inset of fig. SM1 shows β−1(g2− 1) at short

time lags, τ : when τ corresponds to an odd number of half-cycles, the correlation drops

to zero, due to the relative motion of the scatterers associated with the affine displacement

field induced by the applied strain. For a delay time equal to an integer number of cycles,

a high correlation level is recovered, an echo effect similar to that reported previously in

concentrated emulsions and colloidal glasses [1, 2]. In the inset of Fig. SM1 the height of the

echos is unity, indicating that the scatterers have recovered exactly the initial microscopic

configuration, as expected for tracer particles embedded in a purely elastic matrix, whose

deformation is fully reversible. In the main figure, only data for integer values of τ are

plotted, but for a very extended range of delay τ . No significant loss of correlation is observed

over 2000 cycles, thus demonstrating that the setup is stable enough for the dynamics to be

reliably probed over thousands of cycles.
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Figure SM1: (Color online) Intensity correlation functions for an elastic PDMS elastomer.

Main figure: data for integer delays τ . Inset: zoom on the behavior of β−1(g2 − 1) at small τ .

Data for both half-integer and integer delays are shown.

III. STRAIN-DEPENDENCE OF THE VISCOELASTICITY OF A COLLOIDAL

POLYCRYSTAL

Figure SM2 shows the strain dependence of the elastic and loss moduli measured by

oscillatory rheology, for the colloidal polycrystal investigated by light scattering in the main

text. The vertical lines indicate the strain amplitudes in the light scattering experiments:

they correspond to an intermediate regime beyond the linear regime (which ends beyond

γ ≈ 0.3%), but before fluidization occurs, for γ & 6%.
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Figure SM2: (Color online) Strain dependence of the storage modulus, G′ (green triangles), and

the loss modulus, G′′ (red circles), as measured by standard oscillatory rheology, at a fixed

frequency, f = 0.5 Hz. Same sample as for the light scattering experiments (micellar polycrystal

doped with silica nanoparticles of diameter 30 nm, at a volume fraction ϕ = 1%). The vertical

lines indicate the five strain amplitudes used in the light scattering experiments discussed in the

main text.

IV. PROBABILITY DISTRIBUTION FUNCTION OF THE SCATTERERS’ VE-

LOCITY

We show here that in the asymptotic, stationary regime the grain boundaries undergo

ballistic motion and that the probability distribution function (PDF) of their velocity is a

Levy stable law [5]. In our dynamic light scattering (DLS) experiments we measure the

intensity correlation function g2(q, τ)− 1 (see Eq. (1) of the main text), which is related to

the intermediate scattering function f(q, τ) (also known as the dynamic structure factor) by

g2(q, τ)− 1 = βf(q, τ)2 ,

with

f(q, τ) =
1

N

〈
N∑

j,k=1

exp {iq · [rj(0)− rk(τ)]}

〉
, (2)

with N the number if scatterers, rj the time-dependent position of the j-th scatterer, and

where the brackets denote an ensemble average, and the factor β an instrumental constant
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. 1 [3].

As discussed in the main text, we find that in the stationary regime correlation functions

measured at different q all collapse on a master curve when plotted against time scaled by

q ≡ |qx|, for q ≥ qc. This implies that f(q, τ) does not depend on q and τ separately, but

rather on the product u = qτ . Recalling the compressed exponential shape of g2 − 1, one

has f(q, τ) = f(u) = exp[−(uV0,x)
p], where V0,x represents the modulus of a characteristic

velocity related to the relaxation time τR introduced in the main text by

V0,x =

2
− 1

p

p
Γ
(

1
p

)
qτR

, (3)

with Γ the gamma function.
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Figure SM3: (Color online) Probability distribution function of the x component of the velocity

of the grain boundaries in the asymptotic, stationary regime, for γ = 4.6%. The PDF is obtained

by Fourier transforming the compressed exponential fit to the data shown in the inset of Fig. 2b

of the main text, see Eq. (5) above. The distribution function is essentially flat up to the

characteristic velocity V0,x, while it decays as a power law for large |Vx|, with an exponent −p− 1

directly related to the compressing exponent p = 1.54 of the fit to g2 − 1. V0,x = 5.54 µm cycle−1

is related to the q-dependent decay time of g2 − 1, τR, by Eq. (3).

Under these conditions, by following [3, 4] one finds that the ensemble average in Eq. (2)

can be recast as an average over the probability distribution function of the x component of

the scatterers’ velocity, PV (Vx), yielding:

f(u) =

∫
dVxPV (Vx) exp(−iuVx) . (4)
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By taking the inverse Fourier transform of Eq. (4), one finds

PV (Vx) ∝
∫

duf(u) exp(iuVx) =

∫
du exp[−(uV0,x)

p] exp(iuVx) . (5)

The last term on the r.h.s. of Eq. (5) is the integral representation of the Levy stable law

Lp,0 [4, 5]. The Levy PDF is characterized by a flat distribution for |Vx| . V0,x, followed

by a power-law tail, PV (|Vx|) ∼ |Vx|−p−1 [5]. We show in Fig. SM3 the PDF obtained by

numerical integration of Eq. (5), for the dynamics measured in the asymptotic regime shown

in Fig. 2b of the main text (γ = 4.6%, p = 1.54, V0,x = 5.54× 10−4 µm cycle−1).

γ (%) p V0,x (µm cycle−1)

1.5 1.66 3.52× 10−4

2.5 1.76 2.82× 10−4

3.5 1.65 2.55× 10−4

4.6 1.54 5.64× 10−4

5.2 1.53 6.54× 10−4

Table SM4: Compressing exponent p governing the power-law tail of the velocity distribution of

the grain boundaries and characteristic velocity obtained from the fits to the intensity correlation

functions g2 − 1 in the asymptotic, stationary regime, for the five values of the applied strain

amplitude.

Table SM4 summarizes the parameters of the Levy distributions of Vx for all our experi-

ments. We find that the p exponent governing the slope of the tail of PV varies only slightly

with the applied strain, γ. The variation of the characteristic velocity is more pronounced:

the general trend is for V0,x to increase with γ, albeit with some scatter in the data. The

order of magnitude of V0,x is 5 × 10−4µm cycle−1. This is close to V0,x ∼ 10−3µm cycle−1,

as obtained by analyzing in real space the grain boundary displacement for a sample with a

slightly larger grain size, as discussed in Sec. V below.

V. COMPARISON BETWEEN LIGHT SCATTERING AND MICROSCOPY

MEASUREMENTS

In order to provide additional support to the analysis of the grain boundary motion

performed on light scattering data, we measure the GB displacement also in microscopy
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Figure SM5 (Color online) a) - d): zoom into representative GB trajectories, from Fig. 1c of

the main text. The trajectories are obtained by measuring the GB position at

t = 1, 112, 2617, 3130, and 3711 shear cycles. e): GB displacement with respect to the position at

t = 1, for the trajectories shown in a)-d), as indicated by the labels. The angle α between

consecutive segments of a trajectory is also shown for two segments of the trajectory c). f):

probability distribution function of α. The PDF is strongly peaked around α = 0, implying that

the GBs trajectories are close to straight lines, a behavior suggestive of ballistic motion and

incompatible with diffusion, for which α would be evenly distributed (dotted line). The labels

indicate the average and the standard deviation of α.

experiments. Figures SM5a-d zoom into some of the trajectories shown in Fig. 1c of the

main text. The trajectories are obtained by measuring the position of representative GBs

at times t = 1, 112, 2617, 3130, and 3711 cycles. The trajectories are overlaid to the images

of the polycrystal taken at t = 1 (red) and 3711 (blue). The images at intermediate times

are not shown for clarity. For the same GBs, the displacement (∆x,∆y) with respect to the

position at t = 1 is shown in Fig. SM5e. Clearly, the trajectories are close to straight lines,

a behavior incompatible with random motion. To quantify the tendency of the GBs to move
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along straight lines, we calculate the angle α between successive segments of the trajectories,

as exemplified in Fig. SM5e. Figure SM5f shows the PDF of α, obtained from all the

trajectory segments at all the locations shown in Fig. 1c of the main text, i.e. 52 segments

from 13 different trajectories. The PDF is strongly peaked around α = 0, confirming that the

trajectories are incompatible with diffusive motion and are rather suggestive of straight-line

displacements as in ballistic motion, consistent with the DLS results.
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Figure SM6: (Color online) Cumulative distribution function of the velocity components Vα of

the grain boundaries in the asymptotic, stationary regime (α = x (resp. , y) for the component

parallel (resp., perpendicular) to the direction of the applied strain). CM and symbols: data

obtained by analyzing the trajectories obtained from confocal microscopy and shown in Fig. 1c of

the main text (γ = 3.6%). Lines: data obtained by light scattering for the five strain amplitudes

reported in the main text.

We measure the GB velocity over two time intervals, t ∈ [2617 − 3130] and t ∈

[3130− 3711]. We find comparable average velocities, consistently with the notion that the

sample dynamics become stationary at large t, as seen by DLS. We calculate the cumulative

distribution of the GB velocity, using all trajectories and both time intervals and compare

it to the cumulative velocity distributions obtained from the DLS data analysis. The results

are shown in Fig. SM6 for the components of the velocity parallel and perpendicular to the

shear direction.

Several comments are in order. First, there is an overall good agreement between the
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microscopy and DLS data. This agreement is particularly remarkable given that the sam-

ple composition (nanoparticle kind, size and concentration) has been separately optimized

according to the specific requirements of each experiment. As a consequence, the grain

size –although of the same order of magnitude– is not identical in the samples used for

microscopy and light scattering (see Figs. 1b and 1d in the main text). Second, microscopy

data measured for the x and y direction overlap, thus indicating that plasticity is essentially

isotropic. Third, the order of magnitude of the GB velocity in the stationary regime is very

small, as also seen in Figs. SM3 and SM5. This highlights a key requirement of our experi-

ments, i.e. sensitivity to small-scale motion. In this respect, light scattering is superior to

microscopy: for the former, the smallest rms displacement that can be reliably measured is

∆rmin ∼ 0.1 µm, corresponding to a decay of 5% of g2 − 1 at the largest scattering vector.

For microscopy, ∆rmin ∼ 0.34 µm (corresponding to 1 pixel), more than three times larger

than by DLS. An additional advantage of light scattering is a better statistics: for DLS,

the probed volume is Vscatt ∼ 1 mm3, about 80 times larger than Vmicro ∼ 0.013 mm3, the

volume accessible to confocal microscopy. These advantages motivate our choice of DLS as

the main quantitative probe of the GB dynamics.
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