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GOBET and LIU - Rare event simulation using reversible shaking transformations

RARE EVENT SIMULATION USING REVERSIBLE SHAKING
TRANSFORMATIONS

E. GOBET∗ AND G. LIU†

Abstract. We introduce random transformations called reversible shaking transformations
which we use to design two schemes for estimating rare event probability. One is based on in-
teracting particle systems (IPS) and the other on time-average on a single path (POP) using ergodic
theorem. We discuss their convergence rates and provide numerical experiments including continuous
stochastic processes and jump processes. Our examples cover rather important situations related to
insurance, queueing system and random graph for instance. Both schemes have good performance,
with a seemingly better one for POP.
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1. Introduction.

1.1. Context and framework. The analysis of rare events is an important
issue in economy, engineering and life sciences among other fields, with significant ap-
plications such as actuarial risks [AA10], communication network reliability [Rob03],
aircraft safety [PW05], random graphs [Bol01] applied to social networks and analysis
of epidemic spreading etc, see [Buc04, RG09] and references therein.

We start by specifying the probabilistic setting, which takes a rather general form
to include both finite and infinite dimensional situations, examples are given later.
The state space is described by a measurable space (S, S), where (S, dS) is a metric
space1 and S is the Borel sigma-field generated by its open sets. Given a probability
space (⌦,F,P), we consider a random variable (measurable mapping) X : ⌦ 7! S

and a measurable set A ( S, then the rare event under investigation is defined by
{X 2 A}. In this work, we aim at numerically computing the rare-event statistics

(1.1) P (X 2 A) and E (ϕ(X)|X 2 A)

for bounded measurable functions ϕ : S 7! R. To avoid uninteresting situations, we
assume from now on that P (X 2 A) > 0.

If P (X 2 A) is very small (say smaller than 10−4), a plain Monte Carlo method is
inefficient because the target rare event is realized in only a very small proportion of
simulations. One way to circumvent this problem is to use Important Sampling (IS)
techniques [RK08]. In short, IS techniques use information on the specific configura-
tion of the model (given by X and A) to design a new probability measure under which
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1For the applications we have in mind, it may be an Euclidean space equipped with the usual
distance, or the space of continuous functions C([0, 1],R) equipped with the uniform metric, or the
space of càdlàg functions D([0, 1],R) with the Skorohod topology [Bil99].
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rare events are more likely to occur. Thus this approach heavily relies on the par-
ticularity of the model. More recently, an IPS (Interacting Particle System) method
(a.k.a. Genetic Genealogical algorithm) has been designed in [Del04, DG05, CDLL06]
to estimate the probability of rare event related to the terminal value of a Markov
chain, see [KLL12] for switching di↵usions. And in [CDFG12], the IPS algorithm is
used to estimate probability of rare event related to a static finite dimensional distri-
bution via a particular Markov kernel, which is called shaking transformation in this
work. The splitting techniques initiated in [VV91] correspond to another particle-
based approach where processes are selected and split randomly as they reach rarer
and rarer sets; unlike the usual IPS of [DG05], the number of particles becomes ran-
dom.

1.2. Contributions. Our methodology is in the vein of methods where sampling
is performed under the initial measure (thus di↵erent from IS) and where {X 2 A} is
included in a cascade of bigger and bigger events {X 2 Ak}06k6n built from nested
S-subsets

(1.2) S := A0 ⊃ · · · ⊃ Ak ⊃ · · · ⊃ An := A,

similarly to the usual splitting methodology [VV91]. Here the integer number n > 2
of intermediate subsets is fixed. Our main contributions are threefold.

a) In this work, we make use of reversible random transformations (so-called shak-
ing transformations) that leave invariant the distribution of X (see hypothesis (K)).
Our first contribution (see Section 3) is to give explicit forms of such transformations
in many cases (including stochastic processes), which are easier to implement than
Metropolis-Hasting or Gibbs type transformations and turn out to be efficient in our
subsequent numerical experiments. Their parametrization is rather tractable and is
an asset for appropriately tuning the shaking force. In addition, combined with rejec-
tion techniques, it allows to define another random transformation leaving unchanged
the distribution of X restricted to Ak (see Proposition 2.2).

b) Secondly, we generalize the IPS algorithm in [CDFG12] (where the state space
is Rd) to a general metric case (S, dS), allowing for instance to consider spaces of
continuous-time paths. Actually this constitutes a completely new point of view for
problems involving stochastic processes, as explained below in Subsection 1.3.

c) Thirdly, for computing (1.1) we propose a new method, called POP (Par-
allel One-Path ergodic shaking), which numerically evaluates in intermediate steps
P (X 2 Ak|X 2 Ak−1) for each k. The idea seems similar to the usual splitting
methodology [VV91], but the novelty of POP is that each conditional probability
is independently estimated as the empirical occupation measure of Ak by a suitable
Markov chain of length N . In other words, as a di↵erence with usual methods where
the convergence is achieved using a large number of (almost) independent samples,
the POP method relies on the ergodicity of Markov chain and converges as N ! +1.
It has the advantage of allowing parallel and separated computations of conditional
probabilities, thus reducing the global computational time and the interdependency
e↵ects compared to IPS method. This idea of decomposing a rare event into a series
of non-rare ones is not new, but to our knowledge it is the first one where those non-
rare probability estimations can be made independent. The benefit is visible in our
experiments where the standard deviation may be reduced by a factor 4 or more.

Contrary to importance sampling techniques, we don’t need any supplementary
knowledge about what the typical realizations of rare event are. Thus our methods
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apply quite generally without too much caring of specific model configuration. This
will be seen in various numerical examples.

The organisation of the paper is as follows: after motivating furthermore our ab-
stract probabilistic model, we describe the algorithms in Section 2. Section 3 gathers
various examples of shaking transformations, relevant for the subsequent applications
and numerical tests exposed in Section 4. We conclude in Section 5.

1.3. Digression when S is a space of paths (e.g. C([0, 1],R) or D([0, 1],R)).
We would like to emphasize the advantage of our abstract setting of metric space
(S, dS), in particular when dealing with continuous-time stochastic processes (Zt)t>0.
We think that this issue is rather important for applications to stochastic processes.
For the exposure, consider for instance that Z 2 C([0, 1],R). In our work the method-
ology for rare-event simulation of Z will not be performed as a scheme creating a
time-evolution of the marginals of Z, i.e. Zτ0 ! · · · ! Zτi ! · · · ! Z1 (where
τi = iδ for a time step δ > 0 or τi is a specific hitting time): this would be the natural
approach for IPS selection-mutation procedure of [DG05, CDLL06][CDG11, Section
6] or splitting methods of [VV91, DD09], where in both cases Z is required to be a
Markov process and the skeleton (Zτi)i>1 to be a Markov chain. In our approach,
we ignore the dynamics of Z and treat the rare-event issue written on a dynamic
model as a static problem on the space of paths. Our two schemes based on shaking
transformation will produce a Markov chain on the path space C([0, 1],R).

Doing so, we avoid Markovian assumptions on Z and this enables very easily
to consider path-dependent stochastic di↵erential equation, like HJM framework for
interest rates, see [HJM92], or stochastic evolution equations on Banach spaces, see
e.g. [PZ14]. Handling discontinuous paths in S = D([0, 1],R) includes usual models
and important applications for ruin in insurance [AA10], queuing theory in commu-
nication networks [Rob03] etc. Our approach can handle problems with infinite-time
horizon as well.

2. Reversible shaking transformation and algorithms.

2.1. Shaking transformation and invariance of conditional distribution.
Since P(X 2 A) > 0, in view of the inclusion (1.2) we have P(X 2 Ak) > 0 for any k,
which justifies the decomposition

(2.1) P (X 2 A) =
n
Y

k=1

P (X 2 Ak|X 2 Ak−1) .

In this section, the standing assumption is
(K) There is a measurable mapping K : S⇥Y 7! S, where (Y,Y) is a measurable

space, and a Y-valued random variable Y independent of X such that the
following identity in distribution holds:

(2.2) (X,K(X,Y ))
d
= (K(X,Y ), X).

To simplify notation when unambiguous, we simply write K(·) := K(·, Y ). Identity
(2.2) implies that X and K(X) have the same distribution: in our algorithms, K

will serve to build Markov chains with invariant distribution given by that of X and
that of X restricted to Ak (see Definitions 2.3 and 2.5). The exact form of K and
Y is specific to the model at hand, examples are given in Section 3. We expect the
random transformation X 7! K(X) to slightly modify values of X while preserving its
distribution: this motivates the label of shaking transformation. Based on K(·), for
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each intermediate subset we define a shaking transformation with rejection as follows.

Definition 2.1. Let k 2 {0, 1, · · · , n− 1}. Under (K), define

(2.3) MK

k :

(

S⇥ Y ! S,

(x, y) 7! K(x, y)1K(x,y)2Ak
+ x1K(x,y)/2Ak

.

We set MK

k (.) := MK
k (., Y ) where Y is the generic random variable defined in (K).

In [CDFG12] this kind of transformation is used to design an interacting particle
algorithm for rare events related to random variables in Rd. Here we generalize it
to the general state space S. Proposition 2.2 and Theorem 2.4 when S = Rd have
similar counterparts in [CDFG12] which proofs make use of explicit Markov transition
kernels. Here in order to generalize, we follow a di↵erent presentation, seemingly more
adapted to (K) and to our general state space setting.

Proposition 2.2. Let k 2 {0, 1, · · · , n− 1}. The distribution of X conditionally
on {X 2 Ak} is invariant w.r.t. the random transformation MK

k : i.e. for any bounded
measurable ϕ : S ! R we have

(2.4) E
(

ϕ(MK

k (X))|X 2 Ak

)

= E
(

ϕ(X)|X 2 Ak

)

.

The above equality still holds if ϕ(x) is replaced by ϕ(x, U) where U is a random
variable independent of X and Y (defining MK

k ).
Proof. From Definition 2.1 and (K), we write that E

(

ϕ(MK

k (X))1X2Ak

)

equals

E
(

ϕ(K(X))1X2Ak
1K(X)2Ak

)

+ E
(

ϕ(X)1X2Ak
1K(X) 62Ak

)

= E
(

ϕ(X)1K(X)2Ak
1X2Ak

)

+ E
(

ϕ(X)1X2Ak
1K(X) 62Ak

)

= E (ϕ(X)1X2Ak
) .

The equality (2.4) readily follows. The extension to random ϕ(·, U) is similar.

2.2. Application to IPS algorithm. We are now in a position to put the rare
event probability estimation problem in the framework of interacting particles system,
which evolves according to the following dynamics.

Definition 2.3. We define a S-valued Markov chain (Xi)06i6n−1, as follows:

(2.5) X0
d
= X, Xi := MK

i (Xi−1) = MK
i (Xi−1, Yi−1) for 1 6 i 6 n− 1,

where (Yi)06i6n−2 is a sequence of independent copies of Y (defined in (K)) and
independent of X0.

The IPS interpretation will follow from the next result.
Theorem 2.4. Let k 2 {1, · · · , n}. We have:

(2.6) P (X 2 Ak) = E

 

k−1
Y

i=0

1Ai+1
(Xi)

!

.

For any bounded measurable function ϕ : S ! R we have

(2.7) E (ϕ(X)|X 2 Ak) =
E
⇣

ϕ(Xk−1)
Qk−1

i=0 1Ai+1
(Xi)

⌘

E
⇣

Qk−1
i=0 1Ai+1

(Xi)
⌘ .
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The above formula is still valid if ϕ(x) is replaced by ϕ(x, U) (as in Proposition 2.2)
where U is a random variable independent of (X,X0, Y0, . . . , Yk−2).

Proof. We first establish (2.7) by induction on k. We start with k = 1: obviously

E (ϕ(X,U)|X 2 A1) =
E (ϕ(X,U)1A1

(X))

P (X 2 A1)
=

E (ϕ(X0, U)1A1
(X0))

E (1A1
(X0))

.

Assume now that (2.7) holds for k, any function ϕ and any random variable U allowed,
and let us prove (2.7) for k+1. By a slight abuse of notation, we still write ϕ(x, U) =
ϕ(x), where U is independent of (X,X0, Y0, . . . , Yk−1). We have

E

 

ϕ(Xk)
k
Y

i=0

1Ai+1
(Xi)

!

= E

 

ϕ(MK

k (Xk−1))1Ak+1
(MK

k (Xk−1))
k−1
Y

i=0

1Ai+1
(Xi)

!

= E
(

ϕ(MK

k (X))1Ak+1
(MK

k (X))|X 2 Ak

)

E

 

k−1
Y

i=0

1Ai+1
(Xi)

!

(2.8)

where we have applied the induction hypothesis. Then Proposition 2.2 yields

E
(

ϕ(MK

k (X))1Ak+1
(MK

k (X))|X 2 Ak

)

= E
(

ϕ(X)1Ak+1
(X)|X 2 Ak

)

= E (ϕ(X)|X 2 Ak+1)E
(

1Ak+1
(X)|X 2 Ak

)

.(2.9)

Another application of Proposition 2.2 and of (2.8) with ϕ ⌘ 1 shows that

E
(

1Ak+1
(X)|X 2 Ak

)

= E
(

1Ak+1
(MK

k (X))|X 2 Ak

)

=
E
⇣

Qk
i=0 1Ai+1

(Xi)
⌘

E
⇣

Qk−1
i=0 1Ai+1

(Xi)
⌘ .(2.10)

Substituting (2.10) into (2.9) and (2.8) gives the equality (2.7) for k + 1. Lastly, the
proof of (2.6) now follows easily from (2.10) and (2.1).

By the above theorem, the rare event probability is written in form of an unnor-
malized Feynman-Kac measure for interacting particle systems (see [Del04, DG05] for
detailed discussions). This enables to use numerical algorithms for estimating it. In
general, an interacting particle (a.k.a. genetic genealogical) algorithm provides a way
to estimate

E

 

f(X0, . . . , Xn)
n−1
Y

i=0

Gi(Xi)

!

where f and Gi are bounded and (Xi)06i6n is a Markov chain. In view of (2.6) with
k = n the rare event probability corresponds to f ⌘ 1 and Gi(·) = 1Ai+1

(·) and the
corresponding Markov chain is defined in Definition 2.3.

The detailed description of interacting particle algorithms can be found in [DG05,
CDG11] (see also [CDFG12] for S = Rd). The adaptation to our rare event problem
in a general state space S is made without difficulty. As in [CDG11], we introduce
an extra rejection parameter α 2 [0, 1] which increases the independent resampling
e↵ect: in [DG05, CDFG12], α = 1.

The algorithm below generates at each time i 2 {0, . . . , n − 1} a sample of M
elements in S, whose empirical measure approximates the distribution of X con-

ditionally on {X 2 Ai}. We denote by (Y
(m)
i : 1 6 m 6 M, 0 6 i 6 n − 2)
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(resp. (U
(m)
i : 1 6 m 6 M, 0 6 i 6 n − 2)) a sequence of independent copies of Y

from Assumption (K) (resp. of a uniformly distributed random variable on [0, 1]).

Initialization:
Draw (X

(M,m)
0 ,m = 1, · · · ,M) which are M independent copies of X

p
(M)
0 = 1

M

PM
m=1 1A1

(X
(M,m)
0 )

for i = 0 until n− 2 do

Ii = {m 2 {1, . . . ,M} s.t. X
(M,m)
i 2 Ai+1}

for m = 1 until M do

Selection step:

if U
(m)
i < α and X

(M,m)
i 2 Ai+1 then

X̂
(M,m)
i = X

(M,m)
i

else

X̂
(M,m)
i = X

(M,m̂)
i where m̂ is drawn independently of everything

else and uniformly in the set Ii
end

Mutation step:

X
(M,m)
i+1 = MK

i+1(X̂
(M,m)
i , Y

(m)
i )

end

p
(M)
i+1 = 1

M

PM
m=1 1Ai+2

(X
(M,m)
i+1 )

end

Result: p(M) =
Qn−1

i=0 p
(M)
i

Algorithm 1: Interacting Particle System algorithm

In the case α = 1, the above algorithm takes the same form as that in [CDFG12,
Section 2] for random variables in Rd. The di↵erence in our work lies in the general
state space for which Feynman-Kac formulae (Theorem 2.4) are nevertheless valid
due to the assumption (K): once obtained these formulae, deriving the above IPS
algorithm follows a standard routine whose details are left to the reader. Applying
this algorithm to stochastic processes is exposed in Sections 3 and 4. The convergence
properties of this algorithm are postponed to Subsection 2.4.1.

2.3. Application to POP algorithm. In Proposition 2.2, we have seen that
the distribution of X conditionally on {X 2 Ak} is invariant with respect to MK

k .
This property allows us to put the problem of computing P (X 2 Ak+1|X 2 Ak)
or E (ϕ(X)|X 2 Ak) in the ergodic Markov chain setting and therefore to compute
P (X 2 A) as a consequence of (2.1). Before entering into details, we recall that pro-
vided that (Zi)i>0 is a Markov chain on a measurable space with a unique invariant
distribution π, the Birkho↵’s theorem for ergodic Markov chains gives

1

N

N−1
X

i=0

f(Zi) −!
N!+1

Z

fdπ a.s.(2.11)

for π-a.e. starting point Z0. Here f is a bounded (or π-integrable) measurable func-
tion. See [MT09, Chapter 17] or [DMS14, Chapter 7].

For each k we define a Markov chain as follows.
Definition 2.5. For each k = 0, . . . , n− 1, given a starting point Xk,0, define

(2.12) Xk,i := MK

k (Xk,i−1) = MK
k (Xk,i−1, Yk,i−1) for i > 1

6



GOBET and LIU - Rare event simulation using reversible shaking transformations

where (Yk,i)i>0 is a sequence of independent copies of Y (defined in (K)) and inde-
pendent of Xk,0.

We assume additionally that the sequences ((Yk,i)i>0 : 0 6 k 6 n − 1) are
independent. The above process Xk,. is a Markov chain in S and one invariant measure
is the distribution of X conditionally on {X 2 Ak}. Then, provided that this is the
unique invariant measure, one can use the approximation (as N ! +1)

E (ϕ(X)|X 2 Ak) ⇡ 1

N

N−1
X

i=0

ϕ(Xk,i),(2.13)

which for ϕ ⌘ 1Ak+1
yields an approximation of P (X 2 Ak+1|X 2 Ak) and therefore

of the rare event probability P (X 2 A). Observe that each conditional probability is
computed separately, in parallel for each Ak, on a single path: this gives the reason
why we call this method POP for Parallel One-Path. Furthermore, these conditional
probabilities can be estimated independently, by taking independent initializations
(as defined below), i.e. by restarting the initialization from the beginning for each
step k with negligible extra time cost since n is usually small. Both the separate and
independent evaluations of conditional probabilities are nice properties of POP, and
are not shared with other existing algorithms to our knowledge.

The following algorithm evaluating P (X 2 A) gives a way to automatically ini-
tialize each step.2

Initialization:
X0,0 is a copy of X
for k = 0 until n− 1 do

for i = 1 until N − 1 do
Xk,i = MK

k (Xk,i−1, Yk,i−1)
end

p
(N)
k = 1

N

PN−1
i=0 1Ak+1

(Xk,i)
ik = arg min{j : Xk,j 2 Ak+1}
Xk+1,0 = Xk,ik

end

Result: p(N) =
Qn−1

k=0 p
(N)
k

Algorithm 2: Parallel One-Path algorithm

As previously mentioned, the n steps are almost separated, except for initializa-
tions. Thus our POP algorithm can be easily parallelized on di↵erent processors: for
instance, one can use a preliminary run to get all the initial positions in di↵erent sub-
sets/levels. Then all the ergodic time-averages are performed in parallel. We could
even use the same copy of Y throughout the di↵erent levels to save time used in the
generation of random variables Y .

Besides, this algorithm can also serve for estimating E(ϕ(X)|X 2 A) using the
Markov chain (Xn,.) and the approximation (2.13). This should even be less time-
consuming than computing P(X 2 A) since we only need to get a starting point
satisfying X 2 A and then do POP once at k = n to obtain an empirical distribution
of X|X 2 A.

Lastly, observe that increasing the accuracy of POP algorithm is elementary since
it suffices to keep on simulating the n Markov chains ((Xk,.) : 0 6 k 6 n− 1) until a

2Since the initialization is not done with the stationary distribution, in all our numerical exam-
ples, we use 1% percent burn-in time to reduce its impact.
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larger time horizon N 0. This is a significant di↵erence with IPS, for which increasing
accuracy implies increasing M and thus resimulating all the M particles system from
the beginning (because of interactions).

2.4. Convergence analysis for both algorithms.

2.4.1. Convergence of IPS. Convergence of the IPS algorithm for estimating
unnormalized Feynman-Kac measure is well studied in the literature, as the number
of particles M ! +1: under various hypotheses, are proved the law of large number,
central limit theorem (at rate

p
M) and non-asymptotic error estimation (fixed M).

Regarding Algorithm 1, it is known that the estimator is unbiased. A non-
asymptotic variance control is given in [CDG11]. Since in our algorithm the number of
intermediate levels are usually not large, we don’t need the assumption (M)m or (M̂)m
in [CDG11] and we can get similar results to Lemma 4.1 and Lemma 4.3 in [CDG11]

by only assuming that the following quantity δ̂k is finite for each k = 0, 1, · · · , n− 1

δ̂k := sup
(x,y)2A2

k+1

P(K(x) 2 Ak+2) + 1Ak+2
(x)P(K(x) 62 Ak+1)

P(K(y) 2 Ak+2) + 1Ak+2
(y)P(K(y) 62 Ak+1)

< +1(2.14)

where by convention An+1 = An. We adapt [CDG11, Corollary 5.2] to our setting.

Theorem 2.6. Under the assumption that all δ̂k’s are finite, we have the follow-
ing non-asymptotic control

E

 

∣

∣

∣

∣

p(M)

p
− 1

∣

∣

∣

∣

2
!

6
4

M

 

n−1
X

s=0

∆s

P (X 2 As+1|X 2 As)
+ 1

!

(2.15)

where ∆s =
Qn−1

k=s δ̂k.
Proof. We follow very closely the proof of [CDG11]. Actually in our setting, we

avoid their assumptions (M)m or (M̂)m which role is partly to get better estimates
as n is large: we thus just emphasize how to get rid of these assumptions in our work.
Firstly, we easily check that δ̂k defined in their assumption (Ĥ)m is the one given in
our theorem. Secondly with this estimate at hand, we can prove that (using notation
of their Equation (4.3))

sup
x,y2A2

k+1

Q̂k,n(1)(x)

Q̂k,n(1)(y)
6 ∆k.

Therefore, the upper bound on the r.h.s. of (4.5) in their Lemma 4.3 becomes ∆k (by
noticing that their δ̃k = 1). Lastly, the rest of the proof is similar in that the above
estimate propagates to their Corollary 5.2 in the form of our inequality (2.15).

The upper bound of Theorem 2.6 is useful to appropriately choose the shaking
transformation in order to make the error smaller. First, obviously we have δ̂k 6

supy2Ak+1

1
P(K(y)2Ak+2)

. In case of slight shaking, K(y) will di↵er little from y, so the

probability of going from Ak+1 to Ak+2 is small and δ̂k is large. Conversely, in case
of strong shaking and since Ak+2 is expected to be small, K(y) will be very likely to

exit Ak+2, resulting in a large δ̂k. Hence choosing an intermediate shaking force is
presumably the best choice, see later numerical experiments.

Finally, the upper bound (2.15) is rather qualitative and can not be seemingly
quantitatively computed except in very special cases (like Gaussian distribution).
More general cases are left to further research.
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2.4.2. Convergence of POP. (2.11) with its assumptions gives

1

N

N−1
X

i=0

1Ak+1
(Xk,i) −!

N!+1
P(X 2 Ak+1|X 2 Ak) a.s.(2.16)

for a.e. starting point Xk,0.
The convergence of ergodic theorem has been much studied in the literature, with

results like almost sure convergence, asymptotic and non-asymptotic fluctuations, see
for instance [MT09, DMS14]. Here we apply the recent work [ LMN13, Theorem 3.1]
in our rare event setting.

Theorem 2.7. For each k in {0, , · · · , n − 1}, assume that (Ak, dS) is a Polish
space and that the Markov chain (Xk,i)i>0 is πk-irreducible and Harris recurrent,
where πk is the distribution of X conditionally on {X 2 Ak}. If in addition the
”small set” condition holds: ”there exists a Borel set Fk ⇢ Ak of positive πk measure, a
positive number βk > 0 and a probability measure νk such that Pk(x, ·) > βkνk(·), 8x 2
Fk” where Pk(., .) is the transition kernel of Xk,., then there exists a constant Ck

depending on the model such that

E
⇣

(

p
(N)
k − P(X 2 Ak+1|X 2 Ak)

)2
⌘

6
Ck

N
.

For application in our rare event examples, the ”Polish assumption” is usually
satisfied when we consider the space of continuous functions C([0, T ],Rd) (T > 0)
(example of Subsection 4.1), or the space of càdlàg functions D([0, T ],Rd) (jump
processes in insurance, queueing system and Hawkes process in Subsections 4.2-4.3-
4.5) or RN, see [Bil99] for details. The random graph example in Subsection 4.4 is
associated to a finite space and the ”Polish assumption” is thus trivial.

But verification of the small set condition is more difficult. In the random graph
example, this condition is satisfied obviously since the state space is finite. In general,
extra work is still needed to verify the small set condition in each particular example.

Finally recall that our estimated rare event probability p(N) is the product of all

p
(N)
k ’s. Since we have already error control for each p

(N)
k and since these quantities

are bounded, by easy computations we can establish that the convergence rate is alsop
N for the estimation of rare event probability.

3. Construction of shaking transformation. In order to make previous al-
gorithms applicable, we now provide reversible shaking transformations in various sit-
uations (for random variables and random processes). Of course, Metropolis-Hastings
and Gibbs type transformations are natural candidates but our aim is to provide other
transformations that are presumably more suitable to the model under consideration.
Recall that one has to exhibit a shaking map K(·, ·) and a random variable Y such

that (X,K(X,Y ))
d
= (K(X,Y ), X).

3.1. Gaussian variable/process and stochastic differential equation (SDE
in short) driven by Brownian motion. For a standard Gaussian variable X := G
in Rd, a simple shaking transformation is

K(G,G0) = ρG +
p

1 − ρ2G0

with ρ 2 (−1, 1) and Y := G0 is a independent copy of G. Figure 1 gathers two
graphs of 100000 independent simulations of (G,K(G)) with their respective marginal

9
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Fig. 1. Shaking Gaussian variables in dimension 1, with ρ = 0.9 (left) and ρ = 0.5 (right)

histograms (of course close to the Gaussian distribution). The larger the value of ρ,
the slighter the shaking, the closer the points to the diagonal.

The same linear transformation works for Gaussian processes X := (Gt)06t6T

(T > 0 fixed), with zero mean and any co-variance function. In the case where X is
a d-dimensional Brownian motion, one can take slightly more general transformation
based on Wiener integrals: namely, for the i-th component of K(G), take a measurable
function ρi : [0, T ] 7! [−1, 1]d with |ρi,t| 6 1 and set

Ki(G) =

✓
Z t

0

ρi,s · dGs +

Z t

0

q

1 − |ρi,s|2dG0
i,s

◆

06t6T

(3.1)

where G0 = (G0
1, . . . , G

0
d) is another independent Brownian motion in Rd. Provided

that the matrix ρt = (ρ1,t, . . . , ρd,t) is symmetric and ρi · ρj ⌘ 0 for all i 6= j, this
transformation satisfies (K).

With this tool at hand, it is then straightforward to define reversible shaking
transformations of solution to a stochastic di↵erential equation of the form

dZt = b(t, Zt)dt + σ(t, Zt)dGt, Z0 independent of G,(3.2)

where coefficients b and σ fulfill appropriate smoothness and growth conditions in
order to have a unique strong solution [RY99]. Setting X = (Zt)06t6T it suffices to
define K(X) as the (strong) solution of dZ 0

t = b(t, Z 0
t)dt + σ(t, Z 0

t)dK(G,G0)t, Z
0
0 =

Z0 where the shaken Brownian motion K(G,G0) = K(G) is defined in (3.1): this
procedure satisfies (K). This will be applied to the example of Ornstein-Uhlenbeck
process in Subsection 4.1. Observe that this method can be directly extended to
non-Markovian equations driven by Brownian motion.

3.2. Poisson variable and compound Poisson process. For a Poisson vari-

able X := P
d
= Poisson(λ) with parameter λ > 0, a possible transformation is

K(P, [Bin(P, 1 − p), Poisson(pλ)]) = Bin(P, 1 − p) + Poisson(pλ)

where p 2 (0, 1), using extra independent Binomial and Poisson random variables, see
[Kin93, Chapter 5].

Invoking the same reference, the above decomposition holds also for compound
Poisson process (CPP in short) with parameter (λ, µ), i.e. X := (Pt)06t6T where

Pt =
PNt

k=1 Jk where N is a standard Poisson process with intensity λ and (Jk)k are

10
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i.i.d with distribution µ. Let p 2 (0, 1): by coloring at random the jumps of N in red

with probability 1 − p and in green with probability p, we can write Nt = Nr
t + Ng

t

and Xt = Xr
t + Xg

t , using obvious notations. Then Xr and Xg are two independent
CPP with parameters ((1 − p)λ, µ) and (pλ, µ). Using an extra independent CPP Y
distributed as Xg, it is easy to check that the following transformation satisfies (K):

K(X,Y ) = (Xr
t + Yt)06t6T .(3.3)

In Subsection 4.3, we will use this shaking transformation for the example of queueing
system with exponential inter-arrival time .

3.3. Other random variables and processes.

B Gamma, Exponential, χ2 distributions. For a random variable X = Γ with
Gamma distribution Gamma(a, b) (a > 0, b > 0) defined by P(Γ 2 dx) = cab

axa−1e−bx1x>0dx
for a normalizing constant ca, we can provide a simple transformation based on the
beta-gamma algebra (see [CY12, Chapter 4]). Let p 2 (0, 1): with the notation of
(K), take Y = (Beta(a(1 − p), ap), Gamma(ap, b)) with two extra independent Beta
and Gamma distributed random variables, and set

K(Γ) = Γ Beta(a(1 − p), ap) + Gamma(ap, b).(3.4)

It satisfies (K). In particular, in the case a = 1 we recover the case of exponen-
tial distribution Exp(b). Note also that shaking χ2(k) distribution directly follows
from the above since this distribution coincides with that of 2Gamma(k

2 , 1). Figure 2
represents 100000 independent simulations of (Γ,K(Γ)) with their respective marginal
histograms. The smaller the value of p, the slighter the shaking. On the plots, observe
that Γ and K(Γ) have the same distribution (coherently with (K)).

Fig. 2. Shaking Gamma(2.5, 0.12) variables with p = 0.1 (left) and p = 0.5 (right)

B (s)-distribution. For X := T with the (s)-distribution given by P(T 2 dt) =
1p
2πt3

exp(− 1
2t )1t>0dt which represents the hitting time of level 1 by a standard

Brownian motion, we have (at least) two shaking transformations. First, we can
shake Brownian motion as previously exposed. Alternatively, we can use the well-

known identity T
d
= G−2 where G is a standard Gaussian random variable and apply

the Gaussian shaking transformation. The underlying change of variable principle

can be stated ”informally” as follows: assume that X
d
= f(Z) for some invertible

function f and for a random variable Z having a shaking transformation KZ , then
KX(·) = f(KZ(f−1(·))) defines a natural shaking transformation for X.

11
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B Uniform variable on [0, 1]. We can rely on the relation with exponential distri-

bution to write X := U
d
= exp(−Exp(1)). Let p 2 (0, 1): in view of (3.4), the following

transformation satisfies (K),

K(U) = UBeta(1−p,p) exp(−Gamma(p, 1))

with extra independent Beta and Gamma random variables.

Now that we are in a position to shake uniform distribution, it is easy to shake

any distribution on R having a continuous CDF function F since F (X)
d
= Unif. This

is useful in the case F and F−1 are easily tractable. We do not list all the possibilities.

B Other shakings for random variables. In cases where explicit transformation is
not available, we can use implicit transformation. Namely, assume for instance that
X := f(Z1, · · · , Zn) with independent (Zi)i, which serves to simulate X through the
simulation of (Zi)16i6n, and suppose that each Zi has an explicit shaking transfor-
mation. Then the implicit shaking transformation for X is

K(X) = f(K1(Z1), · · · ,Kn(Zn))

where the exact expression of Ki may be di↵erent according to the type of random
variables Zi and each shaking is made independently of the others. For example, this

can be applied to X having Beta distribution because of the identity Beta(a, b)
d
=

Gamma(a,1)
Gamma(a,1)+Gamma(b,1) with independent Gamma distributions.

3.4. Other variations on the shaking.

B Randomized shaking. Actually, in the previous examples K(·, ·) is often written
as Kθ(·, ·) for a parameter θ serving to tune the shaking force. A first remark is that
instead of fixing the parameter value of θ, one can also randomize it, which gives rise
to another reversible shaking transformation.

Lemma 3.1. Assume that Kθ(·, Y ) satisfies (K) for any θ in a measurable space
⇥ and that K·(·, ·) defines a measurable function from ⇥⇥S⇥Y into S. Let T be any
⇥-valued random variable independent of Y , then KT (·, Y ) satisfies (K).

The proof is easy and left to the reader. As a consequence, all the shaking
transformations presented before can be generalized with a random parameter. This
randomization technique will be seen useful in the example of Section 4.6.

B Partial shaking. When the random variable X is built on several independent
random variables, it may be relevant to shake only some of them. For instance,
consider a general pure jump process (including CPP or renewal process), where
A = (An)n>1 represents the inter-arrival times and B = (Bn)n>1 represents the jump
sizes, A and B being independent: the shaking transformation may concern both A
and B, or only A (the jump times), or only B (the jump sizes). These alternatives
are tested in the subsequent examples on insurance and queueing system. Similarly,
for a SDE driven by both Brownian motion and another independent Levy process,
we can shake the first driving process or the second, or both.

Another strategy is to apply randomized partial shaking. For a model of the form
X := f(Zi, 1 6 i 6 n) with independent (Zi)i, when n large or n = +1 we can
reduce the computational cost by picking at random a subset of coordinates and only
shake independently the corresponding random variables. The property of reversible
shaking transformation is preserved owing to Lemma 3.1. This method will be used
in the random graph example of Subsection 4.4.

12
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4. Numerical examples. We now aim at comparing the numerical perfor-
mances of IPS and POP algorithms, using shaking transformations presented in Sec-
tion 3. The examples below are chosen according to their importance in applications
and also because they are numerically challenging, moreover for some of them we can
compute benchmark values using importance sampling techniques.

We have not optimized the choice of intermediate levels in these examples: only
very rough preliminary runs are done to make all conditional probabilities of the same
magnitude. The design and analysis of adaptive algorithms in the vein of [CDFG12]
is left to future research. However, observe that adding extra intermediate levels in
POP can be done directly, without changing the estimation for other levels, thus
preliminary runs are not necessary for POP; this is a significant advantage compared
to IPS where one would to resimulate the whole particle system.

Another important remark concerns the memory. While for IPS one has to store
all the particles (due to interactions), for POP only one particle per level needs to be
stored which constitutes a large memory save.

Lastly we report the means and standard deviations of the algorithms outputs
which are evaluated empirically by several runs (say 50 or 100).

Usually in POP method, one could use some burn-in time to reduce influence
of the initial position of Markov chain. In all examples, we use the first 1 percent
transitions as the burn-in time, except for the first level where no burn-in time is
needed.

4.1. One dimensional Ornstein-Uhlenbeck (OU in short) process driven
by Brownian motion. The OU process we consider is given by

(4.1) dZt = −Ztdt + dGt, Z0 = 0,

where G is a standard Brownian motion: it is in the form (3.2) and in the sequel, we
apply the Brownian motion shaking (3.1) with constant ρ.

Actually, the following rare events are described in terms of the path of (Zt)06t6T

with T = 1: instead of an exact simulation, we simply use an Euler scheme Z̃ with time
step h := T/m for m = 100 and piecewise constant path approximation between the
times tl := lh. This discretization scheme does not alter significantly the performance
of IPS and POP algorithms.

4.1.1. Maximum of OU process. Here the rare event is given by { max
06l6m

Z̃tl >

L} with L = 3.6. Because of the mean reverting e↵ect, the related probability is rather
small. By 107 direct Monte Carlo simulations with importance sampling technique
under the new probability dQ = exp(aGT − 1

2a
2T )dP where a = 5, we derive a 99%

confidence interval of the requested probability [0.977, 1.004]⇥ 10−7.

In (1.2) we take n = 5 intermediate sets associated to the levels Lk = L
q

k
n , k =

1, · · · , n. In the experiments we report, we change the values of ρ,α N and M .
Results. For the IPS and POP algorithms, we take respectively M = 100000 and

N = 100000 so that the computational e↵ort is similar. The following tables show
results for di↵erent values of (α, ρ) for IPS and of ρ for POP. Output statistics (mean,
standard deviation) are computed with 50 algorithm runs.

IPS α = 1 α = 0.5 α = 0
mean — std — std/mean mean — std — std/mean mean — std — std/mean

ρ = 0.9 1.06e-07 5.12e-08 0.48 1.01e-07 3.67e-08 0.36 1.01e-07 3.94e-08 0.39
ρ = 0.75 9.51e-08 2.15e-08 0.22 9.81e-08 1.76e-08 0.18 9.98e-08 2.46e-08 0.25
ρ = 0.5 9.32e-08 9.42e-08 1.01 7.32e-08 9.18e-08 1.25 8.27e-08 1.18e-07 1.42
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POP mean std std/mean
ρ = 0.9 9.80e-08 6.74e-09 0.07
ρ = 0.75 1.00e-08 9.52e-09 0.10
ρ = 0.5 1.05e-07 2.78e-08 0.27

We first notice that the probability is estimated coherently regarding the bench-
mark value (obtained by importance sampling). We note that POP has a better
performance compared to IPS (see the column std/mean), whatever the value of ρ is.
Regarding the variance, we observe that the value of α (used for extra resampling)
has no significant impact on IPS algorithm, while the value of ρ is important for both
IPS and POP with respectively ρ = 0.75 and ρ = 0.9 as optimal values. The above
standard deviations are comparable to the one using importance sampling, but our
approaches have the advantage to work in a rather general setting.

4.1.2. Oscillation of OU process. Now the rare event is associated to a large

oscillation of the OU process, i.e. we compute P

✓

max
06l6m

Z̃tl > L and min
06l6m

Z̃tl < −L

◆

with L = 1.6. Remark that in this situation standard important sampling tech-
niques with shifted Brownian motion do not work any more. By a crude Monte Carlo
algorithm with 7 ⇥ 109 simulations, we obtain a 99% confidence interval equal to
[3.97, 4.37]⇥ 10−7.

In our IPS and POP approaches, we simply take Lk = L
q

k
5 for k = 1, . . . , 5 and

define intermediate events as { max
06l6m

Z̃tl > Lk and min
06l6m

Z̃tl < −Lk}.
Results. In the following tables the empirical results of IPS and POP algorithms

are computed over 100 experiments, respectively with M = 100000 and N = 100000.
IPS α = 1 α = 0.5 α = 0

mean — std — std/mean mean — std — std/mean mean — std — std/mean

ρ = 0.9 4.01e-07 1.23e-07 0.31 3.94e-07 1.08e-07 0.27 4.18e-07 1.08e-07 0.26
ρ = 0.75 4.10e-07 1.67e-07 0.41 4.12e-07 1.89e-07 0.46 4.20e-07 2.02e-07 0.48
ρ = 0.5 2.44e-07 4.76e-07 1.95 3.41e-07 9.89e-07 2.90 2.66e-07 4.61e-07 1.73

POP mean std std/mean
ρ = 0.9 4.14e-07 2.68e-08 0.06
ρ = 0.75 4.18e-07 4.60e-08 0.11
ρ = 0.5 4.29e-07 1.26e-07 0.29

As before, both algorithms seemingly converge, with better results for POP (the
std for POP is about 4-5 times smaller than for IPS). Here again, the value of α is
not so crucial while the value of ρ has important impact on the variance. In all the
following IPS algorithms, we fix α equal to 1 (i.e. we skip the resampling step).

In Figure 3, we show empirical variances of 100 experiments results for M and
N respectively equal to 100000, 10000, 5000, 3000 and 2000. These variances are not
perfectly estimated since we use only 100 runs, nevertheless we approximately obtain a
linear convergence with respect to 1/M and 1/N , as expected from theoretical results
(see Theorems 2.6 and 2.7).

4.2. Insurance. The capital reserve of an insurance company is modeled by

Rt = x+ ct−
Nt
X

k=1

Zk

where x is the initial reserve, c is the premium rate, N is a Poisson process with
intensity λ and (Zk)k are amounts of claims in case of accident or natural disaster
[AA10]. In the following example, we take c = 1,λ = 0.005, x = 100, T = 1 and
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Fig. 3. Variance for IPS and POP methods as a function of 1/M and 1/N respectively

suppose (Zk)k are Gamma variables with parameters (a, b) = (2.5, 0.12). We aim at

computing the probability of bankruptcy before T , i.e. P

✓

min
06t6T

Rt < 0

◆

.

Using Esscher transformation, we get the 99% confidence interval for this prob-
ability: [1.042, 1.188] ⇥ 10−6 through 105 Monte Carlo simulations under the new

probability dQ = exp(
PNT

k=1 f(Zk) −
R

R
(ef(y) − 1)λTν(dy))dP where f(y) = 0.09y

and ν(dy) is the probability measure of Gamma(a, b). We can easily check that the
distribution of Zk is still of Gamma type under this new probability.

We take n = 5 intermediate levels, defined by Lk = x(1− (k5 )
2) for k = 1, . . . , 5.

IPS algorithm. We apply the partial shaking to the jump sizes (and not to the
jump times), i.e. we shake all (Zk)k with the shaking transformations for Gamma
variables (with parameter p), then we get the following results (M = 10000, over 100
times experiments).

p = 0.1 p = 0.2 p = 0.3 p = 0.4 p = 0.5 p = 0.6
mean 1.25e-006 1.11e-006 1.01e-006 1.02e-006 1.15e-006 1.09e-006
std 2.82e-006 1.30e-006 6.46e-007 8.39e-007 5.15e-007 4.11e-007

std/mean 2.26 1.17 0.64 0.82 0.45 0.38

With the Poisson process decomposition shaking with parameter p (M =10000,
over 100 times experiments), results become as follows.

p = 0.1 p = 0.2 p = 0.3 p = 0.4 p = 0.5 p = 0.6
mean 3.10e-006 2.02e-006 2.93e-006 8.63e-008 9.32e-007 2.08e-006
std 1.76e-005 1.39e-005 1.65e-005 1.32e-007 8.68e-006 1.42e-005

std/mean 5.68 6.85 5.62 1.53 9.32 6.81

We observe that Poisson shaking can not even produce a good mean value and
that partial shaking on Gamma variables is much better than Poisson decomposition
shaking. This can be explained as follows: in this particular insurance reserve example
where there are very few jumps with important jump sizes, the Poisson shaking gives
large perturbation of the system (opposite to the spirit of slight shaking), since by
removing a jump time (and therefore the claim amount at this instant), this may
completely change the situation of the company, from being close to bankruptcy to
running with good profit.

Obviously, partial shaking involving Gamma variables doesn’t cause this kind of
problem since we keep every jump time and only modify claim amount. In this sense,
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the Gamma shaking is more continuous and suits better this example.
Shaking all the inter-arrival and jump variables yields the following results (over

100 experiments with M = 10000), which gives larger variance than for Gamma
shaking only, as expected.

p = 0.1 p = 0.2 p = 0.3 p = 0.4 p = 0.5 p = 0.6
mean 9.75e-07 9.35e-07 1.22e-06 2.97e-07 9.75e-07 1.10e-06
std 4.73e-06 3.63e-06 7.14e-06 5.90e-07 8.15e-06 9.80e-06

std/mean 4.85 3.89 5.87 1.99 8.36 8.94

POP algorithm. When using Poisson shaking or Gamma shaking for our POP
algorithm, we have observed that both of them fail. The reason for Poisson shaking
is similar to IPS case. As for Gamma shaking, the difference between IPS and POP
is that, in IPS we sample M trajectories and we pick those with jumps, while in POP
algorithm we have only one trajectory and (in this insurance example) the initial
configuration may have no jump with a large probability, yielding that the output of
POP algorithm is doomed to be 0.

To retrieve good convergence properties, we simply apply the shaking for inter-
arrival and jump variables and we get the following results (over 100 experiments with
M = 10000), which are slightly more accurate than IPS.

p = 0.1 p = 0.2 p = 0.3 p = 0.4 p = 0.5 p = 0.6
mean 1.14e-06 1.11e-06 1.12e-06 1.05e-06 1.12e-06 9.29e-07
std 5.08e-07 4.44e-07 4.80e-07 6.74e-07 8.24e-07 9.52e-07

std/mean 0.45 0.40 0.43 0.64 0.74 1.02

4.3. Queueing system. Suppose we have a 2-nodes Jackson network [Rob03,
Chapter 4]. All the costumers arrive at node 1 and when they are served they go
to node 2. The customers’ arrival times are jump times of a Poisson process with
intensity λ. The serving time at node 1 and at node 2 are respectively exponential
variables with parameters µ1 and µ2. Our purpose is to compute the probability that
at some time before T , the number of customers in the system reaches a fixed level
K, i.e. P( max

06t6T
Mt > K) where Mt denotes the number of customers in the system

at time t.
Given the Poisson process N representing customers’ arrival time, we define two

compound Poisson processes

ZA
t =

Nt
X

k=1

Ak, ZB
t =

Nt
X

k=1

Bk,

to which we are to apply shaking transformations. Here Ak and Bk are respectively
the serving times of k-th customer at node 1 and at node 2. We now claim that
max06t6T Mt = Φ((ZA

t )06t6T , (Z
B
t )06t6T ) for a functional Φ, this representation

will be the basis for our algorithms. To justify this, denote by ak the arrival time of
the k-th customer (i.e. the k-th jump of N). Then if we note by e1k the instant when
the service for k-th customer at node 1 is finished, we can find the following recursive
relation: e1k+1 = max(ak+1, e

1
k) + Ak+1 with the initial condition e11 = a1 + A1.

Remark that the service finishing time at node 1 is the customer arrival time at
node 2, we have the same recursive relation for e2k, the instants when service for
k-th customer at node 2 is finished: e2k+1 = max(e1k+1, e

2
k) + Bk+1 with the initial

condition e21 = e11 +B1. Then when the k-th customer enters the system, the number
of customers in the system is k − #{e2j : e2j < ak}; since the maximal number of
customers in the system is possibly reached only when a new customer enters the
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system we have max
06t6T

Mt = max
06k6NT

(k − #{e2j : e2j < ak}) which leads to our claim

that the maximal number of customers in the system before T is determined by the
two CPP’s (ZA

t )06t6T and (ZB
t )06t6T .

We take λ = 0.5, µ1 = 1, µ2 = 1, T = 10 and n = 10 intermediate levels defined

as Lk = K
q

k
n , k = 1, · · · , n. We set K = 20. For the benchmark value, we use an

importance sampling method (with 107 simulations) based on Esscher transformation
using the new probability dQ = exp(cNT −(ec−1)λT )dP where c = 1.5: the resulting
99% confidence interval for P( max

06t6T
Mt > K) is [4.6380, 5.1210]⇥10−10. The shaking

transformation we use here is defined in (3.3), with different values of p.
Results. The following IPS and POP results are computed with M = 10000 and

N = 10000 respectively, over 100 times experiments with each parameter.
IPS p = 0.1 p = 0.3 p = 0.5
mean 4.35e-10 5.04e-10 5.58e-10
std 5.33e-10 4.26e-10 2.00e-09

std/mean 1.23 0.84 3.58

POP p = 0.1 p = 0.3 p = 0.5
mean 4.93e-010 5.24e-010 5.27e-010
std 1.33e-010 2.09e-010 4.62e-010

std/mean 0.27 0.40 0.88

The POP algorithm provides more accurate results than IPS, and seemingly more
stable as p is modified. If we only shake service times A and B instead of the Poisson
process ZA and ZB (as in (3.3)), both algorithms fail to work, almost systematically
the output of algorithm is 0. This is not surprising since by shaking the service time,
we will never increase the number of clients in the system.

The POP method has been tested in the case of renewal process where inter-
arrival and service times are uniformly distributed. The performances are good too.

4.4. Random graph. An Erdös-Rényi random graph [Bol01] is a graph with V
vertices where every pair of vertices are connected with probability q, independently
of the others. It constitutes a toy model for the study of social networks, epidemic. . .
The graph is presented by the upper triangular matrix X := (Xij)16i<j6V where
Xij = 1 if vertices i and j are connected, and Xij = 0 otherwise. If vertices i, j and
k are all connected to each other, they form a triangle. Thus the number of triangles
in the graph is given by

T (X) :=
X

16i<j<k6V

XijXjkXik.

We easily check that E(T (X)) = V (V−1)(V−2)
6 q3 and as a rare event, we consider

the deviation event {T (X) > V (V−1)(V−2)
6 t3} for t > q. This problem has deserved

recent interest in [CV11] with theoretical results and in [BHLN13] with numerical
computations based on importance sampling techniques.

The total number of possible connections is V (V−1)
2 and may be rather large even

for small graphs. In our case we take V = 64, q = 0.35 and t = 0.4: the corresponding
estimation given in [BHLN13] is about 2.19e − 06. To reduce the complexity of IPS
and POP algorithms, we use the technique of partial shaking, by picking randomly a
proportion c of Xij and shake them independently. Regarding the reversible shaking
transformation of each Bernoulli random variable Xij , the only possibility is described
by a transition matrix P (x, y) (x, y 2 {0, 1}2) which satisfies the following condition

qP (1, 0) = (1− q)P (0, 1),

i.e. P (0, 1) = q
1−qP (1, 0). Since in this example q

1−q < 1, P (1, 0) can be any value in

[0, 1] and it is parametrizing the force of shaking. The larger the value of P (1, 0), the
more important the change in the graph configuration.
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Numerical results are performed with n = 5 intermediate levels given by Lk =
V (V−1)(V−2)

6 t3(k5 )
1
5 with k = 1, . . . , n.

Results. First, we take c = 10% and statistics are computed over 50 algorithm
experiments. For IPS and POP algorithms, we take respectively M = 10000 and
N = 10000 and we obtain the following results.
IPS - P (1, 0) 0.25 0.5 0.75 1

mean 1.79e-06 1.83e-06 1.92e-06 2.10e-06
std 2.29e-06 1.30e-06 1.04e-06 8.79e-07

std/mean 1.28 0.71 0.54 0.42

POP - P (1, 0) 0.25 0.5 0.75 1
mean 2.15e-06 2.05e-06 2.06e-06 2.13e-06
std 5.76e-07 4.52e-07 3.23e-07 3.35e-07

std/mean 0.27 0.22 0.16 0.16

The performance of POP appears rather stable w.r.t. P (1, 0) and systematically
better than the IPS method.

Second we can modify the value of c by keeping the product Mc = Nc constant
(the computational effort remains the same). Taking c = 1% yields less accurate
results we do not report. In the opposite direction, taking c = 100% fails to work.
The question of the best choice of c and P (0, 1) according to t, q, V is open.

4.5. Hawkes process. The Hawkes process [Haw71] is a self-exciting counting
process (Nt)t>0 which intensity evolves as

dλt = θ(µ− λt)dt+ dNt.

In the last years, it has become rather popular to model earthquakes activity, high-
frequency financial data, information flow on internet (Twitter. . . ) etc. We guess
that this is challenging model for rare event simulation because of its self-exciting
property. Here we set θ = 2, µ = 1, the terminal time T = 24 and λ0 = 1. We denote
all the jump instants before T by (τj)j>1 and define H = max{τj − τi : τk+1 − τk <
0.5, i 6 k < j − 1}, which is the longest period between jump instants during which
all jump inter-arrivals are less than 0.5. Our aim is estimate P(H > 11): using 3⇥108

crude Monte Carlo simulations gives a 99% confidence interval [3.2469, 3.8064]⇥10−6.
According to [Oga81, Algorithm 2], Hawkes process (and thus H) can be seen as

a functional of countable number of uniform variables in [0, 1], which fits our general
setting.3. Thus we can use the shaking transformation for uniform variables in our
algorithms. We define n = 5 intermediate sets as {H > Lk} where (Lk)k=1,··· ,5 =
[3.5, 5.5, 7.5, 9.5, 11]. Results over 50 experiments for different shaking coefficients are
listed in the following (with M = N = 104).

IPS p = 0.1 p = 0.3 p = 0.5
mean 3.30e-06 5.19e-06 3.88e-06
std 2.84e-06 1.37e-05 1.60e-05

std/mean 0.86 2.64 4.12

POP p = 0.1 p = 0.3 p = 0.5
mean 3.33e-06 3.51e-06 2.69e-06
std 1.25e-06 2.92e-06 3.71e-06

std/mean 0.37 0.83 1.38

We observe good performance of POP (about three times more accurate than
IPS). Both algorithms are much more accurate than the crude Monte Carlo method,
as expected.

4.6. An example of randomized shaking transformation. We conclude
this presentation of numerical experiments by illustrating the benefit of randomization
of shaking parameter as exposed in Proposition 2.2 of Subsection 3.4.

3During implementation, we only need to keep record of uniform variables that have been used.
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We consider the simple problem of estimating P (G > 6 or G < −5), where X :=
G is a standard Gaussian variable. Of course, one could compute respectively P (G > 6)
and P (G < −5) then add them up. But this solution requires extra knowledge about
the problem that we could not afford in general; hence for the sake of exposure, we
do not use this decomposition.

If we use the POP method on the initial problem with intermediate levels defined

by {G >

q

k
5 ⇥ 6 or G < −

q

k
5 ⇥ 5}, k = 1, · · · , 5, the results are rather unstable.

Over 100 experiments with the shaking G = ρG +
p

1− ρ2G0 where ρ = 0.75, 23
outputs are of order 10−9 and the others are of order 10−7. This is due to the fact
that in POP method we average only one path. When shaking level after level, this
path tends gradually either towards {G > 6} or towards {G < −5} and it becomes

practically impossible to realize the jump from {G >
q

k
5 ⇥ 6} to {G < −

q

k
5 ⇥ 5}.

As a consequence, only one part of the distribution is selected and estimated4. The
IPS approach is less sensitive to this problem since it is based a large sample of paths.

To circumvent this problem for POP, we can take a random ρ such that ρ = 0.75
with probability 0.8 and ρ = −0.75 with probability 0.2: this enables the path to

sometimes jump from {G >
q

k
5 ⇥ 6} to {G < −

q

k
5 ⇥ 5}, thus to yield a better

performance. Indeed over 100 experiments, with fixed ρ we get mean 2.84e− 07 and
standard deviation 1.70e− 07, while with the random ρ we get mean 2.81e− 07 and
standard deviation 6.73e− 08. We recall that P (G > 6 or G < −5) = 2.8764e− 07.

In more general situations, randomization is certainly beneficial to explore disjoint
configurations. The right tuning is a delicate question since too much randomization
may alter the benefit of POP method. This issue is left to future investigation.

5. Conclusion. We have designed two methods to tackle the problem of rare
event estimation, by building suitable Markov chains valued in the state space. This
approach has the advantage to suit well to finite and infinite-dimensional situations,
such as stochastic processes (possibly without Markovian assumptions). The IPS
method is inspired by the well-known Interacting Particle System approach. The
POP method is new and relies on ergodic properties to compute in parallel non-rare
conditional probabilities. These methods make use of reversible shaking transforma-
tions and we exhibit important examples of such transformations, that are relevant
for applications. Our numerical experiments show that both algorithms converge,
with globally a better performance (accuracy and memory and other implementation
issues) of the POP algorithm compared to the IPS one. Some theoretical estimates
support the convergence rates.

For future research, it will be worth investigating the choice of optimal shaking
parameters together with explicit non asymptotic error estimates. Adaptive choice of
intermediate subsets (Ak)k is another important concern.
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