
HAL Id: hal-01058751
https://hal.science/hal-01058751v4

Submitted on 15 Jan 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Low Mach Number Model for Moist Atmospheric
Flows

Max Duarte, Ann S. Almgren, John B. Bell

To cite this version:
Max Duarte, Ann S. Almgren, John B. Bell. A Low Mach Number Model for Moist Atmospheric
Flows. Journal of the Atmospheric Sciences, 2015, 72 (4), pp.1605-1620. �10.1175/JAS-D-14-0248.1�.
�hal-01058751v4�

https://hal.science/hal-01058751v4
https://hal.archives-ouvertes.fr


A Low Mach Number Model for Moist Atmospheric Flows

Max Duarte∗, Ann S. Almgren, and John B. Bell

CCSE, Lawrence Berkeley National Laboratory, Berkeley, California

January 15, 2015

Abstract

We introduce a low Mach number model for moist atmospheric flows that accurately
incorporates reversible moist processes in flows whose features of interest occur on ad-
vective rather than acoustic time scales. Total water is used as a prognostic variable,
so that water vapor and liquid water are diagnostically recovered as needed from an ex-
act Clausius–Clapeyron formula for moist thermodynamics. Low Mach number models
can be computationally more efficient than a fully compressible model, but the low Mach
number formulation introduces additional mathematical and computational complexity
because of the divergence constraint imposed on the velocity field. Here, latent heat re-
lease is accounted for in the source term of the constraint by estimating the rate of phase
change based on the time variation of saturated water vapor subject to the thermody-
namic equilibrium constraint. We numerically assess the validity of the low Mach number
approximation for moist atmospheric flows by contrasting the low Mach number solution
to reference solutions computed with a fully compressible formulation for a variety of test
problems.

1 Introduction

Small–scale atmospheric phenomena are typically characterized by relatively slow dynamics,
that is, low Mach number flows for which the fast acoustic modes are physically irrelevant.
Thus, numerical modeling of these flows does not typically require explicitly resolving fast–
propagating sound waves. Two different approaches have been widely used to remove the
time step constraint that would result from resolving fast acoustic modes. The first and more
common approach solves the fully compressible equations of motion but limits the impact of
acoustic modes, for instance, by advancing the acoustic signal in time with an implicit time
discretization or with multiple smaller time steps, as originally considered for cloud models
in [TW76] and [KW78]. A second alternative consists of analytically filtering acoustic modes
from the original compressible equations, thus deriving a new set of equations, often called
sound–proof equations. Within this category are anelastic [Bat53, OP62, DF69, Gou69] and
pseudo–incompressible [Dur89] models.

Several anelastic formulations (see, e.g., [Cla79, LH82, GS02]), and recently a pseudo–
incompressible formalism [OK14], have been developed for moist flows. In this paper we
derive a low Mach number model for moist atmospheric flows with a general equation of state
using the low Mach number formalism in [ABNZ08] as a starting point. Here we use the term
“low Mach number model” to refer to a model in which the equations are valid approximations
to the fully compressible equations when the Mach number is small. In atmospheric modeling,
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the equations which follow from assuming the Mach number is small, thus the variation of the
pressure from the background pressure is small, are also referred to as pseudo–incompressible
equations following [Dur89]. The anelastic equations require additional assumptions on the
smallness of density and temperature variations to be valid. (For a complete discussion on
sound-proof equations for atmospheric flows, and their differences, see, for instance, [Kle09]
and references therein.) We note that the low Mach number equations presented here do not
guarantee that a flow that initially satisfies the low Mach number assumption will continue
to satisfy it for all time. The buoyancy forcing from a large density perturbation in a domain
with large vertical extent could accelerate the flow into a regime where the Mach number is
no longer small. Once the flow reached this regime, the low Mach number equations would
no longer be valid approximations to the fully compressible equations. However, until that
point, the equations are valid.

Analogous to the moist pseudo–incompressible model of [OK14] we consider only reversible
processes given by water phase changes, using here an exact Clausius–Clapeyron formula for
moist thermodynamics. In contrast to [OK14], however, we derive the equations of motion
in terms of conserved variables (like [Ooy90] in a compressible framework), that is, using
appropriate invariant variables such that terms resulting from phase change are eliminated
from the time evolution equations [Bet73, TC81, HH89]. We also include the effects of the
specific heats of both water vapor and liquid water, and consider an isentropic expansion
factor (γ) that accounts for variations in the water composition of moist air. Although the
low Mach number formulation holds for any moist equation of state, for the purposes of
numerical comparison with compressible solutions we consider the special case where both
dry air and water vapor are assumed to be ideal gases.

While the larger time step allowed by the low Mach number formulation can lead to
greater computational efficiency than a purely compressible formulation, it may also introduce
larger errors in the dynamics of moist flows as investigated in [DAB+14]. In addition to
the latent heat release accompanying phase changes, thermodynamic properties such as the
specific heat of moist air, as well as thermodynamic variables such as temperature, depend on
the composition of the moist air, thus change over the time step. This motivates our use of
invariant variables as prognostic variables, namely total water content and a specific enthalpy
of moist air that accounts for both sensible and latent heats. In models where source terms
related to phase transition appear explicitly in the evolution equations, they are typically first
neglected or lagged in time and then corrected or estimated during a given time step; the
use of invariant variables removes the need of accounting for such terms. Nevertheless, the
diabatic contribution of the latent heat release must appear in the source term for the low
Mach divergence constraint on the velocity field. In practice the latter involves computing the
rate of evaporation (or condensation). Since no analytical expression exists for this rate, one
of the most common ways to estimate it deduces it from the change in water vapor content
necessary to ensure that there is no supersaturated water vapor at the end of the time step
(cf. [SO73]). This variation is measured with respect to an initial estimate of water vapor
that does not necessarily respect the saturation requirements either because it was initially
advected without accounting for phase changes (see, e.g., [KW78, GS90, BF02, Sat03, OK14])
or because it considers a lagged evaporation rate from the previous time step (see, e.g., [GS02]).
In our model, because water vapor is not used as a prognostic variable, we cannot compute
this variation of water vapor. Instead we adopt a different approach, similar to [LH82],
that estimates the evaporation rate based on the fact that whenever a parcel is saturated, a
Clausius–Clapeyron formula relates the local values of water content to the thermodynamics
within the parcel. The conservation equation for saturated water vapor then becomes a time–
varying constraint that guarantees thermodynamic equilibrium from which the evaporation
rate can be estimated. The latter is thus computed as required during a time step using the
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current values of water content and thermodynamic variables, diagnostically recovered from
the invariant prognostic variables.

This paper is organized as follows. We introduce the new low Mach number model for
moist atmospheric flows in Section 2, and describe the moist thermodynamics in Section 3. In
Section 4 we discuss the numerical implementation. Finally, in Section 5, we present several
numerical comparisons and discuss our findings.

2 Low Mach number formulation

We begin by writing the fully compressible equations of motion expressing conservation of
mass, momentum, and enthalpy in a constant gravitational field in which we neglect Coriolis
forces and viscous terms:

∂ρ

∂t
+∇ · (ρU) = 0, (1)

∂ (ρU)

∂t
+∇ · (ρUU) +∇p = −ρgêz, (2)

∂(ρĥ)

∂t
+∇ · (ρĥU)−

Dp

Dt
= ρH, (3)

where the material derivative is defined as D/Dt = ∂/∂t+U · ∇. Here ρ is the total density,
U is the velocity, and ĥ is the specific enthalpy of moist air. The pressure, p, is defined by
an equation of state (EOS). The term H represents a source of heat (per unit mass and time)
to the system, such as thermal conduction or radiation. We include gravitational acceleration
given by g = −gêz, where êz is the unit vector in the vertical direction.

We formulate the moist atmospheric processes as in [Rom08], with the additional simpli-
fication that at any grid point all phases have the same velocity and temperature. We treat
moist air as an ideal mixture of dry air, water vapor, and liquid water, with the water phases
in thermodynamic equilibrium, so that only reversible processes are taken into account; ice–
phase microphysics, precipitation fallout, and subgrid–scale turbulence are ignored. Denoting
by qa, qv, and ql the mass fraction of dry air, water vapor, and liquid water, respectively, we
note that qa + qv + ql = 1 and write

∂ (ρqa)

∂t
+∇ · (ρqaU ) = 0, (4)

∂ (ρqv)

∂t
+∇ · (ρqvU ) = ev, (5)

∂ (ρql)

∂t
+∇ · (ρqlU ) = −ev, (6)

where ρ is the total density. Positive values of ev correspond to evaporation; negative values
correspond to condensation. If we define the mass fraction of total water, qw = qv + ql, then
we can replace (5)–(6) by

∂ (ρqw)

∂t
+∇ · (ρqwU ) = 0. (7)

(We note that the system including both (1) and (4)–(6) or (1), (4), and (7) is over–specified;
in practice (1) need not be solved separately.)

We define the internal energy of moist air, ê, as in [Rom08],

ê = cvm (T − Ttrip) + qvE0v , (8)

where the constant–volume specific heat of moist air is given by cvm = qacva + qvcvv + qlcvl,
with the specific heats at constant volume: cva, cvv , and cvl, for dry air, water vapor, and
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liquid water, respectively. Here Ttrip is the triple–point temperature and E0v is the specific
internal energy of water vapor at the triple point, while the enthalpy of moist air is given by

ĥ = ê+
p

ρ
. (9)

Note that an evolution equation for the internal energy

∂ (ρê)

∂t
+∇ · (ρêU) + p (∇ ·U) = ρH, (10)

can be used instead of (3). In either case, there are no source terms related to phase change
in (3) or (10), as observed in [Ooy90] and [DAB+14]. Finally, to close the system (1)–(4)
with (7), we consider a general equation of state for moist air written as p = p(ρ, T, qa, qv, ql).
(Because qa + qv + ql = 1 we could remove one of these three arguments from the equation of
state; for clarity of exposition, however, we leave all three.)

In the low Mach number model, we write the pressure, p(x, t), with x = (x, y, z), as the
sum of a base state pressure, p0(z, t), and a perturbational, or dynamic, pressure, p′(x, t),
such that |p′|/p0 = O(M2). In contrast to anelastic models, the perturbations in density
and temperature themselves do not need to be small for the equations to remain valid; as
long as those perturbations do not result in the flow violating the assumption of a low Mach
number, hence small |p′|/p0, the equations remain valid. The base state is assumed to be in
hydrostatic equilibrium, i.e., ∇p0 = −ρ0gêz, where ρ0 = ρ0(z, t) is the base state density. The
fully compressible momentum equation (2) could be rewritten as

∂ (ρU)

∂t
+∇ · (ρUU) +∇p′ = −(ρ− ρ0)gêz,

with no approximation. The low Mach number momentum equation has an additional con-
tribution to the buoyancy term,

∂ (ρU)

∂t
+∇ · (ρUU) +∇p′ = −(ρ− ρ0)gêz −

(
ρ0
ρ

∂ρ

∂p0

∣∣∣∣
s

p′
)
gêz, (11)

as introduced by [KP12]. Here the derivative of ρ with respect to p0 is taken at con-
stant entropy, s, and is based on the low Mach number form of the equation of state, i.e.
p0(z, t) = p(ρ, T, qa, qv, ql). As pointed out in [VLB+13], this form of the momentum equation
is analytically equivalent to the momentum equation in the pseudo–incompressible equation
set, i.e.,

∂U

∂t
+U · ∇U + cpaθ∇π′ =

θ − θ0
θ0

gêz

with Exner pressure, π = (p/p00)
Ra/cpa (p00 is a reference pressure, while Ra and cpa stand for

the specific gas constant and constant–pressure specific heat of dry air, respectively), potential
temperature, θ = T/π, and the base state potential temperature, θ0, if we define a linearized
relationship between the perturbational pressures, p′ and π′.

To complete the low Mach number model for moist atmospheric flows we first replace p
by p0 in the equation of state and we then differentiate p0 = p(ρ, T, qa, qv, ql) along particle
paths. Following the derivation in [ABNZ08], with details as given in Appendix A, we derive
the following divergence constraint for the low Mach number model:

∇ ·U + α
Dp0
Dt

= S, (12)

with

α =
1

Γ1p0
, S =

[
1

ρpρ
(pqv − pql)− σ

(
ĥqv − ĥql

)] ev
ρ

+ σH, (13)
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where pρ = ∂p/∂ρ|T,qi , pT = ∂p/∂T |ρ,qi , pqi = ∂p/∂qi|ρ,T,(qj ,j 6=i), ĥp = ∂ĥ/∂p|T,qi , ĥqi =

∂ĥ/∂qi|T,p,(qj,j 6=i), Γ1 = ∂(log p)/∂(log ρ)|s, and σ = pT / (ρcpmpρ), where cpm = ∂ĥ/∂T |p,qi is
the specific heat of moist air at constant pressure. Here, as in (11), |s refers to the derivative
at constant entropy. Notice that both α and S in the divergence constraint (12) depend on the
water composition of moist air, qv and ql. Most importantly the constraint on the divergence
of the velocity field retains compressibility effects from stratification as well as latent heat
release and compositional changes.

Summarizing the low Mach number equation set for moist atmospheric flows in the form
we will use, we have

∂(ρqa)

∂t
= −∇ · (ρqaU) (14)

∂(ρqw)

∂t
= −∇ · (ρqwU) (15)

∂(ρĥ)

∂t
= −∇ · (ρĥU) +

Dp0
Dt

+ ρH, (16)

∂U

∂t
= −U · ∇U −

1

ρ
∇p′ −

(ρ− ρ0)

ρ
gêz −

(
ρ0
ρ2

∂ρ

∂p0

∣∣∣∣
s

p′
)
gêz, (17)

∇ ·U = −α
Dp0
Dt

+ S, (18)

where the total mass density is defined as

ρ = ρqa + ρqw. (19)

Contrary to the original compressible equation set (1)–(3) together with (4) and (7) and a
given equation of state, the total pressure field, p, is now decoupled from the density and the
other state variables in the enthalpy and momentum equations (16) and (17) (to be compared
with (3) and (2)). Instead of having ∇p in the momentum equation (17), we now have ∇p′,
where p′ is a perturbational pressure on the background pressure p0, that is no longer related
to the other state variables through the equation of state. That is, pressure is no longer
advanced in time through system (14)–(18), and hence acoustic modes are filtered out from
the original compressible governing equations. In practice, p′ is computed in such a way
that the divergence constraint (18) is satisfied at a given time, analogous to what is done for
incompressible flows. While the equation of state might at first glance appear to be missing
from the low Mach number equation set, it is in fact encapsulated in the constraint, (18),
which was derived by differentiation of the equation of state along particle paths. This differs
substantially from the anelastic approximation which results from replacing the density by
the background density in the continuity equation, which thus contains no information about
the equation of state.

An underlying assumption in the low Mach number approximation is that the pressure
remains close to the background pressure. Heat release and large–scale convective motions in
a convectively unstable background can both cause the background state to evolve in time. As
discussed in [Alm00] and demonstrated numerically in [ABRZ06b] for an externally specified
heating profile, if the base state does not evolve in response to heating, the low Mach number
method quickly becomes invalid. For the small–scale motions of interest here, the base state
can effectively be viewed as independent of time; however, for the sake of completeness we
retain the full time dependence of the base state in the development of the methodology.
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3 Moist thermodynamics

Phase changes and thus variations in water composition of moist air are introduced in the
flow dynamics through the divergence constraint (18), specifically through α and S. These
parameters are evaluated at a given time accounting for the current water composition in
terms of liquid and vapor, and thus accounting for phase transitions and the current saturation
requirements, given the prognostic state variables. To define α and S according to (13) in the
divergence constraint (18), we here consider dry air and water vapor to be ideal gases (see,
e.g., [Ooy90, Sat03, KSD07]), and note that while the low Mach number formulation allows a
more general equation of state, this is a standard assumption in atmospheric modeling.

The partial pressures of dry air and water vapor are then given by pa = ρqaRaT and
pv = ρqvRvT, where Ra = R/Ma and Rv = R/Mv are the specific gas constants for dry air
and water vapor, respectively, with R the universal gas constant for ideal gases, and Ma and
Mv the molar masses of dry air and water, respectively. The sum of the partial pressures
defines the total pressure of a parcel,

p = pa + pv = ρRmT, (20)

where the specific gas constant of moist air is defined as

Rm = qaRa + qvRv =

(
qa
Ma

+
qv
Mv

)
R.

Additionally, the specific heat capacities at constant pressure can be defined as

cpa = cva +Ra, cpv = cvv +Rv, cpm = cvm +Rm,

for dry air, water vapor, and moist air, respectively. A common approximation in cloud models
is to neglect the specific heats of water vapor and liquid water (see, e.g., [BF02] for a study and
discussion on this topic). This was also assumed in the moist pseudo–incompressible model of
[OK14]. Here we consider specific heats for all three phases.

With this choice for the equation of state for moist air (eq. (20)), we have

α =
1

γmp0
, S =

[
1

(ǫqa + qv)
−

Le

cpmT

]
ev
ρ

+

[
1

cpmT

]
H, (21)

where γm = cpm/cvm is the isentropic expansion factor of moist air, ǫ = Ra/Rv = Mv/Ma,
and the latent heat of vaporization, Le, is defined as

Le = E0v +RvT + (cvv − cvl)(T − Ttrip). (22)

Note that both α and S depend on the composition of the moist mixture even when there is
no phase transition, that is, when ev = 0. We can now replace Γ1 as used in (12)–(13) by γm
for moist atmospheric flows.

The saturation vapor pressure with respect to liquid water, p∗v, is defined by the following
Clausius–Clapeyron relation:

p∗v(T ) = ptrip

(
T

Ttrip

)αv

exp

[
βv

(
1

Ttrip
−

1

T

)]
, (23)

with constants αv and βv given, for instance, by

αv =
cpv − cvl

Rv
, βv =

E0v − (cvv − cvl)Ttrip

Rv
, (24)
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as in [Rom08]. The saturated mass fraction of water vapor, q∗v , can be then computed from
the EOS, given in this case by

q∗v(ρ, T ) =
p∗v

ρRvT
, (25)

or equivalently by

q∗v(qa, p, T ) =
ǫqap

∗
v

p− p∗v
. (26)

Following [Ooy90, Sat03], we assume that air parcels cannot be supersaturated, and thus qv
cannot exceed its saturated value, q∗v . The water mass fractions, qv and ql, as well as the
temperature T , which are not explicitly computed in (14)–(18), are obtained by solving the
following nonlinear system of equations:

ĥ = cpm(qa, qv, ql) (T − Ttrip) +Rm(qa, qv)Ttrip + qvE0v,

qv = min [q∗v(ρ, T ), qw] ,

ql = qw − qv,





(27)

which satisfies the Clausius–Clapeyron relation and the saturation requirements, given (ρ, ĥ, qa, qw).
No approximation has been introduced so far to evaluate the water composition and there-

fore the thermodynamic properties of the moist fluid. We now need to estimate the evaporation
rate, ev, that is required to quantify the latent heat release in the divergence constraint. Con-
sidering that there is no analytical expression for such a rate and that we cannot derive it from
an approximate value of vapor water as previously discussed in the Introduction, we introduce
the following approach. Taking into account that the evaporation rate ev is different from
zero only when a change of phase is taking place, that is, when qv = q∗v , we can rewrite the
conservation equation for qv (eq. (5)) as

ev =
∂ (ρq∗v)

∂t
+∇ · (ρq∗vU ) = ρ

Dq∗v
Dt

. (28)

We show in Appendix B that if qv = q∗v , then

ev = Ae∇ ·U + Be
Dp0
Dt

+ CeρH, (29)

where parameters Ae, Be, and Ce are in general functions of (ρ, T, qa, qv, ql). Otherwise, ev = 0
whenever qv < q∗v . In [LH82], the term ∇· (ρq∗vU) in (28) is replaced with ∇· (ρqvaU), where
(ρqva) stands for the water vapor content advected without considering the evaporation rate
in (5): ∂(ρqva)/∂t+∇ · (ρqvaU) = 0.

Finally, using (28) to estimate ev in S (eq. (21)) involves having a low Mach divergence
constraint where the source term depends on the pressure and the velocity field, i.e.,

∇ ·U + α
Dp0
Dt

= S

(
∇ ·U ,

Dp0
Dt

)
. (30)

A simpler expression can be obtained by rearranging the terms in (30), as shown in Appendix
C, which leads to a modified divergence constraint:

∇ ·U + α̃
Dp0
Dt

= S̃, (31)

similar to the general low Mach divergence constraint (12), with

α̃ =
1

γ̃mp0
, S̃ = σ̃H, (32)
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both depending on (ρ, T, qa, qv, ql). In particular if no heat source is considered, we have that
S̃ = 0 and all the information related to phase change is included in α̃. Now Γ1 in the general
low Mach constraint (12)–(13) is given by a modified isentropic expansion factor of moist air:
γ̃m (eq. (45) in Appendix C). Both divergence constraints, (30) and (31), are analytically
equivalent.

4 Numerical methodology

In order to solve the low Mach number equation set (14)–(18) we begin with the MAESTRO
code, which was originally designed to simulate low Mach number stratified, reacting flows in
astrophysical settings [ABRZ06a, ABRZ06b, ABNZ08, NAB+10].

We recall that for the moist equation of state considered here we replace Γ1 in the original
MAESTRO notation by γm. Since γm in general varies in space and time, the solution proce-
dure in the original MAESTRO algorithm replaces γm(x) by γm(z), that is, α(z) = 1/(γmp0)
in the divergence constraint (30) where γm is the lateral average of γm,

γm(z) =
1

A(ΩH)

∫

ΩH

γm(x) dΩ, (33)

where A(ΩH) =
∫
ΩH

dΩ, ΩH is a region at constant height for the plane–parallel atmosphere,
and dΩ represents an area measure. The same follows for γ̃m in the modified divergence
constraint (31): α̃(z) = 1/(γ̃mp0). The introduction of an averaged γm (or γ̃m) allows us to
rewrite the constraint (30) (or (31)) as

∇ · (β0U) = β0

(
S − α

∂p0
∂t

)
, (34)

as shown in [ABRZ06a] (Appendix B), with

β0(z, t) = β(0, t) exp

(∫ z

0
α(z)

∂p0
∂z′

dz′
)
,

(with S̃ and α̃ instead of S and α if the modified divergence (31) is considered). Moreover,
the momentum equation (17), including the correction term introduced by [KP12], can be
equivalently recast as

∂U

∂t
= −U · ∇U −

β0
ρ
∇

(
p′

β0

)
−

(ρ− ρ0)

ρ
gêz, (35)

as derived in [VLB+13], and discussed in [ABNZ15].
MAESTRO thus solves the low Mach equation set (14)–(16) with the momentum equation

(35) and the divergence constraint (34). A predictor–corrector formalism is implemented to
solve the flow dynamics, as detailed in [NAB+10]. In the predictor step an estimate of the
expansion of the base state is first computed, and then an estimate of the flow variables at the
new time level. In the corrector step results of the previous state update are used to compute
a new base state update as well as the full state update.

Since we are considering the time evolution of total water (15) and the definition of enthalpy
of moist air (9) involves a conservation equation (16) without source terms related to phase
change, all the information related to variations in the moist composition and latent heat
release is contained in the divergence constraint (34). Here qv and ql, as well as the local
temperature T , must be computed point–wise in order to define α, S, and β0 (or α̃, S̃, and β0).
Point–wise values of (qv, ql, T ) are thus diagnostically recovered by solving the nonlinear system
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(27), given the values of (ρ, ĥ, qa, qw) at a given time; we use the Newton solver described in
[DAB+14].

We consider two approaches for handling phase transitions depending on which divergence
constraint is used to define (34) in the numerical implementation: (30) or (31). In the first
case, which uses (30), the evaporation rate is evaluated according to (29) and introduced in
the source term S of the constraint. As previously remarked, there is a dependence of S on
the velocity field and the base state pressure. Consequently, approximate or lagged values of
U and p0 are used to estimate ev during the prediction step, which is later recomputed with
the updated values of U and p0 during the correction step. Notice, however, that during both
steps the moist composition and hence phase transitions are diagnostically recovered based on
the current values of (ρ, ĥ, qa, qw). The second approach consists of considering the modified
divergence constraint (31), in which case there is no need to estimate the evaporation rate
(29). Parameters α̃, S̃, and β0 in (34) are computed with (ρ, T, qa, qv, ql) given the current
values of (ρ, ĥ, qa, qw) throughout the predictor–corrector scheme for the flow dynamics.

Notice that considering the lateral average of γm(x) through (33) is the only approximation
introduced in the present model in terms of thermodynamic properties of the moist fluid. The
replacement of Γ1(x, t) by its lateral average Γ1(z, t) was demonstrated in [ABNZ08] to have
little effect on the astrophysical flows studied there. In the case of moist atmospheric flows,
Γ1 is given by γm which varies according to the local moist air composition at a given time
and position. If the modified divergence constraint (31) is considered, Γ1 is given by γ̃m which
varies not only according to the moist air composition but also the local values of (ρ, T ).
We can thus consider the effects of localized variations in Γ1 following [ABNZ08], by writing
Γ1(x, t) = Γ1(z, t) + δΓ1(x, t), and hence,

∇ ·U = −
1

(Γ1 + δΓ1)p0

Dp0
Dt

+ S,

instead of (18). Assuming that δΓ1 ≪ Γ1, we then have

∇ ·U = −
1

Γ1p0

Dp0
Dt

+ S +
δΓ1

Γ
2
1p0

Dp0
Dt

, (36)

which leads to

∇ · (β0U) = β0

(
S − α

∂p0
∂t

+
δΓ1

Γ
2
1p0

Dp0
Dt

)
. (37)

We will refer to the δΓ1–correction whenever (37) is considered instead of (34). Notice that
Dp0/Dt = ∂p0/∂t+U ·∇p0, and therefore, to solve (37) a lagged U is used in evaluating the
right–hand side, as described in [ABNZ08].

5 Numerical simulations

To validate the low Mach number method we compare simulations using the low Mach number
method to simulations using a fully compressible approach. The first problem we consider is
a benchmark problem presented in [BF02] for moist flows in an isentropically stratified back-
ground. We investigate both the first and second approach to implementing phase transitions,
and find very good agreement between the low Mach number and compressible simulations.
We then consider a problem described in [GC91] for non–isentropic background states and both
saturated and only partially saturated media, which was also studied in [DAB+14]. Finally,
we show a comparison of three dimensional simulations.
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5.1 Isentropic background state

Two–dimensional simulations of a benchmark test case are investigated in [BF02]. The com-
putational domain is 10 km high and 20 km wide; the background atmosphere is isentropically
stratified, at a uniform wet equivalent potential temperature, θe0 = 320K, and is saturated,
that is, qv = q∗v and ql > 0 everywhere in the domain. A warm perturbation in potential
temperature is introduced in the domain, which leads to a rising thermal. Here we use the
configuration and parameters as given in [DAB+14]. The normal velocity is set equal to zero
on the side and bottom boundaries; at the top boundary the normal velocity is set equal to the
velocity corresponding to the base state evolution. (See [ABRZ06b] for further detail about
the base state evolution.) Homogeneous Neumann boundary conditions are used in solving
for the perturbational pressure. For the thermodynamic variables, we impose homogeneous
Neumann boundary conditions on the horizontal sides; the background state is reconstructed
by extrapolation at vertical boundaries and the full state is set equal to the base one there, in
order to determine the corresponding fluxes. The time step for the low Mach number compu-
tations is dictated by the advective CFL number which is based on the velocity but not the
sound speed; we set this to 0.9.

In the first approach to account for phase transitions the divergence constraint is given by
(30) with α and S defined by (21), and the evaporation rate (29). For this particular problem,
H = 0 in S, and hence it is not necessary to compute Ce in (29). For a 256 × 128 grid of
similar spatial resolution to that considered in [BF02], the maximum and minimum values
for the perturbational wet equivalent potential temperature (θ′e = θe − θe0) are 4.05402K and
−0.28931K, respectively, compared with the original 4.09521K and −0.305695K in [BF02].
Additionally, our computation yields 15.8199m s−1 and −9.45586m s−1, for the maximum and
minimum vertical velocities, respectively, to be compared with 15.7130m s−1 and −9.92698m
s−1 in [BF02]. The low Mach number code takes roughly a factor of six less computational
time than the compressible simulation at the same resolution run with the code described in
[DAB+14] at an acoustic CFL number of 0.9.

The second approach does not explicitly estimate ev, but rather considers a modified
divergence constraint (eq. (31)) with α̃ and S̃ defined by (32). Since for this particular problem,
H = 0, we have S̃ = 0. For a 256 × 128 grid, the maximum and minimum values for
the perturbational wet equivalent potential temperature θ′e are now given by 4.12911K and
−0.30190K, respectively. The time steps taken with the second approach are slightly larger
than with the first approach, and the overall computational time is roughly 10 to 15% less
with this approach than with the first approach.

Figure 1 shows results from computations of the problem described above; in this figure θ′e
from the low Mach number simulations is overlaid on the reference compressible solution, which
was computed with the fully coupled compressible solver described in [DAB+14] and validated
against results from [BF02]. The low Mach number simulations were carried out on a uniform
grid of 512 × 256; the compressible solution was performed on a finer grid of 1024 × 512 in
order to get a more accurate reference solution. In the top row of Figure 1 we see that the low
Mach number computation using the first approach agrees well with the compressible solution.
The computation with the second approach, however, shows a significant height difference of
the top of the thermal. In the bottom row of Figure 1 we see that accounting for the local
variation of γm(x) and γ̃m(x) through the the δΓ1–correction described in §4 improves the
fidelity of both approaches. With the first approach we see the improvement mostly in the
tips; with the second approach the height of the thermal is noticeably improved. The fact
that including the δΓ1–correction impacts the second approach more dramatically than the
first is consistent with the observation that replacing γm(x) by γm in the first approach meant
neglecting local variations in γm(x) from −8 × 10−5 to 6.5 × 10−4, while replacing γ̃m(x) by
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Figure 1: Comparison with the compressible solution for the moist thermal simulations at
1000 s. Perturbational potential temperature is shown with contours every 1K: first (left) and
second approach (right) The simulations in the bottom row include the δΓ1–correction.

γ̃m in the second approach meant neglecting local variations in γ̃m(x) at least an order of
magnitude larger, i.e. from −6.7 × 10−3 to 1.5 × 10−3. This behavior follows naturally from
the fact that in the modified divergence constraint (eq. (31)), γ̃m(x) accounts not only for the
varying water composition but also for all the latent heat released during phase transitions
(see Appendix C); therefore, local variations in γ̃m(x) are expected to be more important.

The formalism adopted for the present low Mach model considers straightforwardly the
effects of the specific heats of liquid water and water vapor in the evaluation of the thermody-
namic properties of the moist fluid, and in particular in the definition of the internal energy
and specific enthalpy of moist air, (8) and (9). The latter is not possible within the moist
pseudo-incompressible model introduced in [OK14], which relies on a θ − π (potential tem-
perature – Exner pressure) formalism defined with the specific heat of dry air. Neglecting the
specific heats of liquid water and water vapor in our model amounts to consider the Equation
set A investigated in [BF02] for the same isentropic background configuration. This is also
the benchmark problem considered in [OK14] to validate their model. Figure 2 shows the
low Mach number solution when the specific heats of water are neglected and contrasts it to
the general case where all specific heats are taken into account, like in Figure 1. In [BF02],
the maximum and minimum values for θ′e are 2.13647K and −1.39627K, respectively. As
discussed in [BF02], the impact of approximating thermodynamic properties of moist air can
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lead to important variations for certain configurations, as illustrated in this example.
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Figure 2: Solution to the isentropic background problem neglecting the specific heats of liquid
water and vapor water. Left: perturbational potential temperature shown with contours
every 0.5K; negative contours are dashed. Contrast to Fig. 6(a) in [BF02]. Right: comparison
with the low Mach number solution shown in Figure 1 (bottom left); perturbational potential
temperature is shown with contours every 1.5K.

5.2 Non–isentropic background state

We next consider a non–isentropic background state given by the hydrostatically balanced
profiles in [CF84] (eq. 2). For the following computations we define a computational domain
4 km high and wide, with periodic horizontal boundary conditions. The boundary conditions
at the top and bottom boundaries are as described for the isentropic case, except for the
thermodynamic variables which are extrapolated to determine the corresponding fluxes. Again
we use the configuration and parameters as given in [DAB+14]. All simulations with the low
Mach formulation were performed on a uniform grid of 256 × 256. As before, the reference
compressible solutions were computed on a finer grid, here 1024 × 1024.

The initial distributions of water vapor and liquid water in the atmosphere are set by
the relative humidity in the atmosphere, RH, measured in percentage and defined as RH =
(pv/p

∗
v)× 100. In particular if RH0 < 100%, then no liquid water should be initially present

in the atmosphere in order to guarantee the thermodynamic equilibrium of the initial state.
Following [DAB+14], we consider in this study two cases: first, a saturated medium with
RH0 = 100% and ql > 0 everywhere in the domain as in the isentropic background prob-
lem; and a second configuration with RH0 = 20%, and hence, no liquid water in the initial
background state.

Let us consider the first configuration with an initially saturated environment. As described
in [DAB+14], we initially introduce a warm perturbation of temperature. Figure 3 shows
solutions obtained with the low Mach formulation using the first and second approach for the
divergence constraint, as well as the compressible reference solution. Solutions are very similar
in all three cases even though the low Mach approximations yield thermals rising slightly faster.
In contrast to the previous example, introducing the δΓ1–correction does not visibly change
the results. For a 256 × 256 grid and a CFL factor of 0.9, the time steps for the low Mach
approximations are about 1.4 s compared to 0.04 s with the compressible formulation. The
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low Mach number simulation takes roughly a factor of 13 less computational time than the
compressible simulation.
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Figure 3: Initially saturated, non–isentropic background state. Liquid water mass fraction
(top) and vertical velocity (bottom) are shown for the reference compressible (left), and low
Mach number solution at 300 s using the first (center) and second (right) approach. Contours
are every 10−4 (top) and 1m s−1 (bottom); negative contours are dashed.

For the second configuration with RH0 = 20%, we consider the same previous temperature
perturbation and an additional circular perturbation in the relative humidity, which is set to
100%, with a transition layer, as detailed in [DAB+14]. Initially there is no liquid water in
the domain. Like Figure 1, Figure 4 compares the two low Mach number solutions to the
reference compressible solution; the top row shows the results using laterally averaged γm and
γ̃m, while the bottom row shows the results using the δΓ1–correction. Here the deviation
of γm(x) from γm(z) in the first approach ranges from −4.2 × 10−3 to 6.9 × 10−4, which is
considerably smaller than the deviation of γ̃m(x) from γ̃m(z) in the second approach, which
ranges from −0.17 to 3.3× 10−2.

Better agreement can be seen in Figure 5, where a term of order δΓ2
1 is also considered in

(36) for the δΓ1–correction:

∇ ·U = −
1

Γ1p0

Dp0
Dt

+ S +
δΓ1

Γ
2
1p0

Dp0
Dt

−
δΓ2

1

Γ
3
1p0

Dp0
Dt

. (38)

The time steps used in the low Mach computations are about 2.1 s, compared to 0.04 s with
the compressible formulation. The low Mach number simulation takes roughly a factor of 15
less computational time than the compressible simulation.
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Figure 4: Non–isentropic background state with a saturated perturbation. Moist specific
entropy is shown with contours every 50 J kg−1 K−1. The low Mach number solution at 300 s
(red) using the first (left) and second (right) approach overlays the reference compressible
solution (black). On the bottom are simulations that use the δΓ1–correction.

5.3 Three–dimensional simulation

Finally, we consider two interacting thermals rising in a three–dimensional, non–isentropically
stratified background in a domain 10 km on a side and 15 km high. The background state is
defined as in §5.2, with a relative humidity of RH0 = 20% and no liquid water in the initial
configuration. The following temperature perturbation is then introduced:

T ′ = 6cos2
(
πL1

2

)
+ 6cos2

(
πL2

2

)
,

where L1 = min(1, r1), L2 = min(1, r2), and

r1 =
1

4

√
(x− x1)

2 + (y − y1)
2 + (z − z1)

2 ,

r2 =
1

3

√
(x− x2)

2 + (y − y2)
2 + (z − z2)

2,

with x1 = y1 = 5km, z1 = 7.5 km and x2 = y2 = 7km, z2 = 7.5 km. Within the regions where
the temperature is perturbed, we also perturb the relative humidity by setting RH equal to
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Figure 5: Non–isentropic background state with a saturated perturbation. Moist specific
entropy is shown with contours every 50 J kg−1 K−1. The low Mach solution at 300 s (red)
using the δΓ1–correction given by (38) overlays the reference compressible solution (black).

50% for r1 < 3 km and r2 < 2 km, for each initial thermal, with corresponding transition
layers:

RH = RH0 + (50 − RH0) cos
2
(π
2
[r1 − 3]

)
, 3 ≤ r1 ≤ 4,

RH = RH0 + (50 − RH0) cos
2
(π
2
[r2 − 2]

)
, 2 ≤ r2 ≤ 3.

We consider the low Mach number formalism using the second approach (modified diver-
gence constraint (31)) to numerically implement phase transitions, with the δΓ1–correction
given by (38). As before, the low Mach number solutions are contrasted to reference com-
pressible solutions. For a uniform grid of size 256× 256× 384, the time step in the low Mach
number simulation is approximately 3 s, compared to 0.1 s in the compressible simulation. For
this particular problem, the total run time of the low Mach number simulation is roughly
a factor of 5 less than that of the compressible simulation. Figure 6 illustrates the forma-
tion of liquid water as computed with both formulations. The relative difference between the
maximum values of ql in the compressible and the low Mach number solutions is roughly 8%
at t = 500 s and 4% at t = 1000 s, the two times shown in Figure 6. Figure 7 shows the
horizontal budgets of liquid water, ql(z), computed using formula (33), at t = 200s and at
the two simulation times shown in Figure 6. For t = 200 s practically the same solution is
recovered with both formulations, with a relative difference of 0.2% between the maximum
values of ql. Recalling that ql is diagnostically recovered in both the compressible and the low
Mach number approach, we can track the formation of liquid water by computing it after each
time step for comparison purposes. Local values of ql larger than 10−10 appear after 111 s
and 112.5 s for the compressible and low Mach number simulations, respectively. The Mach
number M associated with this particular problem remains lower than 0.05 during the entire
numerical simulation.

6 Summary

We have presented a new low Mach number model for moist atmospheric flows with a general
equation of state, based on the low Mach number model for stratified reacting flows intro-

15



Figure 6: Two interacting thermals in a three–dimensional non–isentropic background state.
Isosurfaces of liquid water for the reference compressible solutions (left) and the low Mach
number ones (right) at times 500 s (ql = 3.073 × 10−5) (top) and 1000 s (bottom) (ql =
3.214 × 10−5). The low Mach number solver uses the modified divergence constraint (31)
(second approach) with the δΓ1–correction given by (38).
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Figure 7: Horizontal budgets of liquid water, ql(z), computed with (33) at t = 200 s, 500 s and
1000 s. Reference compressible and low Mach number solutions are represented with solid and
dashed lines, respectively. More details can be appreciated in the zoomed region (right).

duced in [ABNZ08]. In our model we consider only reversible processes, namely water phase
changes as in [OK14], using an exact Clausius–Clapeyron formula for moist thermodynamics
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and considering the effects of the specific heats of water and the temperature dependency of
the latent heat. A set of invariant variables was used as prognostic variables in the equations
of motion, including in particular the total water content and a specific enthalpy of moist air
that accounts for the contribution of both sensible and latent heats. The evolution equations
can thus be solved without needing to estimate or neglect source terms related to phase change
during the time integration. The mass fractions of water vapor and liquid water are diagnos-
tically recovered as required during a time step by imposing the saturation requirements of
an atmosphere at thermodynamic equilibrium. The latter is an important property since up-
dating the solution while ignoring the varying water composition, may negatively impact the
accuracy of the moist flow dynamics, as investigated in [DAB+14].

We then considered a moist thermodynamic model that treats dry air and water vapor as
ideal gases to define the equation of state for moist air. In order to account for the latent
heat release in the low Mach divergence constraint for the velocity field, the evaporation
rate is estimated from the time variation of saturated water vapor within a parcel. The
amount of saturated water vapor within a parcel is determined by the Clausius–Clapeyron
formula as a function of the local thermodynamical state; the evolution of the state depends
on the local advected motions. An analytical expression for the evaporation rate was thus
derived that depends on local parameters given by the temperature and pressure, the water
composition, and the velocity field. Two approaches were then considered. In the first, the rate
of phase change can be computed to evaluate the latent heat release; in the second, a modified
divergence constraint can be analytically deduced by introducing the derived expression for
the evaporation rate in the original divergence constraint. Both approaches are analytically
equivalent and together with the low Mach number equation set allow us to characterize moist
atmospheric flows.

The MAESTRO code1 [NAB+10], originally designed to simulate stratified reacting flows
arising in astrophysical settings, was adapted to model moist atmospheric flows. A series of
test problems was investigated with both isentropic and non–isentropic background states, as
well as saturated and partially saturated regions in the atmosphere. Results were contrasted to
reference solutions obtained with a fully compressible formulation. Very good agreement with
the reference moist dynamics was shown using both the first and second approach (with the
δΓ1–correction), thus demonstrating that low Mach number models can serve as a reasonably
accurate and computationally efficient alternative to compressible codes for small-scale moist
atmospheric applications.
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A Derivation of the low Mach divergence constraint

We rewrite the conservation of mass (eq. (1)) as an expression for the divergence of velocity,

∇ ·U = −
1

ρ

Dρ

Dt
. (39)

1Available at http://bender.astro.sunysb.edu/Maestro/download/
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Differentiating the equation of state, written as p = p(ρ, T, qa, qv, ql), along particle paths, we
obtain

Dρ

Dt
=

1

pρ


Dp

Dt
− pT

DT

Dt
−

∑

i∈(a,v,l)

pqi
Dqi
Dt




=
1

pρ

(
Dp

Dt
− pT

DT

Dt
− (pqv − pql)

ev
ρ

)
,

with pρ = ∂p/∂ρ|T,qi , pT = ∂p/∂T |ρ,qi , and pqi = ∂p/∂qi|ρ,T,(qj ,j 6=i). An expression for DT/Dt
can be obtained by differentiating the definition of moist enthalpy (eq. (9)), and comparing
terms with the enthalpy equation (3):

ρ
Dĥ

Dt
= ρ


 ∂ĥ

∂T

∣∣∣∣∣
p,qi

DT

Dt
+

∂ĥ

∂p

∣∣∣∣∣
T,qi

Dp

Dt
+

∑

i∈(a,v,l)

∂ĥ

∂qi

∣∣∣∣∣
T,p,(qj ,j 6=i)

Dqi
Dt




= ρ

(
cpm

DT

Dt
+ ĥp

Dp

Dt
+
(
ĥqv − ĥql

) ev
ρ

)

=
Dp

Dt
+ ρH,

or, gathering terms,

DT

Dt
=

1

ρcpm

[(
1− ρĥp

) Dp

Dt
−
(
ĥqv − ĥql

)
ev + ρH

]
, (40)

where cpm = ∂ĥ/∂T |p,qi is the specific heat of moist air at constant pressure, ĥp = ∂ĥ/∂p|T,qi ,

and ĥqi = ∂ĥ/∂qi|T,p,(qj ,j 6=i). Coming back to equation (39) and replacing p by p0(z, t), we can
write the divergence constraint on the velocity field as (12) with α and S given by (13).

B Derivation of the evaporation rate

Considering that ev = ρDq∗v/Dt from (28) and differentiating q∗v = q∗v(ρ, T ) (eq. (25)) along
particle paths, we obtain

ev = ρ

[
∂q∗v
∂ρ

∣∣∣∣
T

Dρ

Dt
+

∂q∗v
∂T

∣∣∣∣
ρ

DT

Dt

]
,

with
∂q∗v
∂ρ

∣∣∣∣
T

= −
q∗v
ρ
,

∂q∗v
∂T

∣∣∣∣
ρ

= q∗v

(
αv − 1

T
+

βv
T 2

)
= q∗vφ(T ),

according to (25) and (23). With the equation of state (20), equation (40) becomes

DT

Dt
=

1

ρcpm

[
Dp

Dt
− Leev + ρH

]
, (41)

and hence,

ev =

q∗v

[
ρcpm (∇ ·U) + φ(T )

(
Dp

Dt
+ ρH

)]

cpm + q∗vφ(T )Le
; (42)

that is,

Ae =
q∗vρcpm

cpm + q∗vφ(T )Le
, Be =

q∗vφ(T )

cpm + q∗vφ(T )Le
, Ce =

q∗vφ(T )

cpm + q∗vφ(T )Le
, (43)
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into (29), replacing also p by p0(z, t).
Notice that another expression for ev can be derived considering q∗v = q∗v(qa, p, T ) (eq. (26))

in ev = ρDq∗v/Dt. Moreover, two more expressions for ev can be found using

DT

Dt
=

1

ρcvm
[−p (∇ ·U)− (Le −RvT )ev + ρH] ,

instead of (41), deduced from the conservation equation for internal energy ê instead of en-
thalpy ĥ. Numerical computations using different formulations for ev yield practically identical
results.

C Modified divergence constraint

Rearranging terms in (30), after having introduced the estimate of ev (eq. (29)) in S (eq.
(21)), yields the modified divergence constraint (31) with

α̃ =

1

γmp0
−

Be

ρ

[
1

(ǫqa + qv)
−

Le

cpmT

]

1−
Ae

ρ

[
1

(ǫqa + qv)
−

Le

cpmT

] ,

S̃ =

[
1

cpmT

]
H + Ce

[
1

(ǫqa + qv)
−

Le

cpmT

]
H

1−
Ae

ρ

[
1

(ǫqa + qv)
−

Le

cpmT

] = σ̃H;

and thus

σ̃ =
ρ {(ǫqa + qv) + Ce [cpmT − (ǫqa + qv)Le]}

(ǫqa + qv)ρcpmT −Ae [cpmT − (ǫqa + qv)Le]
. (44)

After some manipulation, we can write that α̃ = 1/(γ̃mp0) with

γ̃m = γm

[
1 + cvmΦ

1 +RmTφ(T )Φ

]
, Φ =

q∗v [RmLe − cpmRvT ]

cvmRmT [cpm + q∗vφ(T )Le]
, (45)

using (43). In particular if there is no phase transition (ev = 0), then Φ = 0 and γ̃m = γm;
similarly, Ae = Ce = 0 in (44) and σ̃ = σ.

As pointed out in Appendix B, three more expressions for ev, other than (42), can be
derived yielding four different formulations for α̃ and S̃ in the modified divergence constraint
(31). Nevertheless, all of them yield practically identical numerical results.
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