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Abstract We propose in this paper a novel sampling

method and an improvement of a spectral analysis tool

that both handle complex shapes and sharp features.

Starting from an arbitrary triangular mesh, our algo-

rithm generates a new sampling pattern that exhibits

blue noise properties. The �delity to the original sur-

face being essential, our algorithm preserves sharp fea-

tures. Our sampling is based on a discrete dart throwing

applied directly on the surface to get good blue noise

sampling patterns. It is also driven by a feature detec-

tion tool - to avoid geometric aliasing. Experimental

results prove that our sampling scheme is faster than

techniques based on brute-force dart throwing, and pro-

duces sampling patterns with blue noise properties even

for complex surfaces of arbitrary topology. In parallel,

we also propose an improvement of a tool initially de-

veloped for the spectral analysis of non-uniform sam-

pling patterns, that may generate biased results with

complex shapes. The proposed improvement overcomes

this problem.
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1 Introduction

In recent years, many works focused on the sampling

patterns of surfaces. Given its capability to avoid alias-

ing artifacts [11], Poisson disk distribution has received

considerable attention in computer graphics. Indeed, a

Poisson disk distribution generates patterns that sat-

isfy a uniform but irregular distribution of the samples

within the domain: a minimum distance is ensured be-

tween samples, but with the constraint that samples do

not lie on a spatial regular lattice. Such sampling pat-

terns exhibit the so-called blue noise properties [19].

To analyze the spectral quality of these patterns, we

generally study the power spectrum (Figure 1 on the

left) that represents the distribution of distances be-

tween samples. From the power spectrum, two statis-

tics are usually derived: the radially averaged power

spectrum (RAPS) (Figure 1 in the middle) and the

anisotropy (Figure 1 on the right). The RAPS assesses

the radial distribution of the distances between sam-

ples, while the anisotropy evaluates the radial unifor-

mity of the sampling pattern over the domain.

An ideal Poisson disk distribution presents a RAPS

similar to a step function (see Figure 1 in the mid-

dle). It consists in a wide zero-region at low frequencies

and a �at high-frequency region, both connected with

a sharp transition at the cut-o� frequency, that cor-

responds to the minimum distance between samples.

The ideal anisotropy is constant, and very low. These

characteristics are particularly relevant for many appli-

cations such as rendering, imaging, texturing, geometry

processing and numerical simulations [15], [27], [33].
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Fig. 1 From left to right: The power spectrum, the radially
averaged power spectrum (RAPS) and the anisotropy of an
ideal Poisson disk distribution.

Motivation and contributions

Currently, few blue noise sampling techniques handle

surfaces with feature lines [17], [18], [25]. However, sam-

pling surfaces without taking into account the feature

lines may generate the so-called geometric aliasing : see

Figure 2. Moreover, many sampling techniques do not

handle complex shapes, for instance high-genus sur-

faces, because the sampling is not done directly on the

input surface, but in a parameter domain.

Our objective consists in resampling surface meshes,

by optimizing their number of vertices while having

good spectral properties. We propose in this paper a

blue noise sampling technique that takes a triangle mesh

as input, and produces a new sampling pattern satis-

fying the blue noise properties. Our sampling is based

on direct brute-force dart throwing - to process arbi-

trary topologies - and uses geodesics [10] - to guaran-

tee the sampling quality even for complex shapes. Our

algorithm also includes a segmentation technique that

detects sharp features. This technique avoids potential

aliasing artifacts, and �nally strengthens the �delity to

the original shape geometry.

The core idea of our dart throwing technique is to

use a discretization of the input surface combined to

a geodesic metric based on Dijkstra's algorithm [12].

The discrete grid created over the input mesh limits

the positions of the darts to vertices belonging to this

grid, and consequently reduces the time-complexity of

geodesics - one major drawback of brute-force dart throw-

ing techniques - without damaging the accuracy of the

measures. Experimental results will show that our tech-

nique outperforms prior methods that utilize continu-

ous settings to perform brute-force dart throwing [7],

[15], [18]. Our sampling technique has been brie�y pre-

sented in a short paper [26], but more technical de-

tails and experimentations are presented in this paper

to show the interest of our approach.

We also propose in this paper an improvement of

the tool of Wei et al. [31], initially developed for ana-

lyzing the sampling quality of a given pattern. As this

(a) (b)

a) 
b)

(c)

Fig. 2 Fandisk sampled and triangulated respectively, with-
out (a) and with (b) preservation of the features. (c) Geomet-
ric errors with respect to the initial surface, computed with
Mesh [2].

tool is based on the exponential maps technique [29] to

compute inter-sample distances, measurement bias may

occur in bumpy or sharp areas like corners or feature

lines. To overcome this problem, and in order to take

advantage of our discrete setting, we introduced in this

analysis tool the Dijkstra's algorithm to compute more

accurately the power spectra, and thus to analyze more

precisely the sampling patterns. In this setting, the dis-

crete grid is generated using a dithered subdivision, to

enforce the independence of our algorithm to the qual-

ity of the input mesh elements.

The paper is organized as follows: Section 2 reviews

the blue noise sampling methods developed for surfaces

and existing sampling analysis tools. Section 3 explains

in a nutshell the theory of dart throwing to generate

Poisson disk distributions on surfaces, and then details

our technique. Next, we discuss in Section 4 our im-

provements to the spectral analysis tool of Wei et al.

[31]. Experimental results, in-depth assessments and

comparisons with prior methods in terms of blue noise

properties and timings are provided in Section 5. Fi-

nally, Section 6 summarizes our work and presents sev-

eral perspectives.
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2 Prior works

2.1 Prior works on blue noise sampling for surfaces

The techniques of blue noise sampling can be classi-

�ed according to three categories: the parameterization-

based methods [22], [23], the direct methods [4], [7], [9],

[15], [18] and the relaxation-based methods [6], [33]. Given

our objectives, we also review the feature preserving

methods.

2.1.1 Parameterization-based methods

The surface is parameterized to a planar domain before

applying any 2D sampling technique. Thereby, these

methods overcome the issue relative to the computation

of geodesics, but the generated patterns may su�er from

parameterization distortions, in particular for surfaces

with complex topologies.

Li et al. [22] present a tiling-based sampling method

for surfaces of arbitrary topology. The idea is to �rst

build a dual surface from an input parameterized sur-

face, and then to arrange pre-computed Poisson disk

tiles on it. This method produces sampling patterns

with good blue noise properties as long as the parame-

terization is quad-based and has low distortions.

Li et al. [23] propose an original approach based on

parameterization. The idea consists in performing an

anisotropic sampling on a planar domain in order to

obtain an isotropic sampling of the input surfaces.

Jacobian distances are used to improve the wrap-

ping back phase into 3D, and thus to limit parameteri-

zation distortions.

We can also cite the work of Alliez et al. [1] that is

one of the �rst parameterization-based remeshing tech-

nique for surfaces using a blue noise 2D sampling. The

authors use a technique of halftoning initially based for

grey-scale images to resample the vertices on the pa-

rameterized surface before the triangulation.

2.1.2 Direct methods

"Direct" means that the sampling is done on the surface

directly (without parameterization). These methods are

inspired by the technique of dart throwing developed

for planar domains by Dippé et al. [13]. They gener-

ate patterns with excellent blue noise properties, but

are time-consuming when the geodesics are computed

accurately.

For instance, Fu et al. [15] extend the 2D dart throw-

ing method of Dunbar et al. [14], and choose exact

geodesic metrics to measure distances between samples.

Once the sampling is done, relaxation is applied on the

samples to improve their isotropy and �nally produces

high quality meshes, to the detriment of the blue noise

properties.

Cline et al. [7] and then Corsini et al. [9] were in-

spired by the hierarchical dart throwing (HDT) of White

et al. [32], that uses quad-trees to generate samples in

2D domain. Cline et al. [7] propose a dart throwing for

surfaces, faster than prior techniques. The main con-

tribution is a new index structure particularly e�cient

for excluding regions already covered by previous darts.

They also show that their technique can be extended to

other types of surfaces like NURBS, implicit surfaces,

etc.

Corsini et al. [9] propose two methods to generate

e�cient blue noise sampling patterns on meshes. Both

are independent of the input connectivity and sam-

pling, and are based on a Monte-Carlo algorithm to

pre-generate a pool of samples on the surface meshes.

This pool of samples is then shrunk by selecting only

the samples verifying the given minimum distance, via

a cubic space subdivision, or directly with respect to

the samples. The �rst approach is similar to the one

proposed by Bowers et al. [4], which uses GPU to par-

allelize the generation of samples with respect to cubic

subdivisions. Their two algorithms present good blue

noise properties, but the use of Euclidean distances may

limit their e�ciency with complex shapes, or surfaces

varying in narrow spaces, for instance.

2.1.3 Relaxation-based methods

They are all inspired by Lloyd's relaxation [24]. Ba-

sically, a given density function is minimized, by up-

dating iteratively the position of the samples. These

kinds of methods overcome the problem of controllabil-

ity of sampling size relative to dart throwing techniques.

They are also faster and less complex. The main draw-

back is that they tend to generate hexagonal lattices,

whose regularity does not ful�ll blue noise properties.

In 2D, we can cite the work of Chen et al. [5] who

implement a parallelized local version of the algorithm

FPO (farthest point optimization) originally developed

by Schlömer et al. in [28], and based on constrained

farthest point optimization (CFPO). These methods

do not present an hexagonal lattice which constitutes

one of their main advantages, but their algorithms only

handle the plane space by repositioning samples so that

they are as far away as possible from each other, and

are also restricted to uniform sampling.

Xu et al. [33] propose the concept of capacity con-

strained surface triangulation (CCST), that produces

sets of samples exhibiting good blue noise properties.

This is an extension of the capacity-constrained De-
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launay triangulation (CCDT) of Xu et al. [34] devel-

oped for planar domains. This work gives one remesh-

ing example to show that the resulting meshes also

present well-shaped triangles thanks to the relaxation.

Nonetheless, it does not manage sharp features, or sur-

faces with complex topologies.

In parallel, Chen et al. [6] present an extension of

the concept of capacity-constrained point distributions

(CCPD) developed by Balzer et al. [3]. They provide a

�exible variational framework for generating blue noise

sampling on surfaces and deformable surfaces. Multi-

class sampling is also possible.

2.1.4 Feature preserving sampling

Among the sampling techniques described above, some

approaches strive to preserve feature lines. For instance,

Ge et al. [17] propose to combine the Euclidean and

Riemannian metrics to compute the minimum distances

while taking into account the feature lines.

Recently, Geng et al. [18] combine the techniques of

Cline et al. [7] and Fu et al. [15] to perform adaptive

sampling while preserving features. This technique out-

performs [15] in terms of time-consumption and com-

plexity, but is di�cult to handle since the user has to

tune several parameters in order to get satisfactory re-

sults.

2.2 Tools for analyzing the quality of surface sampling

One popular technique to evaluate the spatial unifor-

mity of a sampling pattern was proposed by Lagae et al.

in [21]. This technique computes the ratio between the

minimum inter-sample distance of the generated pat-

terns, and the average inter-sample distance computed

from the maximum packing of a given number of sam-

ples. This technique handles only uniform sampling.

Then, several analysis tools extended the Fourier

analysis [4], [8], [23], [30], [31]. Bowers et al. [4] use

a spectral mesh basis that handles only uniform cases

and is restrained to a small number of samples due to

the expensive numerical complexity. In 2011, Wei et al.

[31] extend the typical Fourier analysis kernel (i.e. cosi-

nus function) to assess various sampling patterns. This

method uses a geodesic computation method based on

decals [29], that locally computes a parameterization

from each sample to its neighbor ones. This param-

eterization is used to compute the geodesic distances

between samples afterwards. We adapted this tool to

support general topologies as those presented in Sec-

tion 5 and to compute the distances between samples

more accurately.

3 Discrete Dart Throwing

This section presents the notion of Dart Throwing, and

details the di�erent stages of our sampling algorithm.

3.1 Poisson disk distribution

Nowadays, Poisson disk distribution is widespread in

computer graphics due to its blue noise properties. It

meets the two requirements highlighted in [8]: the uni-

formity of the sampling patterns, with the irregularity

of the sample positions.

Given a set of N samples S = {Si} embedded in

an n-dimensional sampling domain Ω, the irregularity

and the uniformity can be expressed with the following

equation [16]:

∀Si ∈ S, ∀Ωi ⊂ Ω,P (Si ∈ Ωi) =
∫
Ωi

ds, (1)

where P (Si ∈ Ωi) represents the probability of Si to

fall into the sub-domain Ωi of Ω. It is proportional to

the size of Ωi, such that no region of Ω will be empty

of samples. Typical Poisson disk distributions can be

done using equation (1), but it is not convenient with

surfaces because it may generate some clusters of sam-

ples. Therefore it is usual to restrain the sample posi-

tions with respect to each other, and thus avoid such

clustering artifacts, by imposing a minimum distance

2R between any pair of samples:

∀(Si, Sj) ∈ S2, ||Si − Sj || ≥ 2R. (2)

Dart throwing (DT) is performed as explained be-

low. Assume that 2R is the minimum distance required

between two samples. The DT consists in i) picking

out randomly a sample Si on the domain (irregular-

ity), ii) drawing a disk of radius R around it, and iii)

verifying if this disk intersects another disk. If no disk

is intersected, the sample Si is kept since it respects

the required distance 2R (uniformity). Otherwise, the

sample Si is discarded. This process is iterated until

no more sample can be thrown on the domain without

violating the minimum distance, or until a user-given

number of samples is reached.

To extend DT to surfaces, it seems natural to cal-

culate geodesics instead of Euclidean distances. Indeed,

Euclidean metric may introduce disparity when com-

puting the radii across sharp features or in some bumpy

regions for instance, as shown in Figure 3. The initial

2D disk around each sample is thus replaced by a cir-

cular patch on the surface, depending on the geodesic

distance R. The computation of geodesics is one issue
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2R 

d’ = 2R 

Differences introduced by 
Euclidean metric 

Sectional view of a 
surface mesh 

Euclidean case Geodesic case 

Si Si

Vertices within an Euclidean 
distance <= R to Si

Vertices within a geodesic 
distance <= R to Si

Fig. 3 Disparity of distance measurement between Euclidean
and Geodesic metrics on surfaces.

of the DT algorithms, because a trade-o� between ac-

curacy and time cost is needed.

DT can be generalized to adaptive (i.e. non-uniform)

sampling by incorporating a density function. In the

context of remeshing, curvature-aware sampling is par-

ticularly relevant, since it allows to better approximate

the original surface if the density function depends on

curvature values. In other words, the higher the cur-

vature values, the smaller the radii of the associated

circular patches are. Curvature-aware DT is illustrated

in Figure 4 for a planar domain.

Ascending order of curvature values 

 Invalid sample 

Valid sample 

Already generated 
sample 

Fig. 4 Curvature-aware dart throwing. Blue disks are asso-
ciated to samples already positioned. The red and green disks
indicate if the given samples respect the required distance.

3.2 Discrete dart throwing: proposed approach

This section explains our proposed approach to sam-

ple surface meshes and guarantee the preservation of

features, using an e�cient discrete dart throwing algo-

rithm. Let us denote M as an input 2-manifold trian-

gular mesh, of any genus, closed or not.

3.2.1 Vertex classi�cation

It consists in separating the vertices of M with respect

to three classes: corners, sharp features and smooth re-

Fig. 5 Green and red points are respectively the vertices
considered as sharp features and corners.

gions. The sampling will then be driven by this classi-

�cation, to preserve original features of M .

Our classi�cation is based on normal tensor voting

theory [20]. It computes for each vertex v of M a 3× 3

weighted covariance matrix. Its three sorted eigenvalues

λ1 ≥ λ2 ≥ λ3 ≥ 0 (λ2 and λ3 are respectively the

maximum and the minimum curvature values) are used

to classify v:

� If λ1 is dominant, and λ2, λ3 are close to 0, v is

classi�ed into smooth regions;

� If λ1 and λ2 are dominant, and λ3 is close to 0, v is

classi�ed into sharp features;

� If the three eigenvalues are approximately equal, v

is classi�ed into corners.

Figure 5 shows the e�ciency of this classi�cation

on Socket: green and red points are respectively the

vertices considered as sharp features and corners.

3.2.2 Curvature-aware sampling

This section describes our curvature-aware DT, inspired

by [7]. To guarantee that the features are processed, the

sampling is done in order of priority. More precisely, the

�rst samples are thrown on the corners, then among the

vertices of the class sharp features, and �nally among

the vertices of the class smooth regions.

Radius formulation

One speci�city of our algorithm is to propose a solution

for computing the radius of the circular patch relative

to a candidate sample. We started from the uniform

case, where the radius Rmin is constant. The total area

|M | of the surface is approximatively equal to the area

of all the circular patches: |M | ≈ (Nt.π.R
2
min), where
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Nt represents the number of samples. According to this

formulation, we consider that Rmin is given by

Rmin = α.

√
|M |
π.Nt

with α ≤ 1, (3)

where α compensates the regions of the initial mesh

that are not covered by the patches (empirically set to

0.65).

We also want our sampling to be curvature-aware,

in order to better approximate the shape geometry. A

popular way is to use the curvature values. During this

work we propose a decreasing exponential function de-

pending on the extremal curvature values, in order to

focus on curved areas during sampling:

R = Rmin.(1 + eC.λ2 + eC.λ3), (4)

where C is a negative parameter. We observed that

C = −8.0 for sharp features, and C = −6.0 for smooth

regions generate sampling patterns that exhibit good

blue noise properties, while ensuring that the number

of samples is close to the user-given parameter Nt. Also,

the radius relative to samples that belong to the class

corners is always set to Rmin. It makes our algorithm

more convenient than some prior works like [18], since

only one parameter, the number of samples Nt, is re-

quired as input.

Low-complexity Dart Throwing

One of our objectives is to reduce the well-known com-

putational complexity of typical brute-force DT. We

prove in this paper that having a discrete approach in-

stead of a continuous one (as the prior techniques) can

be e�ective, even when geodesics are used. There are

two major issues: i) the computation of geodesic dis-

tances to de�ne the circular patches, and ii) the update

of the available sampling domain for the next throwing.

The computation of geodesic distances is expensive

when accurate measures are needed. It is the case with

shapes of complex topologies. To reduce the runtime,

we estimate the geodesic distances using Dijkstra's al-

gorithm [12], one of the fastest method. Basically, it

computes the shortest path between two points by fol-

lowing the mesh edges. Consequently, the accuracy is

relative to the mesh density: the denser the mesh M ,

the more accurate the measures of the geodesic dis-

tances will be. Therefore, before the classi�cation sev-

eral midpoint subdivisions are performed on M to gen-

erate a denser mesh, called Msub. The midpoint sub-

division splits each triangle into four ones, by simply

adding a new vertex in the middle of each edge, and

connecting them.

Experimentations showed that this step increases

the accuracy of our algorithm, but also the runtime if

too many subdivisions are performed. In order to ad-

dress this issue, our algorithm assesses the density of

the input mesh M , and then computes how many sub-

divisions are needed. Our technique relies on the ratio

between the average area of the triangles and the area

of M : if this ratio is greater than a threshold (we set it

to 2.5 × 10−5), our algorithm considers that M is not

dense enough, and computes the number of iterations

needed to reach this "resolution". This technique au-

tomatically adapts the density of the mesh, and makes

the process faster if M is already dense enough.

The update of the available sampling domain con-

sists in removing, from the meshMsub, the region corre-

sponding to the circular patch of a newly accepted sam-

ple. It will prevent us from throwing a dart on an unal-

lowable region, and it makes the DT faster. To achieve

this goal, Geng et al. [18] propose to extract an iso-line,

which corresponds to the boundary of the newly added

circular patch on the surface. In [7], Cline et al. propose

to recursively split the triangles crossed by the bound-

ary, and then to update the mesh connectivity. These

techniques are e�cient but time-consuming.

Our approach is quite di�erent and takes advantage

of the grid o�ered by Msub. The idea is to limit the

candidate samples to the set of vertices of Msub. Sec-

tion 5 will show that if Msub is dense, the resulting set

of samples will exhibit blue noise properties as good

as "triangle-based interpolating" sampling techniques,

while being less complex.

Limiting the candidate samples to the set of vertices

of Msub makes the generation of available boundaries

much easier. The structure of our algorithm is based on

a list, containing all the vertices initially, and in which

each candidate sample is randomly chosen. When a can-

didate is valid, the list is shrunk by eliminating all the

vertices met during the research of its associated circu-

lar patch over the surface of Msub. Finally, validating

a candidate sample only consists in checking that each

vertex of Msub within the associated circular patch is

still part of the list, which signi�cantly simpli�es the

DT process, while generating patterns with good blue

noise properties, as shown in Section 5.

4 Dithered spectral analysis tool

To analyze the quality of the generated sampling pat-

terns, we selected the tool of Wei et al. [31], as in

[33]. This tool performs a di�erential analysis of sam-

pling patterns on surfaces, and is well suited to an-

alyze non-uniform sampling. For the computation of
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the power spectrum, this method extends the classical

Fourier analysis expressed by

P (f) =
1

N

N−1∑
i=0

N−1∑
j=0

cos(2πf.(si − sj)), (5)

where f is the frequency vector, to a more general anal-

ysis given by

P (q) = N ×
∫
Ωd

K(q, χ(s, s′,d)p(d))δd. (6)

In this equation, q is a set of parameters relative to the

generic kernel K that weights the power spectrum com-

putation in order to assess di�erent properties of the

sampling distribution. As an example, for the Fourier

analysis, K is the cosine function, and q represents the

frequencies. d(.) is the di�erential function of inter-

sample distances. Ωd is the sampling domain for the

function d. p(d) is the probability density function of

d in Ωd and χ(s, s
′,d) is the function that locally warps

a distance in a non-uniform domain to a uniform one.

This approach enables to focus on di�erent proper-

ties of the distribution, like the spatial density instead

of the traditional frequency, for instance.

During our experimentations, and after several tests

and an in-depth study of this tool, we observed that

the discrete exponential maps [29] used to compute the

local parameterization around each sample and conse-

quently the geodesic distances between samples may be

not convenient for complex shapes, in particular with

sharp features and/or of high genus.

To make the computation of the geodesic distances

more accurate, we included in this tool the Dijkstra's al-

gorithm already presented in Section 3.2.2. To highlight

the interest of using this algorithm during the analysis,

Figure 6 shows the RAPS of a blue noise sampling pat-

tern generated on Axle (a complex model shown in

Table 2), obtained either with the original tool of Wei

et al. [31] or with our improved method. We observe

that with our tool, the low frequencies really present a

zero-band region, meaning that the minimum distance

is preserved, and that our approach respects the sharp

features of the input mesh. Furthermore it allows to

better "capture" the sharp transition between the low

and high frequencies.

As our spectral analysis tool now uses Dijkstra's

algorithm, one might wonder if a regular input mesh

in�uences the quality of our analyses. Indeed, if the in-

put mesh that we want to resample is regular, the sub-

divided mesh used to make Dijkstra's algorithm more

0

0.5

1

1.5

2

2.5

3

0 50 100 150 200 250

Original tool Tool with Dijkstra

Fig. 6 Comparison of the RAPS of Axle (approximatively
1k samples) computed with the tool of Wei et al. [31] and
with our modi�ed version.

Table 1 Subdivided version of a planar mesh, RAPS and
anisotropy with typical Midpoint subdivision (left) and with
Dithered Midpoint subdivision (right).
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Midpoint subdivision Midpoint subdivision
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accurate will be also regular. Consequently, when com-

puting the geodesic distances, the well-known quanti-

zation bias of Dijkstra's algorithm may appear.

To overcome this potential problem, a random shift

is applied during the midpoint subdivision. We indeed

observed that this technique improves the computation

of the geodesic distances during the analysis, by limiting

the measurement bias in some directions. Notice that

the shift is done along the edges, in order to take into

account feature lines, again. This technique is similar

to the famous dithering [8], that aims at introducing a

noise willingly, in order to randomize the bias (in our

context, the length and the orientation of the edges in

the subdivided input mesh).

To show the interest of this technique, we �rst gen-

erated a blue noise sampling pattern from a planar reg-

ular mesh. Second, we analyzed the sampling quality

with our tool, when the random shift is enabled, or not.
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Results are given by Table 1. As expected, we observe

that combining randomness and subdivision deletes the

quantization bias: the RAPS presents typical blue noise

properties (at right) which is not the case if a classical

midpoint subdivision is used (at left). Additional re-

sults are presented in Appendix A to prove that the

proposed analysis tool also works with other sampling

patterns, such as white noise.

5 Experimental results and discussions

This section presents experimental results to assess the

e�ciency of our algorithm. We �rst give several visual

results to prove that our algorithm well preserves the

feature lines. We then compare the quality of the pat-

terns generated with our algorithm and with several

state-of-the-art techniques. Next, we evaluate the ro-

bustness of our algorithm, and compare our runtime

with [15] and [18], that combine geodesic distances and

continuous settings to perform brute-force DT on sur-

face meshes.

5.1 Preservation of the features

Table 2 shows four input shapes, and the output sam-

pling patterns generated with our algorithm, when the

features are preserved or not. Each model has di�erent

genus (from 0 to 10), and contains around one thou-

sand samples. We observe that, if the features are not

taken into account during the sampling, few samples

lie on them. A contrario, a feature-preserving sampling

increases the number of samples in such regions, and

�nally improves signi�cantly the �delity to the initial

surface.

5.2 Analysis of the sampling quality

We �rst study the in�uence of the preservation of the

features on the sampling quality. As in [33], each spec-

tral analysis is based on eight sets of generated samples

(i.e. eight sampling outputs). Table 3 shows the power

spectrum, the RAPS and the anisotropy associated to

each model presented in Table 2, with or without the

vertex classi�cation step. We observe that the preser-

vation of the features does not in�uence signi�cantly

the sampling properties (see Figure 1 for ideal proper-

ties), even for the shapes with a lot of sharp features,

Axle for instance. Nevertheless, we notice a di�erence

of anisotropy for Socket and Axle: feature lines are

considered as preferential directions, which inevitably

increases the sampling anisotropy, when they are taken

into account by our method.

We now compare our results with those of two prior

works, [9] and [31]: see Table 4. We observe that our

method generates distributions with higher blue noise

properties. Indeed, the RAPS relative to the prior meth-

ods oscillate signi�cantly around the cut-o� frequency,

meaning that too many samples are thrown around

the minimum distance. We also remark that the mini-

mum distance is always respected with our method or

[31]. This is not the case with [9], even when the geo-

metric features are taken into account. We also notice

that our method produces distributions with an higher

anisotropy than [31]. It was expected since this latter

does not preserve the sharp features. On the other hand,

our anisotropy is lower than the one of [9] for each mesh.

5.3 Robustness of our algorithm

We now study the in�uence of the input mesh density

and the in�uence of the output sampling density on

the blue noise properties of sampling patterns gener-

ated with our method on three models: Sharp Sphere,

Mask and Fertility. Table 5 displays the resulting

sampling patterns, and Table 6 gives the corresponding

power spectra, RAPS and anisotropy curves. In terms of

RAPS, we observe that the generated sample sets glob-

ally exhibit satisfactory blue noise properties, whatever

the size of the input meshes (ranging from 10,443 to

241,607 vertices), and the number of generated sam-

ples. This is also the case for the anisotropy, and we

observe, as expected, that the sampling density in�u-

ences the anisotropy, which decreases as the number of

samples rises.

Finally, we assess the sampling quality of the gen-

erated patterns in function of the quality of the in-

put mesh elements. First we consider highly regular

and uniform input meshes. Indeed, it is wise to verify

if limiting the sampling domain to a midpoint subdi-

vided mesh (i.e. a uniform and regular grid), in�uences

the quality of the sampling patterns. We thus applied

our algorithm to the model Eight that is de�ned by

a regular and uniform grid (see Table 7), and gener-

ated an output sampling pattern with approximatively

the same number of samples than the number of orig-

inal vertices (around 3k vertices). We observe that the

resulting sampling pattern is uniform but highly irreg-

ular, leading to very good blue noise properties, as de-

picted in Table 7, on the right. The random dart throw-

ing and the circular patches used around samples are

su�cient to produce an irregular sampling pattern.
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Table 2 Four surfaces and our resulting samplings. From left to right: original shapes, sampling patterns respectively without
and with preservation of features. To provide visual assessment of the feature-preserving solution, samples that lie on sharp
features are depicted in red, while others are depicted in green.

Original Fandisk Sampling pattern without Sampling pattern with
(6,475 vertices - genus 0) feature preservation (1,034 samples) feature preservation (1,029 samples)

Original Rocker Arm Sampling pattern without Sampling pattern with
(10,000 vertices - genus 1) feature preservation (1,017 samples) feature preservation (1,036 samples)

Original Socket Sampling pattern without Sampling pattern with
(836 vertices - genus 7) feature preservation (1,040 samples) feature preservation (1,044 samples)

Original Axle Sampling pattern without Sampling pattern with
(3,805 vertices - genus 10) feature preservation (965 samples) feature preservation (934 samples)

Then, we apply our algorithm on a highly irregular

input grid, for instance the Bunny model: see Table

8. We observe that our algorithm generates a sampling

pattern with poorer blue noise properties: the transi-

tion at the cut-o� frequency is slower for the RAPS.

The problem comes from our discrete approach. More

precisely, the density of the input vertices and the size of

the triangles vary signi�cantly. Even with subdivisions

the problem remains the same. After DT, inevitably the

regions with large triangles are less sampled than the

ones with narrow triangles, even if the circular patches

around the samples limit the density of output samples

in the regions with small triangles. Applying numer-

ous subdivisions on such meshes is a naive solution to
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Table 3 In�uence of the feature preservation on the sampling quality for several models. From left to right: power spectra
without (blue curves) and with (red curves) feature preservation, followed by their respective RAPS and anisotropy curves.

Our method with feature preservation  

Our method without feature preservation 

Corsini et al.’s method [15] 

Wei et al.’s method [28] 

Our constrained relaxation method 

Our method with feature preservation Wei et al.’s method [28] Corsini et al.’s method [15] 
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Table 4 Comparison with two state-of-the-art algorithms. From left to right: power spectra relative to [9] (brown curves),
power spectra relative to [31] (blue curves), followed by their respective RAPS and anisotropy curves. The RAPS and the
anisotropy curves of our method are also depicted in red.
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Table 5 Original shapes and sampling patterns generated with our algorithm at di�erent sampling densities. From left to
right: input shapes, and Poisson-disk sample sets with respectively 1k, 2k and 5k samples.

Original Sharp Sphere Sampling pattern Sampling pattern Sampling pattern
(10,443 vertices - genus 0) (962 samples) (1,972 samples) (5,474 samples)

Original Mask Sampling pattern Sampling pattern Sampling pattern
(31,762 vertices - genus 0) (964 samples) (1,937 samples) (4,911 samples)

Original Fertility Sampling pattern Sampling pattern Sampling pattern
(241,607 vertices - genus 4) (1,008 samples) (1,960 samples) (5,045 samples)

Table 6 Comparison of the blue noise properties for di�erent input meshes and output sampling densities. From left to right:
power spectra for the 1k-sampling (blue curves), the 2k-sampling (red curves) and the 5k-sampling (green curves), followed by
their respective RAPS and anisotropy curves.
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Table 7 Eight before (on the left) and after sampling (in the middle) with approximatively the same number of vertices.
The power spectrum (on the right) proves that our algorithm is not sensitive to a regular and uniform input grid.

Table 8 Bunny before (on the left) and after sampling (in the middle) with approximatively 2k samples. A slower transition
around the cut-o� frequency appears on the power spectrum (on the right). It proves that our algorithm may be sensitive to
a highly irregular and non-uniform input grid, because of our discrete approach.

overcome this issue because the runtime should increase

drastically. One possible solution may be to further sub-

divide the large triangles only, in order to attenuate the

variability of the triangle areas. This is one of our future

works.

5.4 Runtime

This section compares the runtime of our sampling method

with similar dart throwing methods (brute-force, and

using geodesics). We �rst compare our runtime with

the recent sampling method of Geng et al. [18]. Our al-

gorithm ran on a Intel Core i3 CPU 2.30 GHz, 4 GB

RAM processor, while the algorithm of [18] ran on an

Intel Core Duo CPU 2.67 GHz, 2 GB RAM proces-

sor. This algorithm is based on the method of Cline et

al. [7]: it extends the latter by using a mesh clipping

method to ensure the e�ciency of the index structure,

and collision detection frame. Moreover, the algorithm

of [18] is faster than the algorithm of Fu et al. [15] that

uses exact geodesic to search available boundaries over

the surface meshes.

Table 9 proves that our algorithm is globally faster

than [18], up to 3 times faster for Casting. It con�rms

that our algorithm overcomes the main drawbacks of

typical brute-force DT methods, time-consumption and

complexity, since our method is also relatively straight-

forward to implement.

In Table 10, we give runtime for meshes of di�er-

ent sizes, and varying output sampling densities. For

Sharp Sphere and Mask, the asymptotic runtime

is rapidly reached. Also the runtime does not increase

severely, as the number of output samples rises. This

is due to the fact that the higher the sampling density,

the smaller the geodesics are. So, even if the number

of samples increases, the runtime is not a�ected signi�-

cantly since Dijkstra's algorithm requires less time per

sample.

For bigger models such as Fertility (around 480k

vertices for the original and the intermediary subdi-

vided mesh), the algorithm becomes slower, in particu-

lar when 10,000 samples are demanded (around 2 min-

utes). This result highlights one drawback of using Di-

jkstra's algorithm for computing the geodesics. Never-
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Table 9 Runtime comparison between our sampling method and geodesic-based brute-force dart throwing methods [15] and
[18].

Models Sampling method Nb. facets Nb. facets Nb. vertices Sampling time
Input Subdivided Output (ms)

Casting

[15] 10,204 � 1,156 31,843
[18] 10,204 � 1,834 5,031
Ours 10,224 40,896 1,931 1,529

Fandisk

[15] 12,946 � 382 36,125
[18] 12,946 � 1,469 7,172
Ours 12,946 51,784 1,622 2,605

Block

[15] 4,208 � 551 8,469
[18] 4,208 � 2,026 2,500

Ours 4,272 68,352 2,292 3,869

Sharp Sphere

[15] 18,864 � 358 229,547
[18] 18,864 � 3,559 11,656
Ours 20,882 83,528 3,534 7,223

Hand

[15] 17,290 � 240 89,750
[18] 17,290 � 2,162 7,594
Ours 23,186 92,744 2,225 5,794

Table 10 Runtimes in function of the input mesh size and output sampling density.

Models Nb. facets Nb. facets Nb. vertices Sampling time
Input Subdivided Output (ms)

Sharp Sphere 20,882 83,528

1,051 6,474
2,097 7,425
5,042 7,501
10,854 7,519

Mask 62,467 62,467

928 2,527
2,083 3,151
4,811 3,322
9,582 3,307

Fertility 483,224 483,224

988 24,325
1,964 41,487
5,047 88,060
9,757 126,859

theless, we believe that the runtime remains acceptable

even for this example, since a priori sampling does not

need to be done in real time.

6 Conclusion and perspectives

We presented a resampling method for discrete surfaces.

Our main objectives were: i) to generate sampling pat-

terns exhibiting high blue noise properties, while ap-

proximating well the input shapes (preservation of fea-

ture lines); ii) to develop a method for meshes of arbi-

trary topology; iii) to reduce the complexity of the pre-

vious brute-force dart throwing techniques while pre-

serving features and using geodesics.

Therefore, we proposed a feature sensitive DT tech-

nique for surfaces. One originality of our technique is

to limit the sampling domain to a discrete grid de�ned

by a subdivided version of the original mesh. We also

use this subdivided mesh as graph for the computa-

tion of the geodesics (with Dijkstra's algorithm) during

sampling. Finally, our approach is robust, easy to imple-

ment, avoids geometric aliasing, and generates patterns

with good blue noise properties, whatever the topology

of the input meshes.

In parallel, we also presented an improvement of

the tool of Wei et al. [31], developed for analyzing sam-

pling quality. Our improvement allows the users to ana-

lyze more �nely the characteristics of sampling patterns

generated on surfaces of arbitrary topology.

Experimental results also highlight some limitations

or open questions. For example, we observe on some

RAPS a small peak before the cut-o� frequency. This

artifact might come from the radius formulation given

by equation (4), but this assumption still needs to be

con�rmed. Another promising way is the use of our dart

throwing for high quality remeshing.

A last promising way is the development of an ac-

curate spectral analysis tool for surface sampling. Even

though the tool presented in [31] is satisfactory, we

showed some limitations on complex topologies. Our

modi�ed version overcomes this problem but, in the

same time, may introduce a bias due to Dijkstra's al-
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gorithm. Using a recent approach such as [10] for com-

puting accurate geodesic distances could signi�cantly

improve this tool (but also our sampling technique).
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Appendix A: Analysis of white noise sampling

To show that our spectral analysis tool (presented in Section
4) is also e�cient for other patterns, we tested it on white
noise samples generated on surfaces, and compared with the
results produced by the original tool of Wei et al. [31]. To
be as fair as possible, we generated the patterns on Eight

and Hand, two models shown in [31], and each sampling has
been generated with the own code of Wei et al. [31]. Figure
7 compares the RAPS estimated with our tool and with the
original tool of Wei et al. [31]. We obtained satisfactory re-
sults, since the RAPS produced by our tool are globally �at
and equal to 1 at each frequency (typical features of white
noise sampling). Note that there is a slope at very low fre-
quencies that can be explained by our discrete approach that
inevitably introduces a quantization bias during the sampling
(computed on the subdivided meshes), and by the well-known
bias of Dijkstra's algorithm (the geodesics always lie on the
graph edges).

This experimentation con�rms the interest of our tool,
since the RAPS provided by our spectral analysis algorithm
match well the typical white noise characteristics, which is
not always the case of [31]: see the RAPS generated by the
original tool which are sometimes signi�cantly di�erent from
the value 1 even at higher frequencies, on Eight for instance.
Moreover their tool also draws a slope at very low frequencies
for the two models. So we consider that our adapted tool is
valid for all our experimentations.
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