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expression of local mutations in the rate of oxygen consumption or in the production of ATP it is useful 

to have a mathematical model in which the changes in a given respiratory complex are properly 

modeled.  

Our aim in this paper is to provide thermodynamics respecting and structurally simple equations to 

represent the kinetics of each isolated complexes which can, assembled in a dynamical system, also 

simulate the behaviour of the respiratory chain, as a whole, under a large set of different physiological 

and pathological conditions. On the example of the NADH-ubiquinol-oxidoreductase (complex I) we 

analyse the suitability of different types of rate equations. Based on our kinetic experiments we show 

that very simple rate laws, as those often used in many respiratory chain models, fail to describe the 

kinetic behaviour when applied to a wide concentration range. This led us to adapt rate equations 

containing the essential parameters of enzyme kinetic, maximal velocities and Henri-Michaelis-Menten 
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Abstract 

The mitochondrial respiratory chain plays a crucial role in energy metabolism and its 

dysfunction is implicated in a wide range of human diseases. In order to understand the global 

expression of local mutations in the rate of oxygen consumption or in the production of ATP 

it is useful to have a mathematical model in which the changes in a given respiratory complex 

are properly modeled.  

Our aim in this paper is to provide thermodynamics respecting and structurally simple 

equations to represent the kinetics of each isolated complexes which can, assembled in a 

dynamical system, also simulate the behaviour of the respiratory chain, as a whole, under a 

large set of different physiological and pathological conditions. On the example of the 

NADH-ubiquinol-oxidoreductase (complex I) we analyse the suitability of different types of 

rate equations. Based on our kinetic experiments we show that very simple rate laws, as those 

often used in many respiratory chain models, fail to describe the kinetic behaviour when 

applied to a wide concentration range. This led us to adapt rate equations containing the 

essential parameters of enzyme kinetic, maximal velocities and Henri-Michaelis-Menten like–

constants (KM and KI) to satisfactory simulate these data.  
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1. Introduction  

The respiratory chain plays a crucial role in energy metabolism. In many cases, it consists of 

four enzyme complexes which are connected through two electron transporters, ubiquinone 

and cytochrome c. Three of the respiratory complexes extrude protons from the mitochondrial 

matrix into the intermembrane space liberating, step by step, the energy of the transfer of 

electrons from the low redox potential of the substrates NADH or FADH2 to the high redox 

potential of oxygen, energy then used to synthetize ATP.  

It is now well documented that respiratory chain dysfunction is responsible for a wide range 

of human diseases including neurodegenerative diseases and cancer. Respiratory chain 

dysfunction may also have a possible relationship with aging [1-2] and metabolic disorders 

[3]. In many cases respiratory chain dysfunctions are due to mutations in the subunit 

constituting the respiratory chain complexes. 

In order to better understand the behaviour of the respiratory chain in different physiological 

conditions and how the effects of pathological mutations are expressed at the global level of 

oxygen consumption or ATP synthesis it is useful to have a theoretical model of the 

respiratory chain. In other words understanding the normal or pathological interplay between 

these complexes and the electron transporters in the global functioning of the respiratory 

chain requires a model of each respiratory complex with a specific rate equation and then the 

integration of all the rate equations into a dynamical system representing the operation of the 

whole oxidative phosphorylation.  

Several models, with different levels of complexity, have been established to describe the 

respiratory chain or its isolated complexes. It does not enter the scope of this article to review 

them all. We would just like to analyse the way in which the behaviour of each individual 

respiratory complex is approached in these models of the whole respiratory chain. It means 

that we discard of our analysis all the models in which the respiratory chain is represented by 

only one (or two depending on the electron entry point) equations (typically Magnus and 

Keizer [4], Cortassa et al. [5] and many others). Among the remaining models of respiratory 

chain two types of modelling of the individual complexes are used. The first significant 

models were developed in the framework of Non-Equilibrium Thermodynamic model (NET) 

involving a linear dependence of the flux as a function of the thermodynamic forces [6-9]. 

The model developed by Korzeniewski and Froncisz (1991) [10, 11], is a comprehensive 

model also well representative of this class of thermodynamics models, extended thereafter 

([12], [13]). 
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Another approach, largely used to model the isolated respiratory complexes is the Mass 

Action Law (MAL), with the forward rate proportional to the product of substrats and the 

backward proportional to the product of products of the reaction. Bohnensack (1981) [14] was 

probably the first to derive a quantitative model of the respiratory chain involving nearly all 

the components of oxidative phosphorylation. In this approach the respiratory complexes 

were modeled according to the mass-action law. A recent example of this approach was 

proposed by Beard [15]. 

The advantage of both approaches (NET and MAL) is that they use very simple rate laws for 

each of the complexes with only one parameter to adjust. But these equations cannot reflect 

the respiratory complexes behaviours over a wide range of physiological conditions as it will 

be shown later in this paper. 

  As a matter of fact, the behaviour of the individual complexes is rather complex for several 

reasons: (i) the mechanisms catalysed by each separate complex are complex in themselves. 

The most illustrating example is the Q-cycle operating in complex III with two different 

quinone binding sites and the bifurcation of the electrons coming from QH2 molecule into 

two pathways. The case of cytochrome c oxidase (complex IV) also involves a complex 

synchronisation between the 4 electrons necessary to reduce oxygen in water and the protons 

pumping. The case of complex I is not yet entirely resolved but already includes a cascade of 

7 or 8 elementary redox reactions. (ii) not only substrates, products and modifiers play a role 

in the kinetics but also the electrochemical proton gradient which has an important influence 

on the activity of each complex and thus on the whole respiratory chain. (iii) the regulation of 

the activity of these complexes depends on allosteric conformations or on chemical 

modifications such as phosphorylation and acetylation [16-19]. 

On the one hand, the derivation of equations describing very precisely the underlying 

mechanisms of the respiratory complexes often involves a huge number of parameters which 

are hard or impossible to determine experimentally and will be in any case underdetermined 

[20-21]. On the other hand, the experimental kinetics of these complexes show, most of the 

time, the traditional pattern of enzymatic kinetics i.e. saturation behaviour. Furthermore, the 

recorded kinetics have been analysed with the usual phenomenological approaches of 

enzymology, particularly with the determination of Vmax, KM and KI at least for some of the 

substrates or products. It is well illustrated in the measurement of the (maximal) activity of 

the individual complexes, which is particularly useful in the diagnosis of mitochondrial 

diseases in attributing at least in some cases the pathology to a particular defect in a given 

complex as in [22]. In the same time the activity of the whole respiratory chain (and of part of 
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TCA cycle) is recorded classically in very different conditions (resting state with a maximal 

transmembrane proton potential (state 4), phosphorylating state with a lower proton potential 

(state 3), intermediate states between states 4 and 3, uncoupled state etc.). In all these 

physiological conditions, the concentrations of the substrates/products of the individual 

respiratory complexes (NAD/NADH, Q/QH2, redox state of Cyt c) are also very different and 

presumably also different from the concentrations used in the determination of the (maximal) 

activity of the individual complexes. This could invalidate the use of the parameters values 

determined in these latter conditions (maximal activity determination in the absence of 

products) for the modelling of the whole respiratory chain functioning at non maximal activity 

in the presence of products. 

For this reason we studied the kinetics of the isolated respiratory complexes in a broad range 

of substrates/products concentrations with the first aim to integrate the observations in a rate 

equation as simple as possible but nevertheless illustrating the main characteristics of the 

kinetics, particularly the saturation behaviour, the presence of products and the 

thermodynamic constraints. Our aim is to use these “simple” rate equations both to model 

kinetics of the individual isolated complexes and also the global behaviour of the whole 

respiratory chain when all the respiratory complexes are considered together. We will analyze 

different types of equations already used (NET, MAL) and we will propose other equations 

[23-27], more able to fit the kinetic of respiratory complexes particularly when involved in the 

electron transport and protons translocation through the whole respiratory chain: Extended 

Reversible Henri-Michaelis Menten Equation (ER-HMM), Ping Pong Mechanism (PPM), 

ordered mechanism (OM), “Convenience Kinetics” (CK) and a new type of equation : 

Extended Mass Action (EMA) (table 1 and Fig. 1). As an example, we will compare all these 

equations in their ability to model our kinetic results already published in [28] on beef heart 

complex I (NADH-Coenzyme Q reductase activity). It catalyses the reaction: 

NADH + H+ + Q <==> NAD+ + QH2      (1) 

 

Material and Methods 

2.1. Preparation of mitochondria 

Frozen isolated beef heart mitochondria were a gift from Dr. Joel Lunardi, prepared according 

to [29]. In this preparation the final mitochondrial pellets were homogenized at a 

concentration of 40 mg/mL and the mitochondrial suspension was frozen in liquid nitrogen as 

small beads of 50 μL volume and stored at −80 °C. In our experiments, one bead was thawed 
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and diluted (1/5), aliquoted and the aliquots are frozen again. Then for each experiment an 

aliquot is thawed and diluted once more (1/20) in the slightly hypo-osmotic reaction buffer in 

order to ensure that the membranes are broken and their potential is null. For the assay itself, 

the mitochondrial suspension was diluted again (final concentration: 4.4 µg mitochondrial 

proteins in 1 ml). All assays were performed in temperature-controlled single wavelength 

spectrophotometer. 

 

2.2. Complex I (NADH–ubiquinone oxidoreductase) assay 

The assay was performed at 37 °C according to [22] by following the decrease in absorbance 

at 340 nm resulting from the oxidation of NADH in 1 mL of medium containing 65 mM 

KH2PO4 (pH 7.5), 2 mg BSA, 2 mM EDTA, 46 μM antimycin A, 4.4 μg mitochondrial 

protein and in control assays additionally 25 μM rotenone. A constant ethanol concentration 

of 8 µL/1000 µL was present in all assays. It means that the complement to this quantity was 

added when not brought by the added constituents. The concentrations of the substrates 

NADH and Q (decylubiquinone) are varied, as well as the concentrations of products NAD+ 

and QH2. The reaction was initiated by NADH addition. The extinction coefficient used for 

NADH concentration determination was 6.22 mM−1 cm−1 at 340 nm. The net activities have 

been obtained by subtracting the residual activity in the presence of rotenone from the 

activities without. 

 

2.2. Parameter estimations 

The parameters values of the different rate equations have been estimated minimizing the root 

mean square deviation (RMSD) between the experimental and theoretical data points. RMSD 

for one set of parameters was calculated simultaneously with all experimental series (see 

figures in the supplementary materials). To find the RMSD minimum, we used a global 

search routine (genetic algorithm) followed by a local one (quasi Newton based) as proposed 

in [30]. It permits to browse the whole parameter space and then to converge towards a well 

defined solution, usually unique in our cases. All calculations have been done using Scilab 

(Scilab Enterprises, 2012). Because the reaction catalyzed by the respiratory chain complex I 

is highly exergonic, the rate constant of the backward reaction kb is simply calculated via the 

Haldane relationship:                              (2)   or equation               (3) for EMA with the equilibrium 

constant: 
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                               (4) 

where R = 8.314 J/mol/K. The temperature in the experiments was T= 310 K and ∆G’o = -

66.4 kJ/mol at pH 7.5 (69.4 at pH 7.0).  

 

RESULTS 

I Non-saturable rate equations 

I-1 Near Equilibrium Thermodynamics (NET) Equation 

In the near equilibrium approach the reaction velocity is assumed to be proportional to the 

Gibbs energy.                   (5) 

with :  

                                                 (6)  
This type of equation was proposed by Westerhoff [7] and used by Korzeniewski et al. [10] 

for instance to model complexes I and III of respiratory chain.  

I-2 The Mass Action Law equation. 

The MAL equation applied to the enzymatic reaction (1) reads:                                    (7)  

or introducing Keq :                                          (8) 

This type of equation was largely used for modelling the respiratory chain complexes (e.g. 

[14-15]).  

We conclude that these equations (see supplementary materials S1), MAL as well as the NET 

equation cannot be used for an accurate description of respiratory complexes kinetics when 

there is a possible variation in substrates and products concentrations. It is necessary to 

introduce a saturation term in the rate equations. 

II The saturable rate equations. 

II-1 The equations 
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The list of the rate equations tested in this work which exhibit a saturable pattern as a function 

of substrate or product concentrations are listed in table 1 and their mechanism depicted in 

Fig. 1. They all involve the same type of numerator as MAL equation vanishing at 

equilibrium (or an equivalent expression in the case of EMA). In addition, they also involve a 

denominator with Michaelis constants KM for substrates and products. Because we look for an 

equation as simple as possible we assume that the KM for a substrate/product is independent 

of the binding of the others which is not necessarily true in the reality. Because the 

denominators of the equations are different, one can predict that the values of KM may be 

different for the different equations. All these equations but PPM are equivalent in absence of 

products. 

Table 1 and Fig. 1 

The Extended-Reversible Henri-Michaelis-Menten (ER-HMM) equation [23-25; 31-34] 

corresponds to a random binding/release of substrates/products as represented in Fig. 1. It is 

well described in all textbooks (see [26] for instance).  

The convenience kinetics equation (CK) is a generic equation which can account for any 

number of substrates and products. It has been proposed by Liebermeister and Klipp [27] and 

includes the same basic kinetic parameters (linked by the same Haldane relationship) than 

ER-HMM equation above but arranged slightly differently in the denominator so that the Km 

values may be different. In the case of 2 substrates 2 products, it also corresponds to a random 

binding mechanism but, in contrast to ER-HMM mechanism, without the non-reactive ternary 

complexes E-NADH-QH2 and E-NAD-Q (see Fig. 1). 

The interests of ER-HMM equation is well explained by Cornish-Bowden and Hofmyer in 

[23] which also applies to CK: minimal number of parameters, adherence to thermodynamic 

constraints, competition between substrates and their corresponding products and saturability.  

The equation given in table 1 for the order mechanism (OM) correspond to the case NQNQ 

meaning that NADH binds first then Q and NAD is released first then QH2. The four possible 

sequences of substrates binding/products release have been tested (see table 2). 

A ping-pong mechanism was also proposed for complex I kinetics (see the discussion in [28]). 

It can correspond to two situations: NNQQ or QQNN meaning that either NADH reacts first 

and gives NAD and then Q gives QH2 or vice versa. In the simplified form where the KM are 

independent of each other, both equations have the same expression given in table 1. 
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Finally we tested EMA equation (Extended Mass Action) which is based on mass action 

according to two different possible mechanisms (see supplementary materials S7 for a 

complete derivation of this equation). It can also be seen as a simplified ER-HMM equation in 

which the Michaelis constants of the substrates (resp. the products) are fused in one constant 

CS (resp. CP). The equation has only 4 parameters which are not independent; one can be 

replaced by the equilibrium constant via the Haldane-like relationship: 

              (3) 

 

This equation has the big advantage that any stoichiometric factor (also non integer) can be 

included, like for the NET and MAL equations. This equation was developed independently 

by Liebermeister et al. [35]. 

For each equation, the results of parameters fitting using all the experimental points are listed 

in table 2. Fig. 2e to h gives an example of these fittings in the case of ER-HMM and EMA 

equation with only some of the experimental points. The figures showing the results of the 

fittings according to other saturable rate laws with the complete set of experimental points are 

shown in supplementary materials. The results are always plotted in comparison with the ER-

HMM fit (blue dashed). 

Table 2 and Fig. 2 

Comparing the RMSD (table 2), it is clear that all equations but EMA give nearly the same 

good accuracy. The rate constants and the substrates KM values are also very similar (except 

for EMA for which the parameters have different meanings). An average value of kf = 1 810  

43 nmoles.min-1.prot-1, KNADH = 4.6  0.7 µM and KQ = 10.2  1.3 µM are obtained. This is 

not the case for the KM values of the products. The determination of the products KM is more 

difficult because as mentioned above, the complex I reaction is largely irreversible in the 

absence of µH
+. The only way to have an indication of the products KM is to record the 

reaction rate in the forward direction in the presence of different concentrations of the 

products (Fig. 3). The values of the products Km are dependent on the structure of the 

denominator of each equation, but still one can state that KNAD  is clearly high and difficult to 

measure indicating a low affinity of NAD+. On the other hand KQH2 is rather low, sometimes 

lower than KQ. Both Km products depend upon the rate equation used to fit the experimental 

results.  

 

Figure 3 a et b 
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II-2 Q inhibition 

Figure 4 shows a clear inhibition at high Q concentration (> 100 µM). Different type of 

substrate inhibitions can be considered such as non-competitive, substrate/steric inhibition (at 

the normal binding site). On the example of ER-HMM equation, several inhibition terms have 

been tested. The ER-HMM equation reads then: 

 

                                                                                                (9) 

 

with the inhibition terms Is and Inc described in the following.  

 

Substrate-product or steric inhibition Is  

This type of inhibition corresponds to the obstruction of the catalytic site of quinone reduction 

by quinone or quinol. Assuming that Q and QH2 obstruction has the same effect on the 

binding of both molecules QH2 or Q, the term Is can be written: 

    +                     (10) 

 

where Ki1 and Ki2 are the inhibition constants of Q and QH2 respectively. In the case where 

K i1 = Ki2 = Ki, the expression (10) becomes: 

                 where [Qtot] = [Q] + [QH2]  (11) 

 

Non competitive inhibition Inc  

Another possibility is that Q or/and QH2 bind to a second quinone site on the molecule, 

modifying the activity of complex I, giving rise to a non-competitive inhibition. 

The generic expression of a non-competitive inhibition is: 

 

                          
 (12) 
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The values n= 1 and n = 2 have been tested with inhibition by Qtot (with Ki1 = Ki2 = Ki) or Q 

alone. 

All the experimental points have been fitted by ER-HMM equation (9) involving different Is 

or Inc terms listed in table 3 (see supplementary materials Fig. S6 and S7). 

Very similar accuracies of the different fits are obtained. In the case of steric inhibition, taking 

Q and QH2 separately or Qtot as inhibitor makes no real difference (not shown). It is the same 

in the case of non-competitive inhibition. In this latter case taking n = 1 or n = 2 gives similar 

fits. The steric (red broad line) and non-competitive (black thin line) inhibitions are 

represented on figure 4 and overlap. The curve without inhibition (blue dashed line) is also 

shown for comparison. Interestingly the values of KQ (and of KNADH) remain approximately 

the same for all types of inhibition. Only KQH2 changes significantly when part of the normal 

(product) QH2 inhibition is taken by the specific inhibitory mechanism. 

 

Table 3 and Fig. 4 

 

DISCUSSION AND CONCLUSION  

 

NET and MAL rate equations 

As obvious in Fig. 2 (a to d), Near Equilibrium Thermodynamics (NET) and Mass Action 

Law (MAL) rate equations fail to adequately represent the activity of complex I when the 

concentrations of substrates are varied. In the case of NET, the logarithmic term dampens the 

variations of substrates concentrations so that the rate value is nearly constant (between 540 

and 650 nmol/min/mg prot) over the nearly two order of magnitude of substrates 

concentrations used. Only at very low concentration of one substrate, the rate decreases 

rapidly toward zero (In fact to minus infinity; see the red line along the y-axis in Fig.2 a and 

b). It is not surprising because in conditions of very low products concentrations (0.1 µM each 

in our case to make the calculation possible) with a value of ∆G’o= -66.4 kJ, the reaction is far 

from equilibrium and its rate will not obeys the conditions of near equilibrium 

thermodynamics.  

A slightly better fit is obtained with MAL equation, because in this case the rate equation is 

sensitive to substrates concentrations variations. However the linear increase of the rate as a 

function of substrates concentrations does not correspond to the reality of saturable kinetics.  

For comparison the fit of the same points with a typical saturable kinetic equation (ER-HMM,  

Fig. 2 e-f) is shown. However NET and MAL equations may be a good choice for the 
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description of the respiratory chain in conditions close to equilibrium which can be the case 

for complex I, II and III of respiratory chain in in vivo conditions with ∆µH+ ≠ 0. It must be 

stressed that in all cases, the  constants involved in these equations (kCI or kf) get ad hoc 

values which do not correspond to any intrinsic property (kinetic constants) of the respiratory 

complexes.Nevertheless, as demonstrated by Pillay et al. [36], a MAL model can give rise to a 

“saturation” behaviour particularly in redox cycles when the sum of the redox couples 

(NAD/NADH and Q/QH2) is constant. In these conditions, the maximal velocity depends 

upon the rate constant and the total concentrations of substrates/products and the half 

saturation concentration also depends upon the total concentration of the redox couples and is 

thus variable and different of a real Km. Using such equations will make it difficult to analyze 

the effect on OXPHOS of a variation of a particular kinetic parameter (kcat or Km) of a given 

respiratory complex or of physiological or pathological changes in total substrate and product 

concentrations. 

On the contrary Fig. 2 e-h (and Fig. S2 to S7 in supplementary materials) and table 2 show 

that all the other equations tested in our study give similar good fits when compared with the 

whole set of our experimental data. It should be however noticed that EMA fit, which 

involves two parameters less, is less accurate mainly because it does not have independent 

saturation terms for each of the substrates/products. Their binding is rather considered 

simultaneous (see Supplementary Materials) and quantified by the phenomenological 

constants Cs and Cp. When the Km of substrates (respectively the products) are similar the 

phenomenological constants C represent adequately their association by an average constant. 

It is no longer the case when the Km are different as here for NAD and NADH. 

 

Kinetic mechanism and kinetic constants 

The striking results of this study that several kinetic equations are equally able to fit the 

experimental results over large concentrations of substrates and products is consistent with the 

fact that the kinetic mechanism of this reaction is still a matter of discussion. It means that this 

form of analysis does not shed light on the, too complex, kinetic mechanism of the reaction. 

Fato et al. [37] proposed a ping-pong mechanism in the case of mitochondria isolated from 

bovine heart with the oxidation of NADH preceding the reduction of ubiquinone. Nakashima 

et al. [38] used CoQ1 as the electron acceptor to analyze the activity of complex I purified 

from bovine heart. They proposed an ordered sequential mechanism with CoQ1 binding as the 

first step and CoQ1H2 releasing as the last step. Hano et al. [39] assumed that the kinetics of 
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complex I obeys an ordered sequential mechanism when they used decylubiquinone (DQ) as 

the electron acceptor.  

Analyzing the same set of experimental results as in this study in the light of a stochastic 

model based on Gillespie approach [40] and taking into account the structure (distances) and 

the midpoint potentials of the reaction centers we showed that the kinetics may not 

necessarily obey a simple mechanism (ordered or ping-pong) [28]. This is particularly due to 

the substantial distance (around 90 Å) between NADH oxidation site and quinone reduction 

site and the presence of seven redox reactions in between. It makes the two extreme redox 

sites (NADH/NAD on the one hand and Q/QH2 on the other hand) as if they were 

independent from each other. The stochastic simulations also evidenced a plateau for 

saturating NADH concentrations (see supplementary figures a-j). It renders the fit by any 

equation used in this study slightly inaccurate: at high NADH concentrations the theoretical 

curves go on increasing weakly, while the experimental rates (as well as the stochastic 

simulations) are steady and quasi horizontal. We showed that this does not result from a 

substrate inhibition but simply from the accumulation of electrons in the intermediate redox 

centers as NADH concentration increases, leading to a sort of electron buffering effect [28]. 

This can be easily understood in the following way: if the rate of the second half of the 

mechanism (Q  => QH2) is low as compared to first one (NADH => NAD) and to the 

intermediate redox reactions inside complex I, for instance low Q and high NADH,  then the 

electrons accumulate progressively backwards on the 7-8 FeS centers in between the two half 

reactions. As soon as one QH2 molecule is formed, two electrons from some FeS centers are 

again rapidly available. The limiting step is the release of the previously formed QH2 

molecule and the binding of the new Q molecule which are phenomena much slower than the 

“flitting” of the electrons between the FeS centers and operating at constant rate when Q and 

QH2 are constants. In other words, when the second half reaction is slower than the first one, 

there are always two electrons to reduce a Q molecule when present. It is the reason why a 

plateau is observed in the kinetics particularly at high NADH and low Q. 

Another salient feature of our study is that for all the saturable equations (but EMA) the 

maximal rate constants and the Km are nearly the same (see table 2) and well comparable 

with the data in the literature on beef heart mitochondria complex I. For instance we find a 

forward maximal rate constant between 1 773 and 1 910 nmol NADH. min-1.mg-1.Fato et al. 

[37] determined on submitochondrial particles for different types of quinone a kcat ranging 

from 170 to 1 560 nmol NADH. min-1.mg-1. Sherwood and Hirst [41] reported a value of 3 

100 nmol NADH. min-1.mg-1  and Hano et al. [39 ] a value of 1 860 nmol NADH. min-1.mg-1. 
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Lower values around 500 nmol NADH. min-1.mg-1 were reported by other authors with 

different quinone analogs [42]. 

Km (NADH) was found in the range of 0.6 - 2.7 μM on isolated complex I in the presence of 

different quinone types, among them also decylubiquinone [38, 39], always in beef heart 

mitochondria. For SMP a value of 9.2 μM has been found [37].  Vinogradov [43] reported for 

Km(NADH) 7.6 μM and 7.2 μM for coupled and uncoupled SMPs, respectively. Nakashima et 

al. [38] found a Km (NADH)  around 2 μM depending of Q1 and NAD concentrations. It is 

well comparable with the values 4.2 – 6.1 µM we found in our fits. 

The values found for Km (Q) are more variable, due to the different type of quinone that has 

been used. Fato et al. [37] determined the Km (Q) for 7 different types of quinones on bovine 

submitochondrial particles. Their values for decylubiquinone (DQ) were found to be 1.8 and 

2.1 µM. A higher value of 24 μM has also been reported  in [41]. For complex I isolated from 

beef heart, values of 4.4 - 12.9 µM for Q1 and Q2 [38, 39, 44]  have been reported and 51 μM 

[39] for decylubiquinone. These values are similar to the values between 9.5 and 13.8 found 

in our fits. 

Less data are available with respect to the Km values of the products and they are more 

difficult to compare to our values because of their dependence on the rate equations 

structures. Vinogradov [45] found a Ki value for NAD of 1250 μM on uncoupled SMP, which 

lies among the K-values we found for the different equations. However, for the reverse 

reaction under coupled conditions the author reported a Km of 7.2 μM for NAD. To explain 

the difference of about three orders of magnitude it was suggested that NAD binds to a 

different site for the reverse sense. But this large difference may also be due to the equation 

that has been used for the determination of these values, as we can see on tables 2 and 3. 

With only three independent parameters (instead of five for other equations ER-HMM, PPM 

or OM), the EMA equation is a significantly less precise description of the given data. 

However, for most data curves EMA is still comparable to the other rate equations, as one can 

see in Fig. 2 and on Fig. S2 . But since the product inhibition by QH2 and NAD+ are 

approximately three orders of magnitude apart, it is obvious that EMA cannot describe 

accurately the influence of both. Here the fits lead to a good description of the influence of 

QH2, but in contrast, in the series where NAD+ was varied the data description is not 

satisfactory. For the latter no QH2 was present which means that the product term in the EMA 

equation was always 0, with NAD+ present or not. Hence EMA is not applicable to such 

extreme situation 
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Inhibition by Q. 

 In our experimental data one can observe an inhibition of complex I at high concentrations of 

decylubiquinone (Fig. 4). Indeed oxidized quinones have been suspected to exert a negative 

effect on complex I activity at higher concentrations. Lenaz et al. [46] showed an inhibitory 

effect by the short chain CoQ analogue Q3 and assumed that there is need for long chain 

ubiquinone for a proper functioning of complex I. Other authors reported this inhibition with 

different types of quinones [37] and [44]. Grivennikova et al. [18] reported even a very strong 

inhibition by the short chain ubiquinone. This could suggest the existence of a second 

inhibitory site for quinone (oxidized) in addition for the substrate site as we already discussed 

in [28] (see also [41], [44], [47-50]. Althoug,there is no evidence of a precise second 

ubiquinone site, there is the possibility of ubiquinone taking several positions either in the 

large reaction pocket or on the way leading from the membrane to the reaction site and thus 

impeding or hindering the access of the ubiquinone substrate by ubiquinol or the release of the 

ubiquinol product by ubiquinone, well modeled by a steric inhibition either by Q or QH2. It 

should be noticed that the inhibitory concentration of Q are rather high (>100 µM) and that 

15-20 % inhibition is obtained at 350 µM Q. Thus the inhibition term can be presumably 

neglected in most of the cases.  

 

Choice of a rate equation  

Because all equations but EMA give a similar good fit of our kinetic experiments performed 

with large variations of the substrates and products, we select the ER-HMM equation to 

represent complex I activity. It is among the simplest and corresponds to the random bi-bi 

mechanism. As noted above, the inhibitory term is probably most of the time superfluous. If 

necessary, it will be added under the form of a non competitive inhibition by Qtot (see Fig. S5 

and S6). Both type of inhibition (non competitive and steric) give very comparable inhibitory 

pattern (Fig. S5 and S6). 

 

                                                                                              (13) with                       (14) 

 

We have shown that this type of equation (ER-HMM) can be used to fit the kinetics of the 

other complexes of the respiratory chain [51].  
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In a forthcoming paper we will discuss the introduction of the proton gradient in 

biothermokinetic rate equations and analyze different approaches with respect to their ability 

to reproduce OXPHOS data under coupled conditions. 
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Legend to the Figures. 

Figure 1: Mechanisms associated to the rate equations. MAL  means Mass Action Law. In 
ER-HMM (Extended Reversible-Henri-Michaelis-Menten) and in CK (Convenient Kinetics) 
mechanisms, ENH means E-NADH, ENHQ: E-NADH-Q, ENHQH2: E-NADH-QH2, ENQ: 
E-NAD-Q, ENQH2: E-NAD-QH2, EQH2: E-QH2 and EN: E-NAD. In EMA mechanism 1, E* 
symbolizes an Enzyme-Substrates-Products complex. In mechanism 2, EA and EB represent 
two enzyme conformations able to bind respectively the substrates only and the products only. 
The derivations of EMA equation are detailed in Supplementary Materials S8.  
 
Figure 2: Comparison of different rate equation to fit part of the experimental results. 
The kinetic parameters are determined by minimizing the root mean square deviation 
(RMSD) calculated between all experimental data and the corresponding theoretical points 
evaluated with the equation under study (see table 1) as explained in the Materials and 
Methods section. Note that the fitting procedure is performed on all experimental results 
represented in Supplementary Materials, but that only a small part of them is represented in 
this comparison for clarity. The experimental points are in black and the fitting curves in red. 
(a) and (b): the experimental points are fitted by the NET equation. 
(c) and (d): the experimental points are fitted by the MAL equation. 
(e) and (f): the experimental points are fitted by the ER-HMM equation. 
(g) and (h): the experimental points are fitted by EMA equation. 
The parameters for tracing the theoretical curves are listed in table 1. 
Other parameters. NET: kCI = 6.6 nmoles/min/mg; MAL: k f = 3.16 nmoles.(µM)-2.min-1.mg-1; 
kb = 2.04 10-11 nmoles.(µM)-2.min-1.mg-1. 
NADH variable : () Q = 1.1 µM; (∆) Q = 4.4 µM; () Q = 10.9 µM; () Q = 32.7 µM 
Q variable: (X) NADH = 0.95 µM; () NADH = 3.8 µM; (∆) NADH = 6.65 µM; () NADH 
= 14.25 µM; () NADH = 28.5 µM. 
 

Figure 3  Products inhibition. 
Figure 2-a: NAD inhibition with NADH = 38 µM and Q = 69 µM (See also figures z to ac in 
the Supplementary Materials. This figure corresponds to figure ac with ER-HMM equation). 
Figure 2-b: QH2 inhibition with NADH = 28.5 µM and Q = 54.5 µM 
(See also figures v and w in the Supplementary Materials. This figure corresponds to figure w 
with ER-HMM equation).  
The fitting curve is represented by a continuous red line. 
 
Figure 4: Complex I inhibition by the substrate Q. 
The curves are drawn according to the ER-HMM equation (eq.13) with the parameters of 
table 2 in the absence of Q substrate inhibition (- - - ) and with the term Is = 1+Q/KI (red large 
line) with the parameters of table 3, second row (kf = 2194, KNADH = 4.5 µM, KQ = 14.7 µM, 
KNAD = 743 µM, KQH2 = 7.5 µM and KI = 576 µM) or with the term Inc = 1/(1+Q/KI) (thin 
black line overlapped by the red one) with the parameters of table 3, third row (kf = 2254, 
KNADH = 4.5 µM, KQ = 15.1 µM, KNAD = 743 µM, KQH2 = 7.6 µM and KI = 561 µM). 
The black diamonds correspond to the experimental points at (a) NADH = 28.5 µM, (b) 
NADH = 47.5 µM. (c) depicts the rate as a function of QH2 with NADH = 28.5 µM and Q = 
45.5 µM with steric inhibition (        ) or non competitive inhibition (        superimposed with 
the previous one        ) or without any inhibition (        ). 
The fit of the other inhibitory function are very similar (not shown). See also figures S5 and 
S6 in Supplementary Materials. 
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Abstract 

The mitochondrial respiratory chain plays a crucial role in energy metabolism and its 

dysfunction is implicated in a wide range of human diseases. In order to understand the global 

expression of local mutations in the rate of oxygen consumption or in the production of ATP 

it is useful to have a mathematical model in which the changes in a given respiratory complex 

are properly modeled.  

Our aim in this paper is to provide thermodynamics respecting and structurally simple 

equations to represent the kinetics of each isolated complexes which can, assembled in a 

dynamical system, also simulate the behaviour of the respiratory chain, as a whole, under a 

large set of different physiological and pathological conditions. On the example of the 

NADH-ubiquinol-oxidoreductase (complex I) we analyse the suitability of different types of 

rate equations. Based on our kinetic experiments we show that very simple rate laws, as those 

often used in many respiratory chain models, fail to describe the kinetic behaviour when 

applied to a wide concentration range. This led us to adapt rate equations containing the 

essential parameters of enzyme kinetic, maximal velocities and Henri-Michaelis-Menten like–

constants (KM and KI) to satisfactory simulate these data. Finally, we discuss a general way to 

introduce the electrochemical gradient into these equations leading to biothermokinetic rate 

equations of the respiratory complexes able to simulate the behaviour of the respiratory chain 

in a large variety of physiological conditions. 
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1. Introduction  

The respiratory chain plays a crucial role in energy metabolism. In many cases, it consists of 

four enzyme complexes which are connected through two electron transporters, ubiquinone 

and cytochrome c. Three of the respiratory complexes extrude protons from the mitochondrial 

matrix into the intermembrane space liberating, step by step, the energy of the transfer of 

electrons from the low redox potential of the substrates NADH or FADH2 to the high redox 

potential of oxygen, energy then used to synthetize ATP.  

It is now well documented that respiratory chain dysfunction is responsible for a wide range 

of human diseases including neurodegenerative diseases and cancer. Respiratory chain 

dysfunction may also have a possible relationship with aging [1-2] and metabolic disorders 

[3]. In many cases respiratory chain dysfunctions are due to mutations in the subunit 

constituting the respiratory chain complexes. 

In order to better understand the behaviour of the respiratory chain in different physiological 

conditions and how the effects of pathological mutations are expressed at the global level of 

oxygen consumption or ATP synthesis it is useful to have a theoretical model of the 

respiratory chain. In other words understanding the normal or pathological interplay between 

these complexes and the electron transporters in the global functioning of the respiratory 

chain requires a model of each respiratory complex with a specific rate equation and then the 

integration of all the rate equations into a dynamical system representing the operation of the 

whole oxidative phosphorylation.  

Several models, with different levels of complexity, have been established to describe the 

respiratory chain or its isolated complexes. It does not enter the scope of this article to review 

them all. We would just like to analyse the way in which the behaviour of each individual 

respiratory complex is approached in these models of the whole respiratory chain. It means 

that we discard of our analysis all the models in which the respiratory chain is represented by 

only one (or two depending on the electron entry point) equations (typically Magnus and 

Keizer [4], Cortassa et al. [5] and many others). Among the remaining models of respiratory 

chain two types of modelling of the individual complexes are used. The first significant 

models were developed in the framework of Non-Equilibrium Thermodynamic model (NET) 

involving a linear dependence of the flux as a function of the thermodynamic forces [6-9]. 

The model developed by Korzeniewski and Froncisz (1991) [10, 11], is a comprehensive 

model also well representative of this class of thermodynamics models, extended thereafter 

([12], [13]). 
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Another approach, largely used to model the isolated respiratory complexes is the Mass 

Action Law (MAL), with the forward rate proportional to the product of substrats and the 

backward proportional to the product of products of the reaction. Bohnensack (1981) [14] was 

probably the first to derive a quantitative model of the respiratory chain involving nearly all 

the components of oxidative phosphorylation. In this approach the respiratory complexes 

were modeled according to the mass-action law. A recent example of this approach was 

proposed by Beard [15]. 

The advantage of both approaches (NET and MAL) is that they use very simple rate laws for 

each of the complexes with only one parameter to adjust. But these equations cannot reflect 

the respiratory complexes behaviours over a wide range of physiological conditions as it will 

be shown later in this paper. 

  As a matter of fact, the behaviour of the individual complexes is rather complex for several 

reasons: (i) the mechanisms catalysed by each separate complex are complex in themselves. 

The most illustrating example is the Q-cycle operating in complex III with two different 

quinone binding sites and the bifurcation of the electrons coming from QH2 molecule into 

two pathways. The case of cytochrome c oxidase (complex IV) also involves a complex 

synchronisation between the 4 electrons necessary to reduce oxygen in water and the protons 

pumping. The case of complex I is not yet entirely resolved but already includes a cascade of 

7 or 8 elementary redox reactions. (ii) not only substrates, products and modifiers play a role 

in the kinetics but also the electrochemical proton gradient which has an important influence 

on the activity of each complex and thus on the whole respiratory chain. (iii) the regulation of 

the activity of these complexes depends on allosteric conformations or on chemical 

modifications such as phosphorylation and acetylation [16-19]. 

On the one hand, the derivation of equations describing very precisely the underlying 

mechanisms of the respiratory complexes often involves a huge number of parameters which 

are hard or impossible to determine experimentally and will be in any case underdetermined 

[20-21]. On the other hand, the experimental kinetics of these complexes show, most of the 

time, the traditional pattern of enzymatic kinetics i.e. saturation behaviour. Furthermore, the 

recorded kinetics have been analysed with the usual phenomenological approaches of 

enzymology, particularly with the determination of Vmax, KM and KI at least for some of the 

substrates or products. It is well illustrated in the measurement of the (maximal) activity of 

the individual complexes, which is particularly useful in the diagnosis of mitochondrial 

diseases in attributing at least in some cases the pathology to a particular defect in a given 

complex as in [22]. In the same time the activity of the whole respiratory chain (and of part of 
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TCA cycle) is recorded classically in very different conditions (resting state with a maximal 

transmembrane proton potential (state 4), phosphorylating state with a lower proton potential 

(state 3), intermediate states between states 4 and 3, uncoupled state etc.). In all these 

physiological conditions, the concentrations of the substrates/products of the individual 

respiratory complexes (NAD/NADH, Q/QH2, redox state of Cyt c) are also very different and 

presumably also different from the concentrations used in the determination of the (maximal) 

activity of the individual complexes. This could invalidate the use of the parameters values 

determined in these latter conditions (maximal activity determination in the absence of 

products) for the modelling of the whole respiratory chain functioning at non maximal activity 

in the presence of products. 

For this reason we studied the kinetics of the isolated respiratory complexes in a broad range 

of substrates/products concentrations with the first aim to integrate the observations in a rate 

equation as simple as possible but nevertheless illustrating the main characteristics of the 

kinetics, particularly the saturation behaviour, the presence of products and the 

thermodynamic constraints. Our aim is to use these “simple” rate equations both to model 

kinetics of the individual isolated complexes and also the global behaviour of the whole 

respiratory chain when all the respiratory complexes are considered together. We will analyze 

different types of equations already used (NET, MAL) and we will propose other equations 

[23-27], more able to fit the kinetic of respiratory complexes particularly when involved in the 

electron transport and protons translocation through the whole respiratory chain: Extended 

Reversible Henri-Michaelis Menten Equation (ER-HMM), Ping Pong Mechanism (PPM), 

ordered mechanism (OM), “Convenience Kinetics” (CK) and a new type of equation : 

Extended Mass Action (EMA) (table 1 and Fig. 1). As an example, we will compare all these 

equations in their ability to model our kinetic results already published in [28] on beef heart 

complex I (NADH-Coenzyme Q reductase activity). It catalyses the reaction: 

NADH + H+ + Q <==> NAD+ + QH2      (1) 

Eventually we will discuss the thermodynamical aspect of the incorporation of the proton 

gradient in these equations, leading to thermodynamic rate equations. In this case the 

catalysed reaction becomes: 

NADH + 5 H+
in + Q <==> NAD+ + QH2 + 4 H+

out (2) 

Where H+
in means protons in the mitochondrial matrix and H+

out protons in the inter-

membrane space. 
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Material and Methods 

2.1. Preparation of mitochondria 

Frozen isolated beef heart mitochondria were a gift from Dr. Joel Lunardi, prepared according 

to [29]. In this preparation the final mitochondrial pellets were homogenized at a 

concentration of 40 mg/mL and the mitochondrial suspension was frozen in liquid nitrogen as 

small beads of 50 μL volume and stored at −80 °C. In our experiments, one bead was thawed 

and diluted (1/5), aliquoted and the aliquots are frozen again. Then for each experiment an 

aliquot is thawed and diluted once more (1/20) in the slightly hypo-osmotic reaction buffer in 

order to ensure that the membranes are broken and their potential is null. For the assay itself, 

the mitochondrial suspension was diluted again (final concentration: 4.4 µg mitochondrial 

proteins in 1 ml). All assays were performed in temperature-controlled single wavelength 

spectrophotometer. 

 

2.2. Complex I (NADH–ubiquinone oxidoreductase) assay 

The assay was performed at 37 °C according to [22] by following the decrease in absorbance 

at 340 nm resulting from the oxidation of NADH in 1 mL of medium containing 65 mM 

KH2PO4 (pH 7.5), 2 mg BSA, 2 mM EDTA, 46 μM antimycin A, 4.4 μg mitochondrial 

protein and in control assays additionally 25 μM rotenone. A constant ethanol concentration 

of 8 µL/1000 µL was present in all assays. It means that the complement to this quantity was 

added when not brought by the added constituents. The concentrations of the substrates 

NADH and Q (decylubiquinone) are varied, as well as the concentrations of products NAD+ 

and QH2. The reaction was initiated by NADH addition. The extinction coefficient used for 

NADH concentration determination was 6.22 mM−1 cm−1 at 340 nm. The net activities have 

been obtained by subtracting the residual activity in the presence of rotenone from the 

activities without. 

 

2.2. Parameter estimations 

The parameters values of the different rate equations have been estimated minimizing the root 

mean square deviation (RMSD) between the experimental and theoretical data points. RMSD 

for one set of parameters was calculated simultaneously with all experimental series (see 

figures in the supplementary materials). To find the RMSD minimum, we used a global 

search routine (genetic algorithm) followed by a local one (quasi Newton based) as proposed 

in [30]. It permits to browse the whole parameter space and then to converge towards a well 
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defined solution, usually unique in our cases. All calculations have been done using Scilab 

(Scilab Enterprises, 2012). Because the reaction catalyzed by the respiratory chain complex I 

is highly exergonic, the rate constant of the backward reaction kb is simply calculated via the 

Haldane relationship:                               (2)  or equation               (3) for EMA with the equilibrium 

constant:                                (4) 

where R = 8.314 J/mol/K. The temperature in the experiments was T= 310 K and ∆G’o = -

66.4 kJ/mol at pH 7.5 (69.4 at pH 7.0).  

 

RESULTS 

I Non-saturable rate equations 

I-1 Near Equilibrium Thermodynamics (NET) Equation 

In the near equilibrium approach the reaction velocity is assumed to be proportional to the 

Gibbs energy.                   (5) 

with :  

                                                 (6) where [X] denotes the concentration of 

metabolite X. 

This type of equation was proposed by Westerhoff [7] and used by Korzeniewski et al. [10] 

for instance to model complexes I and III of respiratory chain.  

The major advantage of this equation is its simplicity, since there is only one parameter to 

determine, besides the standard Gibbs energy which is known for the respiratory chain 

complexes. Furthermore one can be certain that the flux vanishes at equilibrium (for       ). Another point is that the equation can deal with any stoichiometric factor, also non-integer 

ones, which can be advantageous e.g. for the more complex stoichiometries of complex III 

and IV of the respiratory chain. Finally, in this equation, it is easy to take into account the 

proton-motive force µH
+ as an extra term added to GCI of the chemical reaction [10]. 
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The fact that the concentrations appear as a logarithmical term limits the increase of velocity 

with increasing substrate concentration. This does not correspond to a typical saturation 

behaviour of an enzyme but the non-linear increase of velocity somehow approaches this 

property, as we can see in Fig.2 a and b. However, the logarithmic expression of the 

concentrations leads to a very high impact of very small substrate concentrations (near zero) 

on the velocity, i.e. at low substrate concentration, a small change results in a great velocity 

change, and on the other side at higher concentrations, the velocity hardly changes, giving 

nearly overlapping curves when the other substrate is varied. As shown on Fig. 2a and b, the 

initial velocities measured experimentally in the absence of products cannot be fitted correctly 

with this equation. It is predictable because in absence of products and at µH
+ = 0 with a 

G°’CI =  - 66.4 kJ/mol this reaction is always very far from equilibrium. 

I-2 The Mass Action Law equation. 

The MAL equation applied to the enzymatic reaction (1) reads:                                    (7)  

or introducing Keq :                                          (8) 

This type of equation was largely used for modelling the respiratory chain complexes (e.g. 

[14-15]). As previously, introducing the Keq = kf / kb allows one to be sure that vCI vanishes at 

equilibrium. Additional terms in the form of exp [-nIRT ln([H+
in] / [H

+
out])] can be added (as 

in [15]) to take the proton-motive force into account where nI is the number of protons 

expelled by complex I. The equation has the same amount of parameters as the NET equation 

and is also not limited to particular stoichiometric factors.  

A rather cumbersome drawback of this equation is that the velocity increases proportionally to 

the substrate concentrations. This does not correspond to the typical saturation behaviour of 

enzymes (see Fig.2 c and d). This is the main reason for which this equation fails to fit the 

initial velocities measured for different substrate concentrations. 

We conclude that these equations (see supplementary materials S1), MAL as well as the NET 

equation cannot be used for an accurate description of respiratory complexes kinetics when 

there is a possible variation in substrates and products concentrations. It is necessary to 

introduce a saturation term in the rate equations. 

II The saturable rate equations. 
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II-1 The equations 

The list of the rate equations tested in this work which exhibit a saturable pattern as a function 

of substrate or product concentrations are listed in table 1 (rows 3 to 7)  and their mechanism 

depicted in Fig. 1. They all involve the same type of numerator as MAL equation vanishing at 

equilibrium (or an equivalent expression in the case of EMA). In addition, they also involve a 

denominator with Michaelis constants KM for substrates and products. Because we look for an 

equation as simple as possible we assume that the KM for a substrate/product is independent 

of the binding of the others which is not necessarily true in the reality. Because the 

denominators of the equations are different, one can predict that the values of KM may be 

different for the different equations. All these equations but PPM are equivalent in absence of 

products. 

Table 1 and Fig. 1 

The Extended-Reversible Henri-Michaelis-Menten (ER-HMM) equation [23-25; 31-34] 

corresponds to a random binding/release of substrates/products as represented in Fig. 1. It is 

well described in all textbooks (see [26] for instance).  

The convenience kinetics equation (CK) is a generic equation which can account for any 

number of substrates and products. It has been proposed by Liebermeister and Klipp [27] and 

includes the same basic kinetic parameters (linked by the same Haldane relationship) than 

ER-HMM equation above but arranged slightly differently in the denominator so that the Km 

values may be different. In the case of 2 substrates 2 products, it also corresponds to a random 

binding mechanism but, in contrast to ER-HMM mechanism, without the non-reactive ternary 

complexes E-NADH-QH2 and E-NAD-Q (see Fig. 1). 

The interests of ER-HMM equation is well explained by Cornish-Bowden and Hofmyer in 

[23] which also applies to CK: minimal number of parameters, adherence to thermodynamic 

constraints, competition between substrates and their corresponding products and saturability.  

The equation given in table 1 for the order mechanism (OM) correspond to the case NQNQ 

meaning that NADH binds first then Q and NAD is released first then QH2. The four possible 

sequences of substrates binding/products release have been tested (see table 2). 

A ping-pong mechanism was also proposed for complex I kinetics (see the discussion in [28]). 

It can correspond to two situations: NNQQ or QQNN meaning that either NADH reacts first 
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and gives NAD and then Q gives QH2 or vice versa. In the simplified form where the KM are 

independent of each other, both equations have the same expression given in table 1. 

Finally we tested EMA equation (Extended Mass Action) which is based on mass action 

according to two different possible mechanisms (see supplementary materials S7 for a 

complete derivation of this equation). It can also be seen as a simplified ER-HMM equation in 

which the Michaelis constants of the substrates (resp. the products) are fused in one constant 

CS (resp. CP). The equation has only 4 parameters which are not independent; one can be 

replaced by the equilibrium constant via the Haldane-like relationship: 

              (3) 

 

This equation has the big advantage that any stoichiometric factor (also non integer) can be 

included, like for the NET and MAL equations. This equation was developed independently 

by Liebermeister et al. [35]. 

For each equation, the results of parameters fitting using all the experimental points are listed 

in table 2. Fig. 2e to h gives an example of these fittings in the case of ER-HMM and EMA 

equation with only some of the experimental points. The figures showing the results of the 

fittings according to other saturable rate laws with the complete set of experimental points are 

shown in supplementary materials. The results are always plotted in comparison with the ER-

HMM fit (blue dashed). 

Table 2 and Fig. 2 

Comparing the RMSD (table 2), it is clear that all equations but EMA give nearly the same 

good accuracy. The rate constants and the substrates KM values are also very similar (except 

for EMA for which the parameters have different meanings). An average value of kf = 1 810  

43 nmoles.min-1.prot-1, KNADH = 4.6  0.7 µM and KQ = 10.2  1.3 µM are obtained. This is 

not the case for the KM values of the products. The determination of the products KM is more 

difficult because as mentioned above, the complex I reaction is largely irreversible in the 

absence of µH
+. The only way to have an indication of the products KM is to record the 

reaction rate in the forward direction in the presence of different concentrations of the 

products (Fig. 3). The values of the products Km are dependent on the structure of the 

denominator of each equation, but still one can state that KNAD  is clearly high and difficult to 

measure indicating a low affinity of NAD+. On the other hand KQH2 is rather low, sometimes 
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lower than KQ. Both Km products depend upon the rate equation used to fit the experimental 

results.  

 

Figure 3 a et b 

 

II-2 Q inhibition 

Figure 4 shows a clear inhibition at high Q concentration (> 100 µM). Different type of 

substrate inhibitions can be considered such as non-competitive, substrate/steric inhibition (at 

the normal binding site). On the example of ER-HMM equation, several inhibition terms have 

been tested. The ER-HMM equation reads then: 

 

                                                                                                (9) 

 

with the inhibition terms Is and Inc described in the following.  

 

Substrate-product or steric inhibition Is  

This type of inhibition corresponds to the obstruction of the catalytic site of quinone reduction 

by quinone or quinol. Assuming that Q and QH2 obstruction has the same effect on the 

binding of both molecules QH2 or Q, the term Is can be written: 

    +                     (10) 

 

where Ki1 and Ki2 are the inhibition constants of Q and QH2 respectively. In the case where 

K i1 = Ki2 = Ki, the expression (10) becomes: 

                 where [Qtot] = [Q] + [QH2]  (11) 

 

Non competitive inhibition Inc  

Another possibility is that Q or/and QH2 bind to a second quinone site on the molecule, 

modifying the activity of complex I, giving rise to a non-competitive inhibition. 

The generic expression of a non-competitive inhibition is: 
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 (12) 

The values n= 1 and n = 2 have been tested with inhibition by Qtot (with Ki1 = Ki2 = Ki) or Q 

alone. 

All the experimental points have been fitted by ER-HMM equation (9) involving different Is 

or Inc terms listed in table 3 (see supplementary materials Fig. S6 and S7). 

Very similar accuracies of the different fits are obtained. In the case of steric inhibition, taking 

Q and QH2 separately or Qtot as inhibitor makes no real difference (not shown). It is the same 

in the case of non-competitive inhibition. In this latter case taking n = 1 or n = 2 gives similar 

fits. The steric (red broad line) and non-competitive (black thin line) inhibitions are 

represented on figure 4 and overlap. The curve without inhibition (blue dashed line) is also 

shown for comparison. Interestingly the values of KQ (and of KNADH) remain approximately 

the same for all types of inhibition. Only KQH2 changes significantly when part of the normal 

(product) QH2 inhibition is taken by the specific inhibitory mechanism. 

 

Table 3 and Fig. 4 

 

III - Incorporation of the ∆µH+. Towards a biothermodynamics rate equation for the 

respiratory complexes. 

Until now we considered the chemical reaction: 

NADH + H+
in + Q <==> NAD++QH2    (1) 

with ∆G’0,CI = - RT Ln Keq  =                                       = - 66.4 kJ.mol-1 at pH = 7.5. 

Thus the ∆G’CI of the chemical reaction at pH 7.5 is:  

 ∆G’CI = ∆G’0,CI +                               (7) 

These equations above are valid in absence of proton gradient, i.e. in conditions for which the 

protons equilibrate rapidly on either side of the membrane supporting the respiratory complex. 

In intact mitochondria, protons are pumped by the respiratory complexes and create a proton 

gradient which opposes the protons extrusions and thus slows down the chemical reaction. 

In these conditions, as noticed in the introduction, the complex I reaction reads:  

NADH + H+
in+ Q + 4 H+

in <==> NAD++ QH2  + 4 H+
out   (2) 
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(the first proton in the left part of the reaction is the scalar protons accompanying the 

chemical reaction). The four other protons are the vectorial protons transduced from the 

matrix towards the intermembrane space. 

From the thermodynamical point of view this corresponds to an opposite force: 

 

∆GH = -RT Ln ([H+
 in]  /10-7.5) - 4 ∆µH+  with ∆µH+ = F∆ψin-out + RT Ln ([H+

 in] /[H
+

out])  (14) 

 

F is the Faraday’s constant, ∆ψ in-out is the membrane potential measured as the inner potential 

minus the outer potential. ∆µH+ is thus usually negative so that the term ∆GH is >0 for 

physiological values (pHin >7.5). With these notations, the free energy of reaction (2) ∆GH
CI, 

taking into account the movement of protons and the internal and external pH is:  

∆GH
CI = ∆G’CI + ∆GH = ∆G’CI - RT ln([H+

in]/10-7.5)  - 4.∆µH
+  

This corresponds to a new equilibrium constant when ∆µH
+ ≠ 0. 

KH
eq = Exp (-(∆G’0,CI + ∆GH)/RT) = Exp(-∆G’0,CI /RT) . Exp(-∆GH)/RT)  

or KH
eq = Keq . Exp(-∆GH)/RT) = Keq . e

-α    with α = ∆GH /RT     (α > 0)  

Thus all is as if the equilibrium constant Keq of the chemical reaction was changed in KH
eq by 

introducing the electrochemical proton gradient. This corresponds well to the displacement of 

the chemical reaction under the action of the proton gradient. 

According to Haldane’s relationship,  

                                                               was changed in                                                in the 

presence of H+ gradient. 

Keq  is a function of  kf, kb, KNAD, KQ, KNADH, KQH2. The proton gradient can in principle 

affect all of these values leading to new values kH
f, k

H
b, K

H
NAD,etc. . One can hypothese as a 

first approximation, that it only affect the rate constants kf and kb according to the expression :  

kH
f = kf .  e

-ζα  and kH
b= kb . e

(1-ζ)α  (15),  

where 1 ≥ ζ ≥ 0, is a parameter which splits the proton gradient between both rate constants. 

The ζ value will depend upon the rate of OxPhos at steady state measured in condition of 

known ∆µH
+ ≠ 0. It may be different for each complex, 
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DISCUSSION AND CONCLUSION  

 

NET and MAL rate equations 

As obvious in Fig. 2 (a to d), Near Equilibrium Thermodynamics (NET) and Mass Action 

Law (MAL) rate equations fail to adequately represent the activity of complex I when the 

concentrations of substrates are varied. In the case of NET, the logarithmic term dampens the 

variations of substrates concentrations so that the rate value is nearly constant (between 540 

and 650 nmol/min/mg prot) over the nearly two order of magnitude of substrates 

concentrations used. Only at very low concentration of one substrate, the rate decreases 

rapidly toward zero (In fact to minus infinity; see the red line along the y-axis in Fig.2 a and 

b). It is not surprising because in conditions of very low products concentrations (0.1 µM each 

in our case to make the calculation possible) with a value of ∆G’o= -66.4 kJ, the reaction is far 

from equilibrium and its rate will not obeys the conditions of near equilibrium 

thermodynamics.  

A slightly better fit is obtained with MAL equation, because in this case the rate equation is 

sensitive to substrates concentrations variations. However the linear increase of the rate as a 

function of substrates concentrations does not correspond to the reality of saturable kinetics.  

For comparison the fit of the same points with a typical saturable kinetic equation (ER-HMM,  

Fig. 2 e-f) is shown. However NET and MAL equations may be a good choice for the 

description of the respiratory chain in conditions close to equilibrium which can be the case 

for complex I, II and III of respiratory chain in in vivo conditions with ∆µH+ ≠ 0. It must be 

stressed that in all cases, the  constants involved in these equations (kCI or kf) get ad hoc 

values which do not correspond to any intrinsic property (kinetic constants) of the respiratory 

complexes.Nevertheless, as demonstrated by Pillay et al. [36], a MAL model can give rise to a 

“saturation” behaviour particularly in redox cycles when the sum of the redox couples 

(NAD/NADH and Q/QH2) is constant. In these conditions, the maximal velocity depends 

upon the rate constant and the total concentrations of substrates/products and the half 

saturation concentration also depends upon the total concentration of the redox couples and is 

thus variable and different of a real Km. Using such equations will make it difficult to analyze 

the effect on OXPHOS of a variation of a particular kinetic parameter (kcat or Km) of a given 

respiratory complex or of physiological or pathological changes in total substrate and product 

concentrations. 



15 

 

On the contrary Fig. 2 e-h (and Fig. S2 to S7 in supplementary materials) and table 2 show 

that all the other equations tested in our study give similar good fits when compared with the 

whole set of our experimental data. It should be however noticed that EMA fit, which 

involves two parameters less, is less accurate mainly because it does not have independent 

saturation terms for each of the substrates/products. Their binding is rather considered 

simultaneous (see Supplementary Materials) and quantified by the phenomenological 

constants Cs and Cp. When the Km of substrates (respectively the products) are similar the 

phenomenological constants C represent adequately their association by an average constant. 

It is no longer the case when the Km are different as here for NAD and NADH. 

 

Kinetic mechanism and kinetic constants 

The striking results of this study that several kinetic equations are equally able to fit the 

experimental results over large concentrations of substrates and products is consistent with the 

fact that the kinetic mechanism of this reaction is still a matter of discussion. It means that this 

form of analysis does not shed light on the, too complex, kinetic mechanism of the reaction. 

Fato et al. [37] proposed a ping-pong mechanism in the case of mitochondria isolated from 

bovine heart with the oxidation of NADH preceding the reduction of ubiquinone. Nakashima 

et al. [38] used CoQ1 as the electron acceptor to analyze the activity of complex I purified 

from bovine heart. They proposed an ordered sequential mechanism with CoQ1 binding as the 

first step and CoQ1H2 releasing as the last step. Hano et al. [39] assumed that the kinetics of 

complex I obeys an ordered sequential mechanism when they used decylubiquinone (DQ) as 

the electron acceptor.  

Analyzing the same set of experimental results as in this study in the light of a stochastic 

model based on Gillespie approach [40] and taking into account the structure (distances) and 

the midpoint potentials of the reaction centers we showed that the kinetics may not 

necessarily obey a simple mechanism (ordered or ping-pong) [28]. This is particularly due to 

the substantial distance (around 90 Å) between NADH oxidation site and quinone reduction 

site and the presence of seven redox reactions in between. It makes the two extreme redox 

sites (NADH/NAD on the one hand and Q/QH2 on the other hand) as if they were 

independent from each other. The stochastic simulations also evidenced a plateau for 

saturating NADH concentrations (see supplementary figures a-j). It renders the fit by any 

equation used in this study slightly inaccurate: at high NADH concentrations the theoretical 

curves go on increasing weakly, while the experimental rates (as well as the stochastic 

simulations) are steady and quasi horizontal. We showed that this does not result from a 
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substrate inhibition but simply from the accumulation of electrons in the intermediate redox 

centers as NADH concentration increases, leading to a sort of electron buffering effect [28]. 

This can be easily understood in the following way: if the rate of the second half of the 

mechanism (Q  => QH2) is low as compared to first one (NADH => NAD) and to the 

intermediate redox reactions inside complex I, for instance low Q and high NADH,  then the 

electrons accumulate progressively backwards on the 7-8 FeS centers in between the two half 

reactions. As soon as one QH2 molecule is formed, two electrons from some FeS centers are 

again rapidly available. The limiting step is the release of the previously formed QH2 

molecule and the binding of the new Q molecule which are phenomena much slower than the 

“flitting” of the electrons between the FeS centers and operating at constant rate when Q and 

QH2 are constants. In other words, when the second half reaction is slower than the first one, 

there are always two electrons to reduce a Q molecule when present. It is the reason why a 

plateau is observed in the kinetics particularly at high NADH and low Q. 

Another salient feature of our study is that for all the saturable equations (but EMA) the 

maximal rate constants and the Km are nearly the same (see table 2) and well comparable 

with the data in the literature on beef heart mitochondria complex I. For instance we find a 

forward maximal rate constant between 1 773 and 1 910 nmol NADH. min-1.mg-1.Fato et al. 

[37] determined on submitochondrial particles for different types of quinone a kcat ranging 

from 170 to 1 560 nmol NADH. min-1.mg-1. Sherwood and Hirst [41] reported a value of 3 

100 nmol NADH. min-1.mg-1  and Hano et al. [39 ] a value of 1 860 nmol NADH. min-1.mg-1. 

Lower values around 500 nmol NADH. min-1.mg-1 were reported by other authors with 

different quinone analogs [42]. 

Km (NADH) was found in the range of 0.6 - 2.7 μM on isolated complex I in the presence of 

different quinone types, among them also decylubiquinone [38, 39], always in beef heart 

mitochondria. For SMP a value of 9.2 μM has been found [37].  Vinogradov [43] reported for 

Km(NADH) 7.6 μM and 7.2 μM for coupled and uncoupled SMPs, respectively. Nakashima et 

al. [38] found a Km (NADH)  around 2 μM depending of Q1 and NAD concentrations. It is 

well comparable with the values 4.2 – 6.1 µM we found in our fits. 

The values found for Km (Q) are more variable, due to the different type of quinone that has 

been used. Fato et al. [37] determined the Km (Q) for 7 different types of quinones on bovine 

submitochondrial particles. Their values for decylubiquinone (DQ) were found to be 1.8 and 

2.1 µM. A higher value of 24 μM has also been reported  in [41]. For complex I isolated from 

beef heart, values of 4.4 - 12.9 µM for Q1 and Q2 [38, 39, 44]  have been reported and 51 μM 
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[39] for decylubiquinone. These values are similar to the values between 9.5 and 13.8 found 

in our fits. 

Less data are available with respect to the Km values of the products and they are more 

difficult to compare to our values because of their dependence on the rate equations 

structures. Vinogradov [45] found a Ki value for NAD of 1250 μM on uncoupled SMP, which 

lies among the K-values we found for the different equations. However, for the reverse 

reaction under coupled conditions the author reported a Km of 7.2 μM for NAD. To explain 

the difference of about three orders of magnitude it was suggested that NAD binds to a 

different site for the reverse sense. But this large difference may also be due to the equation 

that has been used for the determination of these values, as we can see on tables 2 and 3. 

With only three independent parameters (instead of five for other equations ER-HMM, PPM 

or OM), the EMA equation is a significantly less precise description of the given data. 

However, for most data curves EMA is still comparable to the other rate equations, as one can 

see in Fig. 2 and on Fig. S2 . But since the product inhibition by QH2 and NAD+ are 

approximately three orders of magnitude apart, it is obvious that EMA cannot describe 

accurately the influence of both. Here the fits lead to a good description of the influence of 

QH2, but in contrast, in the series where NAD+ was varied the data description is not 

satisfactory. For the latter no QH2 was present which means that the product term in the EMA 

equation was always 0, with NAD+ present or not. Hence EMA is not applicable to such 

extreme situation 

 

Inhibition by Q. 

 In our experimental data one can observe an inhibition of complex I at high concentrations of 

decylubiquinone (Fig. 4). Indeed oxidized quinones have been suspected to exert a negative 

effect on complex I activity at higher concentrations. Lenaz et al. [46] showed an inhibitory 

effect by the short chain CoQ analogue Q3 and assumed that there is need for long chain 

ubiquinone for a proper functioning of complex I. Other authors reported this inhibition with 

different types of quinones [37] and [44]. Grivennikova et al. [18] reported even a very strong 

inhibition by the short chain ubiquinone. This could suggest the existence of a second 

inhibitory site for quinone (oxidized) in addition for the substrate site as we already discussed 

in [28] (see also [41], [44], [47-50]. Althoug,there is no evidence of a precise second 

ubiquinone site, there is the possibility of ubiquinone taking several positions either in the 

large reaction pocket or on the way leading from the membrane to the reaction site and thus 

impeding or hindering the access of the ubiquinone substrate by ubiquinol or the release of the 
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ubiquinol product by ubiquinone, well modeled by a steric inhibition either by Q or QH2. It 

should be noticed that the inhibitory concentration of Q are rather high (>100 µM) and that 

15-20 % inhibition is obtained at 350 µM Q. Thus the inhibition term can be presumably 

neglected in most of the cases.  

 

Choice of a rate equation  

Because all equations but EMA give a similar good fit of our kinetic experiments performed 

with large variations of the substrates and products, we select the ER-HMM equation to 

represent complex I activity. It is among the simplest and corresponds to the random bi-bi 

mechanism. As noted above, the inhibitory term is probably most of the time superfluous. If 

necessary, it will be added under the form of a non competitive inhibition by Qtot (see Fig. S5 

and S6). Both type of inhibition (non competitive and steric) give very comparable inhibitory 

pattern (Fig. S5 and S6). 

 

                                                                                              (13) with                       (14) 

 

We have shown that this type of equation (ER-HMM) can be used to fit the kinetics of the 

other complexes of the respiratory chain [51].  

The introduction of the ∆µH+ in these equations is then a delicate problem due to its possible 

stiff effects on the rate constants. A thermodynamics approach just subtracting the ∆µH+ from 

the ∆G of the chemical reaction is a way to handle this problem which was adopted by many 

authors [10, 15] and which is particularly appropriate for complex I. As a matter of fact, 

according to the X-ray structure of complex I [49-50], the electron path is entirely in the 

matrix arm; thus it is not in principle subject to the electrical field in the membrane. The only 

way to couple the transmembrane proton pumping to the energy liberated in the redox 

reactions is through a still unknown conformational change of the complex. It means that the 

∆G of the chemical reaction will be used to build the ∆µH+ thus decreasing (algebraically 

increasing) the ∆GH of the global reaction as explained in section III. This is the reason why, 

in a first approach, we choose  to put all the ∆µH+ on the rate constants. This choice is also in 

accord with our wish to derive a rate equation as simple as possible which respects the 

thermodynamic constraints. Distributing the ∆µH+ on all the kinetic parameters would very 

much complicate the rate equation and would be somewhat arbitrary. It does not mean that the 
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Kms are not affected by the conformational change, but because we do not know how, we 

take for the moment the simplest assumption. The problem could be different for the other 

respiratory complexes, the complex III for instance in which the path of electron is 

perpendicular to the membrane and thus subject to the transmembrane electric field. In a 

forthcoming paper we will discuss the introduction of the proton gradient ∆GH in 

biothermodynamic rate equations and analyze different approaches with respect to their 

ability to reproduce OXPHOS data under coupled conditions. 
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Legend to the Figures. 

Figure 1: Mechanisms associated to the rate equations. MAL  means Mass Action Law. In 
ER-HMM (Extended Reversible-Henri-Michaelis-Menten) and in CK (Convenient Kinetics) 
mechanisms, ENH means E-NADH, ENHQ: E-NADH-Q, ENHQH2: E-NADH-QH2, ENQ: 
E-NAD-Q, ENQH2: E-NAD-QH2, EQH2: E-QH2 and EN: E-NAD. In EMA mechanism 1, E* 
symbolizes an Enzyme-Substrates-Products complex. In mechanism 2, EA and EB represent 
two enzyme conformations able to bind respectively the substrates only and the products only. 
The derivations of EMA equation are detailed in Supplementary Materials 8.  
 
Figure 2: Comparison of different rate equation to fit part of the experimental results. 
The kinetic parameters are determined by minimizing the root mean square deviation 
(RMSD) calculated between all experimental data and the corresponding theoretical points 
evaluated with the equation under study (see table 1) as explained in the Materials and 
Methods section. Note that the fitting procedure is performed on all experimental results 
represented in Supplementary Materials, but that only a small part of them is represented in 
this comparison for clarity. The experimental points are in black and the fitting curves in red. 
(a) and (b): the experimental points are fitted by the NET equation. 
(c) and (d): the experimental points are fitted by the MAL equation. 
(e) and (f): the experimental points are fitted by the ER-HMM equation. 
(g) and (h): the experimental points are fitted by EMA equation. 
The parameters for tracing the theoretical curves are listed in table 1. 
Other parameters. NET: kCI = 6.6 nmoles/min/mg; MAL: k f = 3.16 nmoles.(µM)-2.min-1.mg-1; 
kb = 2.04 10-11 nmoles.(µM)-2.min-1.mg-1. 
NADH variable : () Q = 1.1 µM; (∆) Q = 4.4 µM; () Q = 10.9 µM; () Q = 32.7 µM 
Q variable: (X) NADH = 0.95 µM; () NADH = 3.8 µM; (∆) NADH = 6.65 µM; () NADH 
= 14.25 µM; () NADH = 28.5 µM. 
 

Figure 3  Products inhibition. 
Figure 2-a: NAD inhibition with NADH = 38 µM and Q = 69 µM (See also figures z to ac in 
the Supplementary Materials. This figure corresponds to figure ac with ER-HMM equation). 
Figure 2-b: QH2 inhibition with NADH = 28.5 µM and Q = 54.5 µM 
(See also figures v and w in the Supplementary Materials. This figure corresponds to figure w 
with ER-HMM equation).  
The fitting curve is represented by a continuous red line. 
 
Figure 4: Complex I inhibition by the substrate Q. 
The curves are drawn according to the ER-HMM equation (eq.9) with the parameters of table 
2 in the absence of Q substrate inhibition (- - - ) and with the term Is = 1+Q/KI (red large line) 
with the parameters of table 3, second row (kf = 2194, KNADH = 4.5 µM, KQ = 14.7 µM, KNAD 
= 743 µM, KQH2 = 7.5 µM and KI = 576 µM) or with the term Inc = 1/(1+Q/KI) (thin black 
line overlapped by the red one) with the parameters of table 3, third row (kf = 2254, KNADH = 
4.5 µM, KQ = 15.1 µM, KNAD = 743 µM, KQH2 = 7.6 µM and KI = 561 µM). 
The black diamonds correspond to the experimental points at (a) NADH = 28.5 µM, (b) 
NADH = 47.5 µM. (c) depicts the rate as a function of QH2 with NADH = 28.5 µM and Q = 
45.5 µM with steric inhibition (        ) or non competitive inhibition (        superimposed with 
the previous one        ) or without any inhibition (        ). 
The fit of the other inhibitory function are very similar (not shown). See also figures S6 and 
S7 in Supplementary Materials. 
  



Table 1: The different equations discussed in this paper. 
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Table 2: Fits of the experimental points by the different saturable equations of table 1.   
The kinetic parameters are identified by minimizing the root mean square deviation (RMSD) 
calculated between all experimental data and the corresponding theoretical points evaluated 
with the equation under study as explained in the Materials and Methods section (see 
Supplementary Materials for the figures of all fits). The kb value has been calculated using the 
Haldane relationship with Keq = 1.54 1011 corresponding to ∆G’o (pH 7.5; T=310 K) = - 66.4 
kJ/mole 
 
Equation RMSD kf kb KNADH KQ KNAD KQH2 

                [nmol(NADH) min-1mg-1] [µM] [ µM] [ µM] [ µM] 

PPM 162 1910 1.3.10-6 6.1 13.1 2064 4.0 
OM 
(NQNQ) 

161 1802 1.0.10-5 4.4 9.9 13931 2.7 

OM 
(QNQN) 

162 1797 5.0.10-6 4.3 9.8 774 23.6 

OM 
(QNNQ) 

164 1801 1.9.10-5 4.4 9.7 13087 5.3 

OM 
(NQQN) 

168 1793 9.2.10-6 4.3 9.8 1666 20.1 

ER-HMM 164 1791 1.1.10-6 4.3 9.7 780 5.3 
CK 167 1773 1.5.10-8 4.2 9.5 88 0.6 
EMA 244 1333  1.8.10-10 CS = 166 µM2 CP = 3.4 µM2 
 
 
Table 3: Competitive/steric and non-competitive inhibition of complex I by quinones. 
The table lists the results of fitting all the experimental data with an inhibition term in the ER-
HMM equation (eq. (10)) as explained in the text. The fitting method is the same as in table 2. 
When there is only one inhibitory constant, it is called Ki and listed in Ki1 column. The kb 
value has been calculated using the Haldane relationship as in table 2. 
 
Inhibition RMSD k f k b K NADH KQ K NAD KQH2 Ki 1 Ki 2 
           [nmol(NADH) min-1mg-1] [µM]  [µM]  [µM]  [µM]  [µM]  [µM]  �� � �� ���� ��	
��
  151 2185 7.42.10-6 4.5 14.7 740 46.9 598 25.4 

�� � �� ������  153 2194 1.20.10-6 4.5 14.7 743 7.5 576  

�
� �� �� �������  153 2254 1.21.10-6 4.5 15.1 743 7.6 561  

�
� �� �� � ��� 154 2244 1.07.10-6 4.5 15.0 744 6.7 575  

�
� � �� ��� ������ �


 

153 2209 1.18.10-6 4.5 14.7 740 7.4 1319  

�
� � �� ��� ����


 

154 2200 1.07.10-6 4.5 14.5 741 6.6 1351  

�
� �� �� � ��� � �	
��
  152 2236 1.04.10-5 4.5 15.0 741 65.6 589 29.8 

�
� � � �� � ��� � �	
��
 �


 

151 2198 2.83.10-5 4.5 14.6 737 177 1367 56.8 
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Figure 3
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Figure 4
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Supplementary Material S1 : Non-saturable rate equations 

I-1 Near Equilibrium Thermodynamics (NET) Equation 

In the near equilibrium approach the reaction velocity is assumed to be proportional to the 

Gibbs energy.                   (6) 

with :  

                                                 (7) where [X] denotes the concentration of 

metabolite X. 

This type of equation was proposed by Westerhoff [7] and used by Korzeniewski et al. [10] 

for instance to model complexes I and III of respiratory chain.  

The major advantage of this equation is its simplicity, since there is only one parameter to 

determine, besides the standard Gibbs energy which is known for the respiratory chain 

complexes. Furthermore one can be certain that the flux vanishes at equilibrium (for       ). Another point is that the equation can deal with any stoichiometric factor, also non-integer 

ones, which can be advantageous e.g. for the more complex stoichiometries of complex III 

and IV of the respiratory chain. Finally, in this equation, it is easy to take into account the 

proton-motive force µH
+ as an extra term added to GCI of the chemical reaction [10]. 

The fact that the concentrations appear as a logarithmical term limits the increase of velocity 

with increasing substrate concentration. This does not correspond to a typical saturation 

behaviour of an enzyme but the non-linear increase of velocity somehow approaches this 

property, as we can see in Fig.2 a and b. However, the logarithmic expression of the 

concentrations leads to a very high impact of very small substrate concentrations (near zero) 

on the velocity, i.e. at low substrate concentration, a small change results in a great velocity 

change, and on the other side at higher concentrations, the velocity hardly changes, giving 

nearly overlapping curves when the other substrate is varied. As shown on Fig. 2a and b, the 

initial velocities measured experimentally in the absence of products cannot be fitted correctly 

with this equation. It is predictable because in absence of products and at µH
+ = 0 with a 

G°’CI =  - 66.4 kJ/mol this reaction is always very far from equilibrium. 

I-2 The Mass Action Law equation. 
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The MAL equation applied to the enzymatic reaction (1) reads:                                    (8)  

or introducing Keq :                                          (9) 

This type of equation was largely used for modelling the respiratory chain complexes (e.g. 

[14-15]). As previously, introducing the Keq = kf / kb allows one to be sure that vCI vanishes at 

equilibrium. Additional terms in the form of exp [-nIRT ln([H+
in] / [H

+
out])] can be added (as 

in [15]) to take the proton-motive force into account where nI is the number of protons 

expelled by complex I. The equation has the same amount of parameters as the NET equation 

and is also not limited to particular stoichiometric factors.  

A rather cumbersome drawback of this equation is that the velocity increases proportionally to 

the substrate concentrations. This does not correspond to the typical saturation behaviour of 

enzymes (see Fig.2 c and d). This is the main reason for which this equation fails to fit the 

initial velocities measured for different substrate concentrations. 

We conclude that these equations, MAL as well as the NET equation cannot be used for an 

accurate description of respiratory complexes kinetics when there is a possible variation in 

substrates and products concentrations. It is necessary to introduce a saturation term in the 

rate equations. 

  



Table 1: The different equations discussed in this paper. 

Name and abbreviation EQUATION Equilibrium constraints 

Near Equilibrium 

Thermodynamics 

(NET equation) 

                                                            

Mass Action Law 

(MAL equation) 
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Figure S2 : CK (red) vs ER-HMM (blue dashed). The experimental points are the same as 

in [28]. The curves e and h are taken from curves i and j respectively with the NADH 

scale 0 – 30 µM. 
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Figure S3:  EMA (red) vs ER-HMM (blue dashed). The experimental points are the same 

as in [28]. The curves e and h are taken from curves i and j respectively with the NADH 

scale 0 – 30 µM. 
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Figure S4:  OM (NQNQ) (red) vs ER-HMM (blue dashed). The experimental points are the 

same as in [28]. The curves e and h are taken from curves i and j respectively with NADH 

scale 0 – 30 µM. 
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Figure S5: PPM (red) vs ER-HMM (blue dashed). The experimental points are the same 

as in [28]. The curves e and h are taken from curves i and j respectively with NADH scale 

0 – 30 µM. 
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Figure S6: ER-HMM with (red) or without (blue dashed) non competitive inhibition by Q 

total. The experimental points are the same as in [28]. The curves e and h are taken from 

curves i and j respectively with NADH scale 0 – 30 µM. 
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Figure S7: ER-HMM with (red) or without (blue dashed) steric inhibition by Q total. 

The experimental points are the same as in [28]. The curves e and h are taken from 

curves i and j respectively with the NADH scale 0 – 30 µM.  
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SUPPLEMENTARY MATERIALS S8 

 

Derivation of the extended mass action (EMA) equation: two possible mechanisms. 

 

The general form of the EMA equation is 
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and is based on the net reaction 
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It can  be seen as a simplified ER-HMM equation in which the Michaelis constants of the 

substrates (resp. the products) are fused in one constant CS (resp. CP).  

Theoretically, the number of the substrates S and the products P (m and n, respectively) are 

not limited, and their stoichiometric factors ( and , respectively) can take any positive 

value, also non integers. 

 
The EMA equation (eq. SM 1) can be based on two different reaction mechanisms, both 

consisting of two steps expressed in terms of mass action law. The first mechanism is close to the 

one used to derive enzyme rate laws. The second is based on the assumptions that the enzyme 

switches between two conformations during the reaction process. 

 

1) EMA equation - complex formation 
Following the early derivations of the Henri-Michaelis-Menten equation (Henri [31], Michaelis 

und Menten [32] and Briggs and Haldane, [33]. See also [34]), we introduce in the reaction 

mechanism the substrates-products-enzymes complexes species. We symbolize these species by 

only one intermediate state of the enzyme E* which leads to the mechanism: 
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where k1, k- 1, k2  and k- 2are the forward and backward rate constants of these two reactions. 

Describing the two successive reactions in terms of mass action law leads to 
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Combining the equations SM 2 and SM 3 with the conservation of enzyme molecules, 

Et[ ] = E[ ] + E *[ ] , and with the classical assumption of steady-state,  i.e. v1 = v2   and  
d E *[ ]
dt

= 0 

we derive the rate equation 
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Setting k f = k2 and 1 kkb , 
1

12

k

kk
CS

 and 
2

12




k

kk
CP  we obtain the EMA equation (eq. 

SM 1).  

 

 
2) EMA equation - enzyme relaxation 
 
It has often been supposed that enzymes undergo conformational changes between different 
conformations with different activities [Frieden, 1979, Ricard, 1977 and 1979]. We assume here 
that the enzyme can adopt two conformations EA  and EB  in equilibrium. In addition we suppose 
that the substrates can only bind to the conformation EA  and the products only toEB . This 
implies, in order to the reaction to proceed, that there is an equilibrium reaction between EA  and 

EB . This is summarized by the two reactions below. 
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k1and k- 1are the forward and backward rate constants for the enzymatic step and k2 and k- 2

are the corresponding constants for the enzyme transconformational step. Describing the 

two steps in terms of mass action leads to 
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and 

 



   AB EkEkv  222 . (SM 6) 

Again, combining equations SM 5 and SM 6 with the conservation of enzyme molecules, 

Et[ ] = EA[ ] + EB[ ] , and with the classical assumption of steady-state,  i.e. v1 = v2   and     
0

dt

Ed

dt

Ed BA , we derive the following equation : 
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By setting k f = k2, 2 kkb , 
1

22

k

kk
CS

  and 
1

22




k

kk
CP  we obtain again the EMA 

equation (equ. SM 1). 

 

 

It must be pointed out that the same equation is obtained with two very different 

underlying mechanisms. When only one substrate and one product is present, the EMA 

equation (as well as the other equations cited in this paper - except for mass action law), 

simplify to the reversible Henri-Michaelis-Menten (HMM) equation. 

 This work was part of the ǲDiplomarbeitǳ of Margit Heiske, Bordeaux and Berlin June 2008. 
It was independently published with a different approach by Liebermeister et al. (2010)  

[35]. 
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