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Abstract

A wave equation with mass term is studied for all particles and an-
tiparticles of the first generation: electron and its neutrino, positron and
antineutrino, quarks u and d with three states of color and antiquarks
% and d. This wave equation is form invariant under the CI} group
generalizing the relativistic invariance. It is gauge invariant under the
U(1) x SU(2) x SU(3) group of the standard model of quantum physics.
The wave is a function of space and time with value in the Clifford algebra
Cli5. All features of the standard model, charge conjugation, color, left
waves, Lagrangian formalism, are linked to the geometry of this extended
space-time.

Keywords: invariance group, Dirac equation, electromagnetism,
weak interactions, strong interactions, Clifford algebras

Introduction

We use here all notations of “New insights in the standard model of quantum
physics in Clifford Algebra” [10]. The wave equation for all particles of the
first generation is a generalization of the wave equation obtained in 6.7 for



the electron and its neutrino. This wave equation has obtained a proper mass
term compatible with the gauge invariance in [9]. It is a generalization of the
homogeneous nonlinear Dirac equation for the electron alone [1] [2] [3] [4] [5] [6]
[7]. The link with the usual presentation of the standard model is made by the
left and right Weyl spinors used for waves of each particle. These right and left
waves are parts of the wave with value in Cl; 5.

We used previously the same algebra Cls 1 = Cl; 5. It is the same algebra,
and this explains very well why sub-algebras Cl; 3 and Cl3; have been equally
used to describe relativistic physics [12] [13]. But the signature of the scalar
product cannot be free, this scalar product being linked to the gravitation in
the general relativity. It happens that vectors of Cl; 5 are pseudo-vectors of
Cls,1 and more generally that n-vectors of Cly 5 are (6 — n)-vectors of Cls ;.
The generalization of the wave equation for electron-neutrino is simpler if we
use Cly 5. This is the first indication that the signature + — — — —— is the true
one. We explain in Appendix A how the reverse in Cl; 5 is linked to the reverse
in Cly 3, a necessary condition to get the wave equation of all particles of the
first generation.

We have noticed, for the electron alone firstly (See [6] 2.4), next for elec-
tron+neutrino [9] the double link existing between the wave equation and the
Lagrangian density: It is well known that the wave equation may be obtained
from the Lagrangian density by the variational calculus. The new link is that
the real part of the invariant wave equation is simply £ = 0. The Lagrangian
formalism is then necessary, being a consequence of the wave equation. Next
we have extended the double link to electro-weak interactions in the leptonic
case (electron + neutrino). Now we are extending the double link to the gauge
group of the standard model. The Lagrangian density must then be the real
part of the invariant wave equation.

Moreover we generalized the non-linear homogeneous wave equation of the
electron, and we got a wave equation with mass term [9], form invariant under
the Cl5 = GL(2,C) group and gauge invariant under the U(1) x SU(2) gauge
group of electro-weak interactions. Our aim is to explain how this may be
extended to a wave equation with mass term, both form invariant under CI3
and gauge invariant under the U (1) x SU(2) x SU (3) gauge group of the standard
model, including both electro-weak and strong interactions.

1 From the lepton case to the full wave
The standard model adds to the leptons (electron e and its neutrino n) in the

“first generation” two quarks u and d with three states each. Weak interactions
acting only on left waves of quarks (and right waves of antiquarks) we read the



wave of all fermions of the first generation as follows:

_ \I/l \IIT‘ . _ ?ie (?\TL _ A¢e A(an
Y- (\Ifg qu) = (asn ¢e> B <¢m @m) (L)
U, — (?dr ?\ur) _ (A¢dr A(bur ) S = (?dg ?\uq) _ (A¢dg A¢ug )
" Gur  Gdr Quro1 %Tgl T ¢ug d)dg ¢ﬁg0'1 (bago'l
_ (P> Pub _ [ Pav Pub
Y= (%b ¢db) <¢ﬂb0'1 %bm) (12)

The electro-weak theory [14] needs three spinorial waves in the electron-neutrino
case: the right £, and the left 7. of the electron and the left spinor 7, of the
electronic neutrino. The form invariance of the Dirac theory imposes to use ¢,
for the electron and ¢,, for its neutrino satisfying

¢ = V2 (5“ _7756) =V2(& —ioaml); dn=V2 (0 _2;"> (1.3)

526 771(6 0 1n

5 =V2 (”16 ‘?e):ﬁ% Ciosl) s Bu=v2 (”1" 0):f2<nn 0).
N2e  &le M2n O

(1.4)

Waves ¢. and ¢,, are functions of space and time with value into the Clifford
algebra Cl3 of the physical space. The standard model uses only a left 7,, wave
for the neutrino. We always use the matrix representation (A.1) which allows
to see the Clifford algebra Cly 3 as a sub-algebra of M4(C). Under the dilation
R with ratio r induced by any M in GL(2,C) we have (for more details, see

[4]):

' = MzM'; det(M)=re ; z=ato,; o =2"0, (1.5)
& =Me; W =My; u,=Mn,; ¢.=Mo.; ¢,=Mo, (1.6)
o, P M 0 e Pn
o= [(Ze Dn) _ b X ) = N 1.7
: <¢>; o 0 M)\ o : (1)

The form (1.3) of the wave is compatible both with the form invariance of the
Dirac theory and with the charge conjugation used in the standard model: the
wave Yz of the positron satisfies

e = ina)* & be = heon (1.8)

We can then think the ¥; wave as containing the electron wave ¢, the neutrino
wave ¢, and also the positron wave ¢z and the antineutrino wave ¢z:

(P On\ . I3 —n;e>. _ (m 0>
\Ifl<¢ﬁol %Ul>, <z>e\/§(§2€ i) b =2 G 0 (1.9)



And the antineutrino has only a right wave. The multivector ¥;(x) is usually
an invertible element of the space-time algebra because (See [10] (6.250)) with:

ay = det(de) = ped, = 2(E1eMie + E2eMie) (1.10)
az = 2(51577;7, + 52577377,) = 2(775677% - 77;377%) (111)
as = 2(£1e7ﬁn + ngngn) (112)
we got
det(¥;) = aja] + azas. (1.13)

Most of the preceding presentation is easily extended to quarks. For each color
c=r,g,b the electro-weak theory needs only left waves:

— ?dc ?iuc ST Mae O o~ Mue 0
Ve (d)uc ¢dc> i fae = V2 <772dc 0) i Pue = V2 (772uc 0) (1.14)

The ¥ wave is now a function of space and time with value into Cly 5 = Cls;
which is a sub-algebra (on the real field) of Cl5 o = Mg(C):

v, v\ ~ (¥, U,
U= W=~ < 1.15
(\Ijg \I/b> (q/g q’l) ( )
The link between the reverse in Cl; 5 and the reverse in Cl; 3 is not trivial and is

detailed in Appendix A. The wave equation for all objects of the first generation
reads

0=(D¥)Lo12 + M (1.16)
The mass term reads
M= <m2P2Xb m2szg) (1.17)
map2Xr M1P1X1
where we use the scalar densities s; and x terms of Appendix B, with
j=15
03 = a1a} + asal + azal ; pi = Z 8585 (1.18)
j=1

The covariant derivative D uses the matrix representation (A.1) and reads

D=9+%B P+ LTWr,+ LGMI, (1.19)
3 3 3
D=) L'D,; 8=) L"9,; B=Y L"B, (1.20)
©n=0 n=0 pn=0
W7 =3 "IL'W), j=1,2,3 (1.21)
=0
3
G'=>"L1'Gl, k=12,....8 (1.22)
pn=0



We use two projectors satisfying
1 . .
P(¥) = S(W+iVlo); 1= Lows (1.23)

Three operators act on quarks like on leptons:

Py (¥) =P, (¥)Lss (1.24)
Py(V) =P (V)Ls012 (1.25)
Py(¥) = P (¥)(-). (1.26)

The fourth operator acts differently on the leptonic and on the quark sector.
Using projectors:

1 Iy 0 1 0 0
Pt = 5(18 + Lo12345) = <61 0> p Pro= 5(18 ~ Loizsss) = (O 14) (1.27)

we can separate the lepton part ¥ and the quark part ¢ of the wave:

Ul = prupt = (‘161 8); =0 -l = <£g i) (1.28)

and we get (see [10] (B.4) witha =b=1)
iy Lig 3yl
Bo(\I’ ) = 51\11 Lgl + 5‘1/ L21 (129)
1
Py (¥°) = —g‘I’CLm- (1.30)

This last relation comes from the non-existence of the right part of the W¢ waves.

2 Chromodynamics

We start from generators Ay of the SU(3) gauge group of chromodynamics

01 0 0 —i 0 1 0 0
M=(10 0], 0m=[i 0 o], x=(0 -1 0
00 0 0 0 0 0 0 0
00 1 00 —i 00 0
M=(0 0 0], x=[00 o], x=[0 01
10 0 i 0 0 01 0
00 0 L[t o0
M=(00 —i],x=—[01 0 (2.1)
0 i 0 3\o 0 —2



To simplify here notations we use now [, r, g, b instead ¥;, ¥,., ¥,, ¥;,. So we

have U = <; 7(;> Then (C.1) gives
r g T —ig r T
Mlgl=(r|:X|lg]=|i |, lg|l=|-9
b 0 b 0 b 0
T b r —1ib T 0
Mgl =0, A(g]=101],x|g]=]|0 (2.2)
b r b i b g
r 0 T 1 T
AMlgl=|-%),xsl9]=—FF1| ¢
b ig b/ V3 I\

We name I'j;, operators corresponding to A\; acting on W. We get with projectors
Pt and P~ in (1.27):

1 0
Iy (V) = §(L4‘I’L4 + Lo1235 W Lo1235) = <r g) (2.3)
1 0 —ig
P2(0) = 5(LsWLs — LoizaaWLowzss) = | ;. (2.4)
I3(0) = PP~ — P~UPt = (_Og g) (2.5)
_ 0 b _ 0 —ib
F4(V) = Lo12s3 VP~ = <0 7"> ; Is(¥) = Lo123a WP~ = (O i:“ > (2.6)
_ 0 0 R 0 0
De(¥) = P~ WLoi2s3 = <b g> i [7(V) = —iP" VL, = (—ib ig) (2.7)
Ps() = —= (P~ WLo1as5 + Lorasis WP) = —= (0 r ) (2.8)
stV =75 012345 + Lo12345 =le —m) .

Everywhere the left up term is 0, so all 'y project the wave ¥ on its quark
sector.

We can extend the covariant derivative of electro-weak interactions in the
electron-neutrino case:

DU, = 9, + %BPO(\III) + %Wﬁpj(%) (2.9)
to get the covariant derivative of the standard model

D(W) = 9(¥) + 5B Py(W) + LW/ P, (0) + L G (0). (2.10)

where g3 is another constant and G* are eight terms called “gluons”. Since
I, commute with any element of Cl; 3 and since Pj(iV;nq) = iP;(¥inq) for
j=0,1,2,3 and ind = [, 7, g, b each operator i’y commutes with all operators
P,

J



Now we use 12 real numbers a°, o/, j =1,2,3, b*, k=1,2,...,8, we let

j=3 k=8
So=a’Py; Sy =Y a'Py Sp=> Wily; S=S+S5+S5 (211
j=1 k=1

and we get, using exponentiation

exp(S) = exp(Sy) exp(S1) exp(S2) = exp(S1) exp(Sp) exp(S2)
= exp(Sp) exp(S2) exp(S1) = ... (2.12)

in any order. The set of these operators exp(S) is a U(1) x SU(2) x SU(3) Lie
group. Only difference with the standard model: the structure of this group is
not postulated but calculated. With

U’ = [exp(9)](¥) ; D=L"D, ; D' = L'D), (2.13)

the gauge transformation reads

DLW = [exp(S)|(D,¥) (2.14)
! _ z aO

Bl =By~ -0, (2.15)

W/iﬂj = [exp(Sl)Wﬁﬂj — g%aﬂ[exp(Sl)]} exp(—957) (2.16)

leirk = [exp(Sg)QﬁiI‘k — g%aﬂ[exp(Sg)]] exp(—S2). (2.17)

The SU(3) group generated by projectors I'y, acts only on the quark sector of
the wave:
Pt exp(b*il'}]) (V)P = PTOUPT = ! (2.18)

The physical translation is: Leptons do not act by strong interactions. This
comes from the structure of the wave itself. It is fully satisfied in experiments.
We get then a U(1) x SU(2) x SU(3) gauge group for a wave including all
fermions of the first generation. This group acts on the lepton sector only by
its U(1) x SU(2) part. Consequently the wave equation is composed of a lepton
wave equation and a quark wave equation:

0 0
0= (DVHL 2.19
(DY) Lo12 + mip1 (0 Xz) ( )
0 = (D¥) Lotz + mapaxs X° = (;b %ﬂ) (2.20)
T

The wave equation (2.19) is equivalent to the wave equation

DY yp12 + mipixi =05 o012 = Y0172 (2.21)



studied in [9] [8], where

1 [(aipe + a5¢n01 + az¢n —a5¢0cr01 + a5¢cR
Xl = —3 -~ ~ ~ ~ ~ (2.22)
o1 201,01 + a3PeR a1Qe — A20,01 + a30,

1+ 03 1—o03

Per = Pe i Ger = Pe (2.23)
2 2
This wave equation is equivalent to the invariant equation:
¥, (Dw G=0; B = (% O

1(DY)v012 + mpr ¥ =05 ¥y = b o) (2.24)

This wave equation is form invariant under the Lorentz dilation R induced by
any invertible matrix M satisfying (1.5), (1.6), (1.7) [10]. It is gauge invariant
under the U(1) x SU(2) group [9] generated by operators P, which are projec-
tions on the lepton sector of the operators defined in (1.23) to (1.29). Therefore
we need to study only the quark sector and its wave equation (2.20).

We begin by the double link between wave equation and Lagrangian density
that we have remarked firstly in the Dirac equation [6], next in the lepton case
electron+neutrino [10].

3 Double link between wave equation and La-
grangian density

The existence of a Lagrangian mechanism in optics and mechanics is known since
Fermat and Maupertuis. This principle of minimum is everywhere in quantum
mechanics from its beginning, it is the main reason of the hypothesis of a wave
linked to the move of any material particle made by L. de Broglie [11]. By the
calculus of variations it is always possible to get the wave equation from the
Lagrangian density. But another link exists : the Lagrangian density is the real
scalar part of the invariant wave equation. This was obtained firstly for the
electron alone [6], next for the pair electron-neutrino [9] where the Lagrangian
density reads

Ly = Lo+ g1 L1+ g2Lo+mipr (3.1)
Ly = %[_i(nlauaune + 5laﬂau€e + nLUuawn)] (32)
1 =R 1
L1 = Bu(gnlo"ne + l6"€ + onlo"nm) (3.3)
WS
L2 = =R(Wy, + W Inlo"na) + = (nlo"ne = nfonn). (3.4)

We shall establish the double link now for the wave equation (1.16). It is
sufficient to add the property for (2.20). This equation is equivalent to the



invariant equation:

0= U¢(DV°) Lora + mapaUx° (3.5)

Jr (Iv/b :IVJT Xb X )
U= |~ ; X©= g 3.6
(fog 0 ) X (xr 0 (3.6)
We get from the covariant derivative (1.19) with the operators P; in (1.24),

(1.25), (1.26) and (1.30) and T’ in (2.3) to (2.8) and with ¥€ in (1.28)

A, A
c _ g
A, =0V, — %B\pﬂzl + %(quxmi + W2 s — W3, i)
1
+ 2(G, - GPU, - GV, + U, + GTU, + G (9

Ay =0, — L BUyr + (W i + W2 Tyys — W)
93/ ~4. 5 6 7 2 s,
+ = (G*iY, - GV, + G°iv, - GV, — —G°iv 3.9
5 )= G, G (39)
Ar =0, — LBY o + T(WH 351+ W2 55 - W)

1
T %”(Glimg + G20, + G3il, + G4, + G, + —3G8i\IIT) (3.10)

7
Next we get
T(DP®) Lotz + mapo UX° (3.11)
_ Uy, (Apy012 + mapaxs) + U, (Aryo12 + mapaxy) \E’b(Ag’Yom + mapaxgy)
U, (Apyor2 + mapaxs) U, (Agvo12 + MmapaXxg)

The calculation of the Lagrangian density in the general case is similar to the
lepton case. We get

L="L+L, (3.12)
Le= Y Locto1 >, Lic+g2 Y Lo+ 9gsls+maps (3.13)
c=r,g9,b c=r,g9,b c=r,g9,b

The calculation of Lj., j = 0,1,2 replaces the pair e-n by the pair dc-uc and
suppress the & terms, then (3.2) (3.3) (3.4) become

Loc = R[=i(n} 0" Outac + 0},e0" e (3.14)

B
L= —%(U(ECU“WC + nlca“nuc) (3.15)

WS
Lac = —R(W,i + W0 el + (10" e = 1o 1me) - (3.16)



Since three SU(2) group are included in SU(3) the calculation of L3 has simi-
larities with the calculation of Lo and we get

Ly =—R[(G}, +iG2)(n},0"Nag + 0l ug)] (3.17)
— R(G, +iG5) (0l 0" nay + 00" b))
— RI(GS, +iGL) (0l 0" 1a + 1], g0 1)

G3
5 (=l 0 e = 10 ur - g0 g + 1 )

GS
* 2\/%(_77:5raumir - nlraﬂnur + anoundb + nlbaﬂn“b)

8
i i f
+ 2\/%(—77@0"%9 — Ny 0" Thug + M0 Tty + 150" Thub)

This new link between the wave equation and the Lagrangian density is much
stronger than the old one, because it comes from a simple separation of the
different parts of a multivector in Clifford algebra. The old link, going from the
Lagrangian density to the wave equation, supposes a condition of cancellation at
infinity which is dubious in the case of a propagating wave. On the physical point
of view, there are no difficulties in the case of a stationary wave. Difficulties
begin when propagating waves are studied. Our wave equations, since they are
compatible with an oriented time and an oriented space, appear as more general,
more physical, than Lagrangians. These are only particular consequences of the
wave equations.

On the mathematical point of view the old link is always available. It is
from the Lagrangian density (3.12) and using Lagrange equations that we have
obtained the wave equation (1.16).

4 Invariances

4.1 Form invariance of the wave equation

Under the Lorentz dilation R induced by an invertible M matrix satisfying

' = MzM'; det(M)=re? ; z=ato,; o =2"0, (4.1)
7];5 = MT]’MC 7 77(/15 = M77dc 7 (b:ic = M¢dc 7 (b;,c = M(buc (42)
¢£i . ) <M O) (¢dc (buc)
\pg:<Ac uc) _ D) (Qde Que) _Ng, . c=rgb (43
e o) N0 1) G due 9b (43)
We then let s
(N 0N\ 4 ;us _ (0O
N—(o N),a—L au—(a O) (4.4)
which implies
rc c. I _ Jenr. N N 0 N T
U= NUG U =N N= {0 )i D=NDN. (4.5)

10



Then we get
(DY) Lotz = U°N D' NU Lo
=0 (D'V)Lois. (4.6)

and we shall now study the form invariance of the mass term. All s; are deter-
minants of a ¢ matrix, this implies

s = det(¢') = det(M¢) = det(M) det(¢) = re”s; (4.7)

1k —10 %, 1 _
sj—re Sj, Po = TpP2.

This gives
/c X;) Xlg 4 9
—if
c 2 e re "M 0 .

r?psx'C = plox’ = ( 0 reiej\/i\) P3X (4.10)

c rle= 00\ 0 ~ 1 .
X = ( 0 Tlé’@]’\j) Xe=N 1X (4.11)
\TI’CX/C = NN 1y© = Uoy© (4.12)

Then the form invariance of the wave equation is equivalent to the condition on
the mass term

My Py = Ma2p2 (4.13)
mhr = mo (4.14)

linked to the existence of the Planck factor [8].

4.2 Gauge invariance of the wave equation

Since we have previously proved the gauge invariance of the lepton part of the
wave equation, it is reason enough to prove the gauge invariance of the quark
part of the wave equation.

4.2.1 Gauge group generated by P,
We have here

Py(T°) = \I}C(—%Lm) (4.15)

V¢ = [exp(0P)](¥€) = ¥° exp(—ngl) (4.16)
r_p _ 2

B), =B, o B, (4.17)

11



To get the gauge invariance of the wave equation we must get

/

c c 0 0
X =x exp(—ng); Xe = Xe eXp(—gm), c=rg,b. (4.18)

This is satisfied because

Bhe = Pace™ 578 ¢, = duce 57 (4.19)
N rae = €50 40 0 e = €50y

W de = € 5 3aes 1'sue = €515, (4.20)

st =e%8s;, j=1,2,...,15. (4.21)

All up terms in the matrix y. contain s;f(bdcal and s;qbucol terms. We get

e = Pace™ 57 = €5 pye (4.22)
8501 = €18 901 = Puce3T20) = pgeore” 512 (4.23)
6
Xe = Xeoxp(—3721) (4.24)
¢ e 6
X =x exp(—ng). (4.25)

And we finally get

c c c C 9
(D'¥") Lo1a + maphX' = [(DY€) L1z + mapax }exp(—ngl) =0 (4.26)

The wave equation with mass term is gauge invariant under the group generated
by P.

4.2.2 Gauge group generated by P,
We have here

P (0°) = ULy (4.27)
U = [exp(0P)](T€) = U exp(fL3s) (4.28)

1 2
W', =W, — P (4.29)

We put a more detailed calculation in C.1. We get

(D'W) Loiz + maphx'® = (DW°) exp(§Ls) Lo1z + maphx'®
= [(DY°)Lo12 + map2x‘] exp(fLss) =0 (4.30)

The wave equation with mass term is then gauge invariant under the group
generated by P;.

12



4.2.3 Gauge group generated by P,
We have here

Py (¥€) = ULsorz (4.31)

V¢ = [exp(0P,)](¥€) = U€ exp(OLso12) (4.32)
2

W =W?2 - 5 0uf (4.33)
2

We have put a more detailed calculation in C.2. We get

(D'V'°)Lo1z + maphx' = (DY) exp(0Lso12) Loz + maphX'©
= [(D¥°) Lo12 + map2x“|exp(—0Ls012) =0  (4.34)

The wave equation with mass term is then gauge invariant under the group
generated by P,.

4.2.4 Gauge group generated by P,
We have here

Py (V) = Loz (4.35)

U'° = [exp(0P5)] (V) = ¥ exp(0L3012) (4.36)
2

W =W3 -~ 00 (4.37)
2

We have put a more detailed calculation in C.3. We get

(D' Lo12 + maphX'® = (DY) exp(0Lso12) Lot + maphx'®
= [(DY°)Lo12 + map2x“]exp(—0L3g12) =0  (4.38)

The wave equation with mass term is then gauge invariant under the group
generated by Ps.

4.2.5 Gauge group generated by I’y

We use now the gauge transformation

U =CU, + Si¥,; C = cos(); S = sin(b) (4.39)
V) = O, + Siv, (4.40)
v =, (4.41)

We can then forget here W;,. The gauge invariance signifies that the system
OW, = —LGiW, +mapax,ors

v, = _%Gli\pr + mapaxgTor2 (4.42)

13



must be equivalent to the system
g. 1.
v = 753(}' i), + maps X012
g. 1.
oV, = f?‘q’G' i)+ mapy ;o2 (4.43)

Using relations (4.39) and (4.40) the system (4.43) is equivalent to (4.42) if and
only if

2
G'=G'- 2o (4.44)
g3
because we get in C.4
p=p (4.45)
X, = Cx, — Six, (4.46)
Xy = Cxg — Six» (4.47)

The change of sign of the phase between (4.39) and (4.46) comes from the
anticommutation between i and 8.

4.2.6 Gauge groups generated by I'y, , £ > 1

We use with k = 2 the gauge transformation

U =CU, + SV, C=cos(h); S=sin(h) (4.48)
W = O, — SV, (4.49)
v =, (4.50)

The gauge invariance signifies that the system

ov, = —%GQ\IIQ + map2XrYo12

oy, = g—;GQ\I/T + mapaXgYoi2 (4.51)
must be equivalent to the system

oV, = —QQ—SG’Z\I/; + M2pyX Y012

oV, = %G/z\P; + mapy X012 (4.52)

Using relations (4.48) and (4.49) the system (4.52) is equivalent to (4.51) if and
only if

2
G*=G2- 200 (4.53)
g3
because we get
p=p (4.54)
X» = Cxr + Sxg (4.55)
Xy = Cxg = SXr- (4.56)

14



The case k = 3 is detailed in C.5 and the case &k = 8 is detailed in C.6. Cases
k=4 and k = 6 are similar to k = 1 and cases k = 5 and k£ = 7 are similar to
k = 2 by permutation of indexes of color.

5 Concluding remarks

From experimental results obtained in the accelerators physicists have built
what is now known as the “standard model”. This model is generally thought
to be a part of quantum field theory, itself a part of axiomatic quantum mechan-
ics. One of these axioms is that each state describing a physical situation follows
a Schrodinger wave equation. Since this wave equation is not relativistic and
does not account for the spin 1/2 which is necessary to any fermion, the stan-
dard model has evidently not followed the axiom and has used instead a Dirac
equation to describe fermions. Our work also starts with the Dirac equation.
This wave equation is the linear approximation of our nonlinear homogeneous
equation of the electron.

The wave equation presented here is a wave equation for a classical wave,
a function of space and time with value into a Clifford algebra. It is not a
quantized wave with value into a Hilbertian space of operators. Nevertheless
and consequently we get most of the aspects of the standard model, for instance
the fact that leptons are insensitive to strong interactions. The standard model
is much stronger than generally thought. For instance we firstly did not use
the link between the wave of the particle and the wave of the antiparticle, but
then we needed a greater Clifford algebra and we could not get the necessary
link between reversions' that we use in our wave equation. We also needed the
existence of the inverse to build the wave of a system of particles from the waves
of its components. And we got two general identities which exist only if all parts
of the general wave are left waves, only the electron having also a right wave.

The most important property of the general wave is its form invariance under
a group including the covering group of the restricted Lorentz group. Our group
does not explain why space and time are oriented, but it respects these orien-
tations. The physical time is then compatible with thermodynamics, and the
physical space is compatible with the violation of parity by weak interactions.

The wave accounts for all particles and anti-particles of the first generation.
We have also given [6][7][8][9] the reason of the existence of three generations, it
is simply the dimension of our physical space. Since the SU(3) gauge group of
chromodynamics acts independently from the index of generations, the physical
quarks may be combinations of quarks of different generations. Quarks com-
posing protons and neutrons are such combinations. Our wave equation allows
only two masses at each generation, one for the lepton part of the wave, the
other one for the two quarks. The mixing can give a different mass for the two
quarks of each generation.

IThe reversion is an anti-isomorphism changing the order of any product (see [10] 1.1). It
is specific to each Clifford algebra. The Appendix A explains the link between the reversion
in Cly,3 and the reversion in Cly 5
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Since the wave equation with mass term is gauge invariant, there is no ne-
cessity to use the mechanism of spontaneous symmetry breaking. The scalar
boson certainly exists, but it does not explain the masses.

A wave equation is only a beginning. It shall be necessary to study also
the boson part of the standard model and the systems of fermions, from this
wave equation. A construction of the wave of a system of identical particles is
possible and compatible with the Pauli principle [5] [10].

References

[1] C. Daviau. FEquation de Dirac non linéaire. PhD thesis, Université de
Nantes, 1993.

[2] C. Daviau. Solutions of the Dirac equation and of a nonlinear Dirac equa-
tion for the hydrogen atom. Adv. Appl. Clifford Algebras, 7((S)):175-194,
1997.

[3] C. Daviau. Interprétation cinématique de 'onde de I’électron. Ann. Fond.
L. de Broglie, 30(3-4), 2005.

[4] C. Daviau. L’espace-temps double. JePublie, Pouillé-les-coteaux, 2011.

[5] C. Daviau. Cl} invariance of the Dirac equation and of electromagnetism.
Adv. Appl. Clifford Algebras, 22(3):611-623, 2012.

[6] C. Daviau. Double Space-Time and more. JePublie, Pouillé-les-coteaux,
2012.

[7] C. Daviau. Nonlinear Dirac Equation, Magnetic Monopoles and Double
Space-Time. CISP, Cambridge UK, 2012.

[8] C. Daviau. Gauge group of the standard model in Cl; 5. ICCA10, Tartu
(Estonia), http://hal.archives-ouvertes.fr/hal-01055145, 2014.

[9] C. Daviau and J. Bertrand. Relativistic gauge invariant wave equa-
tion of the electron-neutrino. Journal of Modern Physics, 5:1001-1022,
http://dx.doi.org/10.4236 /jmp.2014.511102, 2014.

[10] C. Daviau and J. Bertrand. New Insights in the Standard Model of Quan-
tum Physics in Clifford Algebra. Je Publie, Pouillé-les-coteaux, 2014 and
http://hal.archives-ouvertes.fr /hal-00907848.

[11] Louis de Broglie. Recherches sur la théorie des quantas. Ann. Fond. Louis
de Broglie, 17(1), 1924.

[12] René Deheuvels. Tenseurs et spineurs. PUF, Paris, 1993.

16



[13] D. Hestenes. A unified language for Mathematics and Physics and Clifford
Algebra and the interpretation of quantum mechanics. In Chisholm and
AK Common, editors, Clifford Algebras and their applications in Mathe-
matics and Physics. Reidel, Dordrecht, 1986.

[14] S. Weinberg. A model of leptons. Phys. Rev. Lett., 19:1264-1266, 1967.

A Calculation of the reverse in Cl; 5

Here indexes p, v, p... have value 0,1,2,3 and indexes a,b,c,d, e have value
0,1,2,3,4,5. We use? the following matrix representation of Clj s:

(0 Y., (0 =L\, _ (0 i) . (ilz O
L“_(m 0)’L4_<I4 0)’L5_(i 0)"‘(0 —z'12>

0 _ 0 12 . Y I 0 O'] o

Yo =7 (12 0)Vi="7= o, 0 ,1=1,2,3 (A1)

where o; are Pauli matrices. This gives

0 7 0 v 0
L,=L,L,= s =" A2
w=tie= (0 6) (G %)= (8 4) (a2
v 0 0 v
rmsen-(s D D)
0
Lo123 = Lo1Lo3 = (70623 70123) = (0 i) (A.4)

We get also

0 -I 0 i -i 0
Lus = Luls — (14 04> (i (1)> _ <01 i) - I (A.5)
i 0\ /-i O I 0
L012345 = ((1) i) (01 i = (61 _I4> (A6)
i 0\ /0 i 0 -I
Lo1235 = Lo12sLs = ((1) i> (i 6) = <I4 04) : (A7)

215, 14, Ig are unit matrices. The identification process allowing to include R in each real
Clifford algebra allows to read a instead of al,, for any complex number a.
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Similarly we get?
(v 5) o= (3 )
” 1
s = (WSV _YJW> e = (Wii %(L)Vi)
(7)o (1)
(53 ()

0 Vyuwpl 0 —i
Lyvpas = (—%upi uop) i Loi2zs = (i 0)

Scalar and pseudo-scalar terms read

+w)l 0
alg + wloio345 = ((a Qw) ! (a — w)I4)
 ((la—w)y 0
aly —who12315 = ( 0 (a+w)ly

For the calculation of the 1-vector term
N®L, = N*L, + N°Ls + N*L,

we let
B=N*; §=N°; a= Ny,

This gives
Bl +di+a 0

For the calculation of the 2-vector term

NaLa:< 0 —,814—|—51—|—a>.

N®Lgy, = N*®Lys + N* Ly + N* L5 + N* L,

we let

e=N¥, b:N“4'yM; c:N“5'yM; A =N"y,,

This gives

wy _ (—€i+b—ic+A 0
N L“”_( 0 d—b—ic+A)"

For the calculation of the 3-vector term

NabcLabc = N#45Lu45 + NILV4L;,W4 + N'uy5L;u/5 + Nl“lpL;,wp

3

element.
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(A.16)

(A.17)

(A.18)

i anti-commutes with any odd element in space-time algebra and commutes with any even



we let
d= N5y, ; B=NH"y,, ; C=N"5y,, ; ie=N""y,, (A.19)

This gives with (A.3) and (A.9)

(A.20)

N‘““Labc< 0 di—B+iC+ie>_

id+B +iC +ie 0
For the calculation of the 4-vector term
NAL pea = N¥P L a5+ NP L0 + NFYPP L s 4+ NP3 Lojag
we let
D= NW45WW - if = N,wp4,ywp . g = N;LypS,yMVp L (= N2 (A 21)

This gives with (A.4) and (A.10)

Nabedp (—iD+if(‘)+g+Ci iD—ifng+<i>' (A.22)
For the calculation of the pseudo-vector term
Nebede L, pege = NFYPI L ogs + NOZ34 LG 1000 + NOY35 L1005
we let
ih = Nwvedsy o= NOI23 g 01235 (A.23)
This gives with (A.7) and (A.12)
Neabedep <—h . 7(7]i o, h—ni- 914) . (A.24)
We then get
- (\I‘ij] ib) (A.25)
(a4+w)ly+(b+g)+(A—-iD) —(+0)ls+ (a+h)+ (-B+iC)
+i(—c+f) + (¢ —e)i +i(—d+e) + (6 —n)i

(B=0)I;+(a—h)+ (B+iC) (a—w)ly+ (-b+g)+ (A+iD)
+i(d +e)+ (d +n)i +i(—c—f)+ (C+e)i

This implies
U, =(a+w)+(b+g)+ (A—iD) +i(—c+f)+ (¢ —e)i ( )
U,.=—(8+60)+(a+h)+ (-B+iC) +i(—-d+e)+ (6§ — )i (A.27)
UV, =(—-60)+(a—h)+(B+iC)+i(d+e)+ (6 +7n)i ( )
Uy =(a—w)+(-b+g)+ (A +iD) +i(—c —f) + (( + ¢)i ( )
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In Cl; 3 the reverse of
A=<A>1+<A>1+<A>+<A>3+<A>y
is _
A=<A>0+<A> —<A>;—< A>3+ <A>y

we must change the sign of bivectors A, B, iC, iD, and trivectors ic, id, ie, if
and we then get

U= (a+w)+ (b+g)+(—A+iD) +i(c—f) + (¢ — e)i (A.30)
U, =—(8+0)+ (a+h)+ (B —iC)+i(d—e) + (§ — n)i (A.31)
U, =(f-0)+(a—h)— (B+iC) —i(d+e)+ (6 + )i (A.32)
Uy = (a—w)ly+ (=b+g) — (A +iD) +i(c+f) + ({ + e)i (A.33)

The reverse, in Cl; 5 now, of

A=< A>)+<A>1+<A>+< A>3+ <A>1+<A>5+ < A>q
is

A=< A>g+<A> —<A>y—<A>34+<A> 1+ <A>5— < A>q

Only terms which change sign, with (A.13), (A.18) and (A.20), are scalars e
and w, vectors b, ¢, d, e and bivectors A, B, C. These changes of sign are
not the same in Cl; 5 as in Cl; 3. Differences are corrected by the fact that the
reversion in Cl; 5 also exchanges the place of ¥; and ¥, terms. We then get
from (A.25)

(a—w)ly+(-b+g)+(—A—-iD) —(8+6)I,+ (a+h)+ (B-iC)

B +i(c+ )+ ((+e)i +i(d—e)+ (6 —n)i
U =
(B—0)I,+ (a—h)— (B+iC) (a+w)ly+ (b+g)+ (—A+iD)
—i(d+e)+ (6 +n)i +i(c—£) 4+ (¢ —e)i
U, U,
- (\sz \le> . (A.34)

This link between the reversion in Cl; 3 and the reversion in Cl; 5 is necessary
to get an invariant wave equation. It is not general, for instance the reversion
in Cls is not linked to the reversion in Cly 3.

B Scalar densities and y terms

There are 6 x 5/2 = 15 such complex scalar densities:

51 = 2(£lﬂanug + 525Tn§ug) = 2(n§ur7ﬁug - nrurngug) (Bl)
52 = 2(£1ﬂgnrub + £2ﬂ977;ub) = 2(n;ugniub - nrugn;ub) (BQ)
83 = _2(§lﬂrn>1kub + 525rn§ub) = 2(n§ubnrur - nikubn;ur) (Bg)
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54 = 2(§,3.Mag + €90 M3dg) = 234, Mg — MarT2dg) (B.4)

S5 = 2(51397731{; + 5239775@) = 2(77;dg771kdb - Tﬁdgn;db) (B.5)

s6 = —2(& g Map + oz Ban) = 2(M3apMiar — MavM2ar) (B.6)

S7 = 2(5157”77;}7“ =+ gQﬂT’ngdr) = Q(USUTanT‘ - niurn;dr) (B7)

58 = 2(§1ﬂgnfdg + €2ﬁgn;dg) = 2(n;ug77{dg - T]Tugn;dg) (B8)

s9 = 2(EsmMiap + S2wvM3ap) = 230 ab — Mub3ap) 9)

$10 = 2(§lﬂrnfdg + E?ﬁTn;dg) = Q(WSuTang - nfurn;dg) (BlO)

s11. = 2(§1agMap + S2agan) = 2(M3ugMiay — MugMsan) (B.11)

s12 = =2(§,3,Mub T Eoar-M2ub) = 2(M3upMar — MubNdr) (B.12)

s13 = 2(&iwrMiap + S2uraan) = 2(M3urMiap — MurT2dp) (B.13)

S14 = _2(§1Er77>1kug + gQErn;ug) = 2(n;ug7ﬁd’r - niug’r};dr) (B14)

S15 = _2(£lagniub + £2Egn>2kub) = 2(n§ubnikdg - nrubngdg)’ (B15)

We used in [9]

i = i (aT¢e i a§¢n01 tagﬁi)n j\a;QbeLC/T\l + a§¢eRA ) (B 16)

p3 2001 + a3der a1¢e — 20,01 + azPp

with ¢er = de(1 + 03)/2 and ¢er, = ¢e(1 — 03)/2, and we need now

(sziqbdg — S5ban — s¢¢ur> .
—819Pub — $14Pug

—S1$ug + 53$ub _A37$dr o
—5100dg — $13Pdb

S§¢db - qusd?“ - Sgd)ug o
* * 1
7510¢ur - 515¢ub
_52¢ub tsl(z)ur _A38¢dg
—811Pdb — 514Par

p%Xr =

P3Xg =

SZQSdT’ - qusdg - sg(bub
* * U
—511Pug — S13Pur
—53Qur + 520ug — S9Pap o
—812@dr — 515Pdg

PIXb =

21

(Si(bug — 83Pub + 5;¢dr> o
+570%dg + S13%db !
_34$dg + SG(Edb +A87€$ur
+5120ub + S14Pug
(B.17)
(5;¢ub - 5T¢ur + 5§¢dg) o
+511Pab + 14Par !
_35$db -t 344/5(17- +j8$ug
+510¢ur + 515¢ub
(B.18)
(s§¢ur - 3§¢ug + 35¢db> o
+ST2¢dr + 375¢d9
*Sﬁadr t 55;5(1;] +A89¢A5ub o1
+511Pug + S13Pur
(B.19)



C Gauge invariance, details

C.1 Gauge group generated by P,

Since P, (0°) = U°L35 we get
U = [exp(0.L,)](P°) = T exp(6Lss)
U = c=r g b

We let
C =cos(f) ; S =sin(9)

Then (C.2) is equivalent to the system
d)/dc = C¢dc - is¢u(:a3
(b'/u,c = Cd)uc - isqﬁchS
or to the system
nlldc = C771dc - iS771uc§ 77/>1kdc - Cnfdc + anruc
77/2(1(: = C772dc - ZSHQUM n/;dc = Cn;dc + ZSn;u(

niuc = C"?luc - Z'5771610; nquc = C’rﬁuc + iSnIdc
néuc = 07721140 - iSUQdC; U/;uc = C”Suc + isn;dc

We then get

s) = C?sy — S%s4 +iCS(s10 — 514)
sh = C?%sy — §%s1 +iCS(s10 — 514)
sho = C%s19 + S%s14 +iCS(51 + 54)
sty = C%s14 + S%s19 —iCS(s1 + s4).

This implies
/¥ ! I* I 1% / ¥ % £ * *
5181+ 545 4 + 5105 10 T 5145 14 = 5151 T 5454 + 810510 + 514514-
Similarly, permuting colors, we get

sy = C?sy — S%s5 +iCS(s11 — s515)
st = C%s5 — S%sy +iCS(s11 — 515)
sy = C%s11 + S%s15 +iCS(s5 + s5)
shs = C?s15 + S%s11 — iCS(s2 + s5).

This implies

A A / 1% / 1% * * * *
8359 + 8555+ 8115 11 1 5155 15 = S282 1 §585 + S11511 + S15575-
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and also
8/3 = 0283 — S286 + iCS(Slg — 813) ( )
5/6 = 0286 - 5253 + iCS(Slg — 813) (C.Ql)
8’12 :C2812+82813+i05(83+86) ( )
8/13 202813+S2812 —iOS(83+$6). ( )
This implies

! 1% /1% I IF I * * * *
538 3 + 555 g + 5795 19 + 5135 13 = 53535 + SeSg + S12572 + 5135]3- (C.24)

Moreover we get

S7 = S7; S§ = S8; Sy = Sg. (C.25)
We then get
p=p (C.26)
Next we have
A B , A B
Xr = <§ 12[) X = (g/ 2’) (C27)
A= (_s4$dg + S60ab + S70ur + S120up + 814¢A5ug)01 (C.28)
E = (_Sl(gug + 33$ub - 37$d7" - S1o<$dg - Slg(gdb)(ﬁ. (0.29)
and we get
A" = CA - iSBos (C.30)
B'=CB —iSAocs (C.31)
r ¢ —iSog\ _ oy
Xr = Xr (iSag O ) = Xr€ . (032)

Since we get the same relation for g and b colors we finally get

X'© = x¢exp(6Lzs) (C.33)

C.2 Gauge group generated by P,
Since P, (V€) = WCLsp12 we get

' = [exp(6P,)](¥€) = ¥° exp(HL5012) (C.34)
Uy =W, c=r,9,b. (C.35)

We let
C =cos(f) ; S =sin(0) (C.36)
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Then (C.35) is equivalent to the system
(b:ic = Chdac + Spuc
Qb;m = Couc — SPac
or to the system
nidc = Cnldc + Snluc; nljdc = C’rﬁdc + Snruc
nédc = 0772dc + 5772uc§ n/;dc = Cngdc + Snguc
nlluc = Cnluc - Snldc; n/;uc = C”Iuc - Sni(dc
77,2uc = CT]QUC - 5772dc§ n/;uc = Cnguc - Sn;dc
We then get
8/1 = C281 + 5284 — CSs19+ CSsq4
321 = 0254 + 5281 + CSs19g — CSsy4
Sllo = 02810 + 52814 + CSSl — CSS4
8/14 = 02814 + 52510 — (CSsy +CSsy.

This implies

A AA / 1% / 1% * * * *
8181 T 845 4+ 8108 10 T 5145 14 = S151 + 5454 + 510810 + 514514-

Similarly, permuting colors, we get
8/2 = 0282 + 5285 — CSs11+CSsy5
Sg = 0285 + 5282 + CSs11 — CSsys
Sln = 02811 + 52815 + CSsy — CSss
sis = C?s15 + S%s11 — CSsqy + CSss.

This implies

/AA AA / 1% / 1% * * * *
8989 T 858 5 + 8115 11 T 8155 15 = S253 + 8555 + 511511 + S15515-

and also
sh = C?s3 4+ S%sg — CSs19 + CSs13
st = C?s6 + S%s3 + CSs19 — CSs13
1o = C%s19 + S%s13 + C'Ss3 — CSsg
sh3 = C?s13 + S%519 — C'Ss3 + CSse.

This implies

ANA AA / 1% / 1% * * * *
S35 3+ 8gS'g + 5125 19 + 5135 13 = 83583 + SeSg + S12512 + S13513-
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Moreover we get
! c ool e ol —
S7 = S7; Sg = S8; Sg = S9.

We then get
/

p=0p
Next we get with (C.27)
A\/ = CA\ — S§U3
E/ = Cg + S;{O’g

’ C —503 . — 0
M—M(SUS o ) =xe

Since we get the same relation for g and b colors we finally get

/

X' = x“exp(—0Ls012)

C.3 Gauge group generated by P,
Since £3(\I/C> = \I’CL3012 we get

U = [exp(6P5))(0°) = ° oxp(0Lsons)

v = Wefr0z o =p g b.

Then (C.65) is equivalent to the system

¢:ic = ew(bdc
d’;c - eiwﬁbuc
or to the system

/ _ 10 Lo E __—i0, *
Mde = € Mides M 1de — € Mdc

/ _ 10 A __—i0, %
M2de = € M2dc; M 2de =€ M2de
r i N T
Muc = € Mucs; Miue = € Muc
/ ___—1i0 R 10, %
Nouc = € M2ucs M 2ue = € M2yc

We then get

210 21982; 8/3 _ 621083

21985; S% — 6—22986

815 sh=¢
2i0

sh=e
/ — / —
sy =e S4; S5 =¢€
/o oo — ol —
S7 = 875 Sg = 88; Sg9 = S9
’ o o
10 = S105 S11 = S115 S12 = S12
’ o Lo
S$13 = S13; S14 — S14; S15 — S15-
This implies
p=p
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Next we get with (C.27)

A\/ — 672’0;{; Al = eiOA
E/ — eiO/B\ ; B/ — e*ieB

e? 0 ;
X; = Xr ( 0 ei@) = Xreel-

Since we get the same relation for g and b colors we finally get

/

X' = x“exp(—6L3012)

C.4 Gauge group generated by il

We name f; the gauge transformation
e . e (0 i,
fi: v lel(qj)_(i\h O)

which implies with C = cos(f) and S = sin(f)

: 0 CV, + Siv 0o v
exp(0f1)](¥°) = . ! ) = 7
[exp(8.£)1(F) (C\pg + Siv, v, ) (\IJ; \1/;)
U =C0, + Siv,
\I/’g =CV¥, + 5iv,
U, =,
The equality (C.84) is equivalent to the system
n/;dr = Cn;dr + ’LSangv nliur = Cnrur + Z‘Snrug
n/;dr = Cn;dr + ZSn;dm n/;ur = Cn;ur + ZST];uq
The equality (C.85) is equivalent to the system
W/ng = Onidg + lSTﬁdr? nplkug = Cni(ug + aniur
nl;d_q - Cn;dg + lSn;drv T/;ug = On;ug + ZS??SW
This gives for the invariant scalars s;
sy = s1; 8 = s4; S5 = S9
sy = Csg —iSsg; sy = Cs3 — 1982
s5 = Cs5 —iSsg; sg = Csg —iSss
8/11 =Cs11 + iSslg; 8/13 = (Cs13 + 15811

’ . ’ .
S10 = Csio +1Ss15; S15 = Cs15 + 15512
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sh = C?s; — S%sg +iCSs1g +iCSs14
sk = C%sg — S%s7 +iCSs14 +iCSs10
510 = C?s19 — 52514 + iCSs7 +iCSsg
sty = C%s14 — S%s19 +iCSsg +iCSsy
We then get
shs'y 4 545’5 = S055 + 5355
sts's 4 8555 = 5555 + 5650
11811 + 813813 = s1187; + 513573
8198 19 + 855" 15 = 81251 + 515515
s78'7 + 535’5 + 810810 + 514814 = 5757 + s855 + 510570 + 514574
P =p.

Next we let

and we get with (B.17) and (B.18)

Al =CA, —iSA,; B, =CB, —iSB,
Al =CAy —iSA,;; By =CB, —iSB,.

This gives the awaited result
Xy = Cxr —iSx4; X, = Cxg — iSx:-

C.5 Gauge group generated by il's

We name f3 the gauge transformation

f3: U= il (P°)

Il
/‘-\
- o

m»e
—
o=
~__

which implies

0i /
610 = (g, “u) = (0 )

v =y,
/. —0i
\I!g =e 'Y,

!
» = Ys
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The equality (C.113) is equivalent to

(?&r A{ur) _ <ei0 0 > <?dr ?\ur)
:u‘ (bilr 0 6719 ¢ur ¢d1‘

The equality (C.114) is equivalent to

o ) _ (00 0) (40 )
;g /dg 0 e’ bug  Pdg

We get
nlidr = eiieni‘dr; nqur = eiierrﬁur
n/;dr = 671‘9773617’; n/;ur = eiian;ur
n/;(dg = ewnrd‘q; n,Iug = ew?ﬂ:ug
n/;dg = eien;dg; n/;ug = eian;ug
This gives
sh=s51; sh=ePsy; sh=els3
sh=s4; st=e"Ys5; sh=es
S =S89 ; St e 20 gq ; sh= e?s,
sho=510; 81y =e Vs sy =e?siy

r_ . /o —i0 . P if
S14 = S14 ; S15 =€ " S15; S13 = € 513

from which we get

s;s’; =585, j=1,2,...,15
p=p
Xr=ex
Xy =€xq

These relations are the awaited ones because
v = a(ei"q/,.)
= e 19(—i90V, 4 87,)
B\Il; = a(e*iG\IJg)
= (1000, + 9V,)

G®=a*— 2o
g3
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(C.116)

(C.117)

(C.132)
(C.133)



C.6 Gauge group generated by il'g

We name fg the gauge transformation

0
v

2i

Jo 1 U= ilg(¥°) = ( i
BRVE

NG

which implies

. 0 Vi, 0o v
exp(01))(¥°) = (W @> (& o
v, = exp(\a/ig)\lfr
vy = exp(f/ig)‘l’g
U, = eXP(Q\g)‘I’b
This gives
e = D100 6y = expl( T
Oy = D)1y 0y = exp( )6
(biib = eXP(*f/Lg)Qsdb; ¢;Lb = eXP(*%)%b
We then get

1% 26 *
Nidar = eXp(ﬁ)nldr;
1% 7’0 *

N 2dar = eXp(ﬁﬁhdr;
. o,
nllur = exp(%)nlur;

* 7
77/2u7" = eXP(%)U;m«;
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‘)

1% 7’9 * 1%

N'1dag = exp(ﬁ)mdg; N 1ap = €xp(—
1% 20 * 1%

N 2ag = eXp(%)nzdg; N 2ap = exp(—

o = XD s 1 = exP(— )
n lug P \/g nlug M 1ub P \/g Ui g

2i0,
%)nmg
2i6 . ,
%)Ung
2i6

*

210

/% i * . 1% .
n 2ug = exp(%)Tbuga N oup = exp(—ﬁ)Tbug

(C.134)

(C.135)

(C.136)
(C.137)

(C.138)

(C.139)
(C.140)

(C.141)

(C.142)
(C.143)
(C.144)

(C.145)



This implies

210
s = !

16 10
(s 4= expl—Tss 4 = expl—Tosg (C.146)
2i60 10 0
sy = eXp(%)szi; st = exp(—ﬁ)s& sg = eXp(—%)SG (C.147)
2i60 2i6 10
sh = eXp(%)Sﬂ sg = eXp(ﬁ)Sg; sq = exp( ﬁ>89 (C.148)
j 0 0
sho = exp(T)sm; sy = exp(—ﬁ)sn; sy = exp(—ﬁ)slg (C.149)
10 2i6 0
sy = eXP(—T)Sw; shy = exp(ﬁ)su; S5 = exp(—T)slg, (C.150)
We then get the awaited results
sis's =s;85, j=1,2,...,15 (C.151)
pr=p (C.152)
, i0
Xr = eXp(*%)xr (C.153)
, i6
Xg = exp(—%)xg (C.154)
2i6
Xp = exp(ﬁ)m- (C.155)
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