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A wave equation with mass term is studied for all particles and antiparticles of the first generation: electron and its neutrino, positron and antineutrino, quarks u and d with three states of color and antiquarks u and d. This wave equation is form invariant under the Cl * 3 group generalizing the relativistic invariance. It is gauge invariant under the U (1) × SU (2) × SU (3) group of the standard model of quantum physics. The wave is a function of space and time with value in the Clifford algebra Cl1,5. All features of the standard model, charge conjugation, color, left waves, Lagrangian formalism, are linked to the geometry of this extended space-time.

Introduction

We use here all notations of "New insights in the standard model of quantum physics in Clifford Algebra" [START_REF] Daviau | New Insights in the Standard Model of Quantum Physics in Clifford Algebra. Je Publie, Pouillé-les-coteaux[END_REF]. The wave equation for all particles of the first generation is a generalization of the wave equation obtained in 6.7 for 1 the electron and its neutrino. This wave equation has obtained a proper mass term compatible with the gauge invariance in [START_REF] Daviau | Relativistic gauge invariant wave equation of the electron-neutrino[END_REF]. It is a generalization of the homogeneous nonlinear Dirac equation for the electron alone [START_REF] Daviau | Equation de Dirac non linéaire[END_REF] [2] [START_REF] Daviau | Interprétation cinématique de l'onde de l'électron[END_REF] [4] [START_REF] Daviau | Cl * 3 invariance of the Dirac equation and of electromagnetism[END_REF] [6] [START_REF] Daviau | Nonlinear Dirac Equation, Magnetic Monopoles and Double Space-Time[END_REF]. The link with the usual presentation of the standard model is made by the left and right Weyl spinors used for waves of each particle. These right and left waves are parts of the wave with value in Cl 1, [START_REF] Daviau | Cl * 3 invariance of the Dirac equation and of electromagnetism[END_REF] .

We used previously the same algebra Cl 5,1 = Cl 1,5 . It is the same algebra, and this explains very well why sub-algebras Cl 1,3 and Cl 3,1 have been equally used to describe relativistic physics [START_REF] Deheuvels | Tenseurs et spineurs[END_REF] [13]. But the signature of the scalar product cannot be free, this scalar product being linked to the gravitation in the general relativity. It happens that vectors of Cl 1,5 are pseudo-vectors of Cl 5,1 and more generally that n-vectors of Cl 1,5 are (6 -n)-vectors of Cl 5,1 . The generalization of the wave equation for electron-neutrino is simpler if we use Cl 1,5 . This is the first indication that the signature + -----is the true one. We explain in Appendix A how the reverse in Cl 1,5 is linked to the reverse in Cl 1,3 , a necessary condition to get the wave equation of all particles of the first generation.

We have noticed, for the electron alone firstly (See [START_REF] Daviau | Double Space-Time and more[END_REF] 2.4), next for elec-tron+neutrino [START_REF] Daviau | Relativistic gauge invariant wave equation of the electron-neutrino[END_REF] the double link existing between the wave equation and the Lagrangian density: It is well known that the wave equation may be obtained from the Lagrangian density by the variational calculus. The new link is that the real part of the invariant wave equation is simply L = 0. The Lagrangian formalism is then necessary, being a consequence of the wave equation. Next we have extended the double link to electro-weak interactions in the leptonic case (electron + neutrino). Now we are extending the double link to the gauge group of the standard model. The Lagrangian density must then be the real part of the invariant wave equation.

Moreover we generalized the non-linear homogeneous wave equation of the electron, and we got a wave equation with mass term [START_REF] Daviau | Relativistic gauge invariant wave equation of the electron-neutrino[END_REF], form invariant under the Cl * 3 = GL(2, C) group and gauge invariant under the U (1) × SU (2) gauge group of electro-weak interactions. Our aim is to explain how this may be extended to a wave equation with mass term, both form invariant under Cl * 3 and gauge invariant under the U (1)×SU (2)×SU (3) gauge group of the standard model, including both electro-weak and strong interactions.

1 From the lepton case to the full wave

The standard model adds to the leptons (electron e and its neutrino n) in the "first generation" two quarks u and d with three states each. Weak interactions acting only on left waves of quarks (and right waves of antiquarks) we read the wave of all fermions of the first generation as follows:

Ψ = Ψ l Ψ r Ψ g Ψ b ; Ψ l = φ e φ n φ n φ e = φ e φ n φ n σ 1 φ e σ 1 (1.1) 
Ψ r = φ dr φ ur φ ur φ dr = φ dr φ ur φ ur σ 1 φ dr σ 1

; Ψ g = φ dg φ ug φ ug φ dg = φ dg φ ug φ ug σ 1 φ dg σ 1

Ψ b = φ db φ ub φ ub φ db = φ db φ ub φ ub σ 1 φ db σ 1 (1.
2)

The electro-weak theory [14] needs three spinorial waves in the electron-neutrino case: the right ξ e and the left η e of the electron and the left spinor η n of the electronic neutrino. The form invariance of the Dirac theory imposes to use φ e for the electron and φ n for its neutrino satisfying

φ e = √ 2 ξ 1e -η * 2e ξ 2e η * 1e = √ 2(ξ e -iσ 2 η * e ) ; φ n = √ 2 0 -η * 2n 0 η * 1n (1.3) φ e = √ 2 η 1e -ξ * 2e η 2e ξ * 1e = √ 2(η e -iσ 2 ξ * e ) ; φ n = √ 2 η 1n 0 η 2n 0 = √ 2(η n 0). (1.4) 
Waves φ e and φ n are functions of space and time with value into the Clifford algebra Cl 3 of the physical space. The standard model uses only a left η n wave for the neutrino. We always use the matrix representation (A.1) which allows to see the Clifford algebra Cl 1,3 as a sub-algebra of M 4 (C). Under the dilation R with ratio r induced by any M in GL(2, C) we have (for more details, see [START_REF] Daviau | L'espace-temps double[END_REF]):

x ′ = M xM † ; det(M ) = re iθ ; x = x µ σ µ ; x ′ = x ′ µ σ µ (1.5) ξ ′ = M ξ ; η ′ = M η ; η ′ n = M η n ; φ ′ e = M φ e ; φ ′ n = M φ n (1.6) Ψ ′ l = φ ′ e φ ′ n φ ′ n φ ′ e = M 0 0 M φ e φ n φ n φ e = N Ψ l (1.7)
The form (1.3) of the wave is compatible both with the form invariance of the Dirac theory and with the charge conjugation used in the standard model: the wave ψ e of the positron satisfies

ψ e = iγ 2 ψ * ⇔ φ e = φ e σ 1 (1.8)
We can then think the Ψ l wave as containing the electron wave φ e , the neutrino wave φ n and also the positron wave φ e and the antineutrino wave φ n :

Ψ l = φ e φ n φ n σ 1 φ e σ 1 ; φ e = √ 2 ξ 1e -η * 2e ξ 2e η * 1e ; φ n = √ 2 ξ 1n 0 ξ 2n 0 (1.9)
And the antineutrino has only a right wave. The multivector Ψ l (x) is usually an invertible element of the space-time algebra because (See [START_REF] Daviau | New Insights in the Standard Model of Quantum Physics in Clifford Algebra. Je Publie, Pouillé-les-coteaux[END_REF] (6.250)) with:

a 1 = det(φ e ) = φ e φ e = 2(ξ 1e η * 1e + ξ 2e η * 2e ) (1.10) a 2 = 2(ξ 1e η * 1n + ξ 2e η * 2n ) = 2(η * 2e η * 1n -η * 1e η * 2n ) (1.11) a 3 = 2(ξ 1e η * 1n + ξ 2e η * 2n ) (1.12) we got det(Ψ l ) = a 1 a * 1 + a 2 a * 2 .
(1.13) Most of the preceding presentation is easily extended to quarks. For each color c = r, g, b the electro-weak theory needs only left waves:

Ψ c = φ dc φ uc φ uc φ dc ; φ dc = √ 2 η 1dc 0 η 2dc 0 ; φ uc = √ 2 η 1uc 0 η 2uc 0 (1.14)
The Ψ wave is now a function of space and time with value into Cl 1,5 = Cl 5,1 which is a sub-algebra (on the real field) of Cl 5,2 = M 8 (C):

Ψ = Ψ l Ψ r Ψ g Ψ b ; Ψ = Ψ b Ψ r Ψ g Ψ l (1.15)
The link between the reverse in Cl 1,5 and the reverse in Cl 1,3 is not trivial and is detailed in Appendix A. The wave equation for all objects of the first generation reads 0 = (DΨ)L 012 + M (1.16)

The mass term reads

M = m 2 ρ 2 χ b m 2 ρ 2 χ g m 2 ρ 2 χ r m 1 ρ 1 χ l (1.17)
where we use the scalar densities s j and χ terms of Appendix B, with

ρ 2 1 = a 1 a * 1 + a 2 a * 2 + a 3 a * 3 ; ρ 2 2 = j=15 j=1 s j s * j . (1.18)
The covariant derivative D uses the matrix representation (A.1) and reads

D = ∂ ∂ ∂ + g 1 2 B P 0 + g 2 2 W j P j + g 3 2 G k iΓ k (1.19) D = 3 µ=0 L µ D µ ; ∂ ∂ ∂ = 3 µ=0 L µ ∂ µ ; B = 3 µ=0 L µ B µ (1.20) W j = 3 µ=0 L µ W j µ , j = 1, 2, 3 (1.21) G k = 3 µ=0 L µ G k µ , k = 1, 2, . . . , 8. (1.22)
We use two projectors satisfying

P ± (Ψ) = 1 2 (Ψ ± iΨL 21 ) ; i = L 0123 (1.23)
Three operators act on quarks like on leptons:

P 1 (Ψ) = P + (Ψ)L 35 (1.24) P 2 (Ψ) = P + (Ψ)L 5012 (1.25) P 3 (Ψ) = P + (Ψ)(-i).
(1.26)

The fourth operator acts differently on the leptonic and on the quark sector.

Using projectors:

P + = 1 2 (I 8 + L 012345 ) = I 4 0 0 0 ; P -= 1 2 (I 8 -L 012345 ) = 0 0 0 I 4 (1.27)
we can separate the lepton part Ψ l and the quark part Ψ c of the wave:

Ψ l = P + ΨP + = Ψ l 0 0 0 ; Ψ c = Ψ -Ψ l = 0 Ψ r Ψ g Ψ b .
(1.28) and we get (see [START_REF] Daviau | New Insights in the Standard Model of Quantum Physics in Clifford Algebra. Je Publie, Pouillé-les-coteaux[END_REF] (B.4) with a = b = 1)

P 0 (Ψ l ) = 1 2 iΨ l L 21 + 3 2 Ψ l L 21 (1.29) P 0 (Ψ c ) = - 1 3 Ψ c L 21 . (1.30)
This last relation comes from the non-existence of the right part of the Ψ c waves.

Chromodynamics

We start from generators λ k of the SU (3) gauge group of chromodynamics

λ 1 =   0 1 0 1 0 0 0 0 0   , λ 2 =   0 -i 0 i 0 0 0 0 0   , λ 3 =   1 0 0 0 -1 0 0 0 0   λ 4 =   0 0 1 0 0 0 1 0 0   , λ 5 =   0 0 -i 0 0 0 i 0 0   , λ 6 =   0 0 0 0 0 1 0 1 0   λ 7 =   0 0 0 0 0 -i 0 i 0   , λ 8 = 1 √ 3   1 0 0 0 1 0 0 0 -2   . (2.1)
To simplify here notations we use now l, r, g, b instead Ψ l , Ψ r , Ψ g , Ψ b . So we have Ψ = l r g b . Then (C.1) gives

λ 1   r g b   =   g r 0   , λ 2   r g b   =   -ig ir 0   , λ 3   r g b   =   r -g 0   λ 4   r g b   =   b 0 r   , λ 5   r g b   =   -ib 0 ir   , λ 6   r g b   =   0 b g   (2.
2)

λ 7   r g b   =   0 -ib ig   , λ 8   r g b   = 1 √ 3   r g -2b   .
We name Γ k operators corresponding to λ k acting on Ψ. We get with projectors P + and P -in (1.27):

Γ 1 (Ψ) = 1 2 (L 4 ΨL 4 + L 01235 ΨL 01235 ) = 0 g r 0 (2.3) Γ 2 (Ψ) = 1 2 (L 5 ΨL 4 -L 01234 ΨL 01235 ) = 0 -ig ir 0 (2.4) Γ 3 (Ψ) = P + ΨP --P -ΨP + = 0 r -g 0 (2.5) Γ 4 (Ψ) = L 01253 ΨP -= 0 b 0 r ; Γ 5 (Ψ) = L 01234 ΨP -= 0 -ib 0 ir (2.6) Γ 6 (Ψ) = P -ΨL 01253 = 0 0 b g ; Γ 7 (Ψ) = -iP -ΨL 4 = 0 0 -ib ig (2.7) Γ 8 (Ψ) = 1 √ 3 (P -ΨL 012345 + L 012345 ΨP -) = 1 √ 3 0 r g -2b . (2.8) 
Everywhere the left up term is 0, so all Γ k project the wave Ψ on its quark sector.

We can extend the covariant derivative of electro-weak interactions in the electron-neutrino case:

DΨ l = ∂Ψ l + g 1 2 BP 0 (Ψ l ) + g 2 2 W j P j (Ψ l ) (2.9)
to get the covariant derivative of the standard model 

D(Ψ) = ∂(Ψ) + g 1 2 B P 0 (Ψ) + g 2 2 W j P j (Ψ) + g 3 2 G k iΓ k (Ψ). ( 2 
Ψ ′ = [exp(S)](Ψ) ; D = L µ D µ ; D ′ = L µ D ′ µ (2.13)
the gauge transformation reads

D ′ µ Ψ ′ = [exp(S)](D µ Ψ) (2.14) B ′ µ = B µ - 2 g 1 ∂ µ a 0 (2.15) W ′ j µ P j = exp(S 1 )W j µ P j - 2 g 2 ∂ µ [exp(S 1 )] exp(-S 1 ) (2.16) G ′ k µ iΓ k = exp(S 2 )G k µ iΓ k - 2 g 3 ∂ µ [exp(S 2 )] exp(-S 2 ).
(2.17)

The SU (3) group generated by projectors Γ k acts only on the quark sector of the wave:

P + [exp(b k iΓ k ](Ψ)P + = P + ΨP + = Ψ l (2.18)
The physical translation is: Leptons do not act by strong interactions. This comes from the structure of the wave itself. It is fully satisfied in experiments. We get then a U (1) × SU (2) × SU (3) gauge group for a wave including all fermions of the first generation. This group acts on the lepton sector only by its U (1) × SU (2) part. Consequently the wave equation is composed of a lepton wave equation and a quark wave equation:

0 = (DΨ l )L 012 + m 1 ρ 1 0 0 0 χ l (2.19) 0 = (DΨ c )L 012 + m 2 ρ 2 χ c ; χ c = χ b χ g χ r 0 (2.20)
The wave equation (2.19) is equivalent to the wave equation

DΨ l γ 012 + m 1 ρ 1 χ l = 0 ; γ 012 = γ 0 γ 1 γ 2 (2.21)
studied in [9] [8], where

χ l = 1 ρ 2 1 a * 1 φ e + a * 2 φ n σ 1 + a * 3 φ n -a * 2 φ eL σ 1 + a * 3 φ eR a 2 φ eL σ 1 + a 3 φ eR a 1 φ e -a 2 φ n σ 1 + a 3 φ n (2.22) φ eR = φ e 1 + σ 3 2 ; φ eL = φ e 1 -σ 3 2 (2.23)
This wave equation is equivalent to the invariant equation: We begin by the double link between wave equation and Lagrangian density that we have remarked firstly in the Dirac equation [START_REF] Daviau | Double Space-Time and more[END_REF], next in the lepton case electron+neutrino [START_REF] Daviau | New Insights in the Standard Model of Quantum Physics in Clifford Algebra. Je Publie, Pouillé-les-coteaux[END_REF].

Ψ l (DΨ l )γ 012 + mρ 1 Ψ l χ l = 0 ; Ψ l = φ e φ † n φ n φ † e . ( 2 

Double link between wave equation and Lagrangian density

The existence of a Lagrangian mechanism in optics and mechanics is known since Fermat and Maupertuis. This principle of minimum is everywhere in quantum mechanics from its beginning, it is the main reason of the hypothesis of a wave linked to the move of any material particle made by L. de Broglie [START_REF] De | Recherches sur la théorie des quantas[END_REF]. By the calculus of variations it is always possible to get the wave equation from the Lagrangian density. But another link exists : the Lagrangian density is the real scalar part of the invariant wave equation. This was obtained firstly for the electron alone [START_REF] Daviau | Double Space-Time and more[END_REF], next for the pair electron-neutrino [START_REF] Daviau | Relativistic gauge invariant wave equation of the electron-neutrino[END_REF] where the Lagrangian density reads

L l = L 0 + g 1 L 1 + g 2 L 2 + m 1 ρ 1 (3.1) L 0 = ℜ[-i(η † e σ µ ∂ µ η e + ξ † e σ µ ∂ µ ξ e + η † n σ µ ∂ µ η n )] (3.2) L 1 = B µ ( 1 2 η † e σ µ η e + ξ † e σ µ ξ e + 1 2 η † n σ µ η n ) (3.3) L 2 = -ℜ[(W 1 µ + iW 2 µ )η † e σ µ η n ] + W 3 µ 2 (η † e σ µ η e -η † n σ µ η n ). (3.4)
We shall establish the double link now for the wave equation (1.16). It is sufficient to add the property for (2.20). This equation is equivalent to the invariant equation:

0 = Ψ c (DΨ c )L 012 + m 2 ρ 2 Ψ c χ c (3.5) Ψ c = Ψ b Ψ r Ψ g 0 ; χ c = χ b χ g χ r 0 (3.6)
We get from the covariant derivative ( 

DΨ c = A g A b 0 A r (3.7) A g = ∂ ∂ ∂Ψ g - g 1 6 BΨ g γ 21 + g 2 2 (W 1 Ψ g γ 3 i + W 2 Ψ g γ 3 -W 3 Ψ g i) + g 3 2 (G 1 iΨ r -G 2 Ψ r -G 3 iΨ g + G 6 iΨ b + G 7 Ψ b + 1 √ 3 G 8 iΨ g ) (3.8) A b = ∂ ∂ ∂Ψ b - g 1 6 BΨ b γ 21 + g 2 2 (W 1 Ψ b γ 3 i + W 2 Ψ b γ 3 -W 3 Ψ b i) + g 3 2 (G 4 iΨ r -G 5 Ψ r + G 6 iΨ g -G 7 Ψ g - 2 √ 3 G 8 iΨ b ) (3.9) A r = ∂ ∂ ∂Ψ r - g 1 6 BΨ r γ 21 + g 2 2 (W 1 Ψ r γ 3 i + W 2 Ψ r γ 3 -W 3 Ψ r i) + g 3 2 (G 1 iΨ g + G 2 Ψ g + G 3 iΨ r + G 4 iΨ b + G 5 Ψ b + 1 √ 3 G 8 iΨ r ) (3.10)
Next we get

Ψ c (DΨ c )L 012 + m 2 ρ 2 Ψ c χ c (3.11) = Ψ b (A b γ 012 + m 2 ρ 2 χ b ) + Ψ r (A r γ 012 + m 2 ρ 2 χ r ) Ψ b (A g γ 012 + m 2 ρ 2 χ g ) Ψ g (A b γ 012 + m 2 ρ 2 χ b ) Ψ g (A g γ 012 + m 2 ρ 2 χ g )
The calculation of the Lagrangian density in the general case is similar to the lepton case. We get

L = L l + L c (3.12) L c = c=r,g,b L 0c + g 1 c=r,g,b L 1c + g 2 c=r,g,b L 2c + g 3 L 3 + m 2 ρ 2 (3.13)
The calculation of L jc , j = 0, 1, 2 replaces the pair e-n by the pair dc-uc and suppress the ξ terms, then (3.2) (3.3) (3.4) become

L 0c = ℜ[-i(η † dc σ µ ∂ µ η dc + η † uc σ µ ∂ µ η uc )] (3.14) L 1c = - B µ 6 (η † dc σ µ η dc + η † uc σ µ η uc ) (3.15) L 2c = -ℜ[(W 1 µ + iW 2 µ )η † dc σ µ η uc ] + W 3 µ 2 (η † dc σ µ η dc -η † uc σ µ η uc ) (3.16)
Since three SU (2) group are included in SU (3) the calculation of L 3 has similarities with the calculation of L 2 and we get

L 3 = -ℜ[(G 1 µ + iG 2 µ )(η † dr σ µ η dg + η † ur σ µ η ug )] (3.17) -ℜ[(G 4 µ + iG 5 µ )(η † dr σ µ η db + η † ur σ µ η ub )] -ℜ[(G 6 µ + iG 7 µ )(η † dg σ µ η db + η † ug σ µ η ub )] + G 3 µ 2 (-η † dr σ µ η dr -η † ur σ µ η ur + η † dg σ µ η dg + η † ug σ µ η ug ) + G 8 µ 2 √ 3 (-η † dr σ µ η dr -η † ur σ µ η ur + η † db σ µ η db + η † ub σ µ η ub ) + G 8 µ 2 √ 3 (-η † dg σ µ η dg -η † ug σ µ η ug + η † db σ µ η db + η † ub σ µ η ub )
This new link between the wave equation and the Lagrangian density is much stronger than the old one, because it comes from a simple separation of the different parts of a multivector in Clifford algebra. The old link, going from the Lagrangian density to the wave equation, supposes a condition of cancellation at infinity which is dubious in the case of a propagating wave. On the physical point of view, there are no difficulties in the case of a stationary wave. Difficulties begin when propagating waves are studied. Our wave equations, since they are compatible with an oriented time and an oriented space, appear as more general, more physical, than Lagrangians. These are only particular consequences of the wave equations.

On the mathematical point of view the old link is always available. It is from the Lagrangian density (3.12) and using Lagrange equations that we have obtained the wave equation (1.16).

Invariances

Form invariance of the wave equation

Under the Lorentz dilation R induced by an invertible M matrix satisfying

x ′ = M xM † ; det(M ) = re iθ ; x = x µ σ µ ; x ′ = x ′ µ σ µ (4.1) η ′ uc = M η uc ; η ′ dc = M η dc ; φ ′ dc = M φ dc ; φ ′ uc = M φ uc (4.2) Ψ ′ c = φ ′ dc φ ′ uc φ ′ uc φ ′ dc = M 0 0 M φ dc φ uc φ uc φ dc = N Ψ c ; c = r, g, b. (4.3) 
We then let

N = N 0 0 N ; ∂ ∂ ∂ = L µ ∂ µ = 0 ∂ ∂ ∂ ∂ ∂ ∂ 0 (4.4)
which implies

Ψ ′ c = N Ψ c ; Ψ ′ c = Ψ c N ; N = N 0 0 N ; D = N D ′ N . (4.5)
Then we get

Ψ c (DΨ c )L 012 = Ψ c N D ′ N Ψ c L 012 = Ψ ′ c (D ′ Ψ ′ c )L 012 . (4.6)
and we shall now study the form invariance of the mass term. All s j are determinants of a φ matrix, this implies

s ′ j = det(φ ′ ) = det(M φ) = det(M ) det(φ) = re iθ s j (4.7) s ′ * j = re -iθ s * j ; ρ ′ 2 = rρ 2 . (4.8)
This gives

χ ′ c = χ ′ b χ ′ g χ ′ r 0 (4.9)
r 2 ρ 2 2 χ ′ c = ρ ′ 2 2 χ ′ c = re -iθ M 0 0 re iθ M ρ 2 2 χ c (4.10) χ ′ c = r -1 e -iθ M 0 0 r -1 e iθ M χ c = N -1 χ c (4.11) Ψ ′ c χ ′ c = Ψ c N N -1 χ c = Ψ c χ c (4.12)
Then the form invariance of the wave equation is equivalent to the condition on the mass term

m ′ 2 ρ ′ 2 = m 2 ρ 2 (4.13) m ′ 2 r = m 2 (4.14)
linked to the existence of the Planck factor [START_REF] Daviau | Gauge group of the standard model in Cl 1,5[END_REF].

Gauge invariance of the wave equation

Since we have previously proved the gauge invariance of the lepton part of the wave equation, it is reason enough to prove the gauge invariance of the quark part of the wave equation.

Gauge group generated by P 0

We have here

P 0 (Ψ c ) = Ψ c (- 1 3 L 21 ) (4.15) Ψ ′ c = [exp(θP 0 )](Ψ c ) = Ψ c exp(- θ 3 L 21 ) (4.16) B ′ µ = B µ - 2 g 1 B µ (4.17)
To get the gauge invariance of the wave equation we must get

χ ′ c = χ c exp(- θ 3 L 21 ); χ ′ c = χ c exp(- θ 3 γ 21 ), c = r, g, b. (4.18)
This is satisfied because

φ ′ dc = φ dc e -i θ 3 σ3 ; φ ′ uc = φ uc e -i θ 3 σ3 (4.19) η ′ * 1dc = e i θ 3 η * 1dc ; η ′ * 1uc = e i θ 3 η * 1uc η ′ * 2dc = e i θ 3 η * 2dc ; η ′ * 2uc = e i θ 3 η * 2uc (4.20) s ′ j = e 2i θ 3 s j , j = 1, 2, . . . , 15. (4.21)
All up terms in the matrix χ c contain s * j φ dc σ 1 and s * j φ uc σ 1 terms. We get

φ ′ dc = φ dc e -i θ 3 σ3 = e i θ 3 φ dc (4.22) s ′ * j φ ′ dc σ 1 = e -i θ 3 φ dc σ 1 = φ dc e θ 3 σ12 σ 1 = φ dc σ 1 e -θ 3 σ12 (4.23) χ ′ c = χ c exp(- θ 3 γ 21 ) (4.24) χ ′ c = χ c exp(- θ 3 L 21 ). (4.25) 
And we finally get

(D ′ Ψ ′ c )L 012 + m 2 ρ ′ 2 χ ′ c = [(DΨ c )L 012 + m 2 ρ 2 χ c ] exp(- θ 3 L 21 ) = 0 (4.26)
The wave equation with mass term is gauge invariant under the group generated by P 0 .

Gauge group generated by P 1

We have here

P 1 (Ψ c ) = Ψ c L 35 (4.27) Ψ ′ c = [exp(θP 1 )](Ψ c ) = Ψ c exp(θL 35 ) (4.28) W ′ 1 µ = W 1 µ - 2 g 2 ∂ µ θ (4.29)
We put a more detailed calculation in C.1. We get

(D ′ Ψ ′ c )L 012 + m 2 ρ ′ 2 χ ′ c = (DΨ c ) exp(θL 35 )L 012 + m 2 ρ ′ 2 χ ′ c = [(DΨ c )L 012 + m 2 ρ 2 χ c ] exp(θL 35 ) = 0 (4.30)
The wave equation with mass term is then gauge invariant under the group generated by P 1 .

Gauge group generated by P 2

We have here

P 2 (Ψ c ) = Ψ c L 5012 (4.31) Ψ ′ c = [exp(θP 2 )](Ψ c ) = Ψ c exp(θL 5012 ) (4.32) W ′ 2 µ = W 2 µ - 2 g 2 ∂ µ θ (4.33)
We have put a more detailed calculation in C.2. We get

(D ′ Ψ ′ c )L 012 + m 2 ρ ′ 2 χ ′ c = (DΨ c ) exp(θL 5012 )L 012 + m 2 ρ ′ 2 χ ′ c = [(DΨ c )L 012 + m 2 ρ 2 χ c ] exp(-θL 5012 ) = 0 (4.34)
The wave equation with mass term is then gauge invariant under the group generated by P 2 .

Gauge group generated by P 3

We have here

P 3 (Ψ c ) = Ψ c L 3012 (4.35) Ψ ′ c = [exp(θP 3 )](Ψ c ) = Ψ c exp(θL 3012 ) (4.36) W ′ 3 µ = W 3 µ - 2 g 2 ∂ µ θ (4.37)
We have put a more detailed calculation in C.3. We get

(D ′ Ψ ′ c )L 012 + m 2 ρ ′ 2 χ ′ c = (DΨ c ) exp(θL 3012 )L 012 + m 2 ρ ′ 2 χ ′ c = [(DΨ c )L 012 + m 2 ρ 2 χ c ] exp(-θL 3012 ) = 0 (4.38)
The wave equation with mass term is then gauge invariant under the group generated by P 3 .

Gauge group generated by Γ 1

We use now the gauge transformation

Ψ ′ r = CΨ r + SiΨ g ; C = cos(θ); S = sin(θ) (4.39) Ψ ′ g = CΨ g + SiΨ r (4.40) Ψ ′ b = Ψ b (4.41)
We can then forget here Ψ b . The gauge invariance signifies that the system

∂ ∂ ∂Ψ r = - g 3 2 G 1 iΨ g + m 2 ρ 2 χ r γ 012 ∂ ∂ ∂Ψ g = - g 3 2 G 1 iΨ r + m 2 ρ 2 χ g γ 012 (4.42)
must be equivalent to the system

∂ ∂ ∂Ψ ′ r = - g 3 2 G ′ 1 iΨ ′ g + m 2 ρ ′ 2 χ ′ r γ 012 ∂ ∂ ∂Ψ ′ g = - g 3 2 G ′ 1 iΨ ′ r + m 2 ρ ′ 2 χ ′ g γ 012 (4.43)
Using relations (4.39) and (4.40) the system (4.43) is equivalent to (4.42) if and only if

G ′ 1 = G 1 - 2 g 3 ∂ ∂ ∂θ (4.44)
because we get in C.4

ρ ′ = ρ (4.45) χ ′ r = Cχ r -Siχ g (4.46) χ ′ g = Cχ g -Siχ r (4.47)
The change of sign of the phase between (4.39) and (4.46) comes from the anticommutation between i and ∂ ∂ ∂.

Gauge groups generated by

Γ k , k > 1
We use with k = 2 the gauge transformation

Ψ ′ r = CΨ r + SΨ g ; C = cos(θ); S = sin(θ) (4.48) Ψ ′ g = CΨ g -SΨ r (4.49) Ψ ′ b = Ψ b (4.50)
The gauge invariance signifies that the system

∂ ∂ ∂Ψ r = - g 3 2 G 2 Ψ g + m 2 ρ 2 χ r γ 012 ∂ ∂ ∂Ψ g = g 3 2 G 2 Ψ r + m 2 ρ 2 χ g γ 012 (4.51)
must be equivalent to the system

∂ ∂ ∂Ψ ′ r = - g 3 2 G ′ 2 Ψ ′ g + m 2 ρ ′ 2 χ ′ r γ 012 ∂ ∂ ∂Ψ ′ g = g 3 2 G ′ 2 Ψ ′ r + m 2 ρ ′ 2 χ ′ g γ 012 (4.52)
Using relations (4.48) and (4.49) the system (4.52) is equivalent to (4.51) if and only if

G ′ 2 = G 2 - 2 g 3 ∂ ∂ ∂θ (4.53)
because we get

ρ ′ = ρ (4.54) χ ′ r = Cχ r + Sχ g (4.55) χ ′ g = Cχ g -Sχ r . ( 4 

.56)

The case k = 3 is detailed in C.5 and the case k = 8 is detailed in C.6. Cases k = 4 and k = 6 are similar to k = 1 and cases k = 5 and k = 7 are similar to k = 2 by permutation of indexes of color.

Concluding remarks

From experimental results obtained in the accelerators physicists have built what is now known as the "standard model". This model is generally thought to be a part of quantum field theory, itself a part of axiomatic quantum mechanics. One of these axioms is that each state describing a physical situation follows a Schrödinger wave equation. Since this wave equation is not relativistic and does not account for the spin 1/2 which is necessary to any fermion, the standard model has evidently not followed the axiom and has used instead a Dirac equation to describe fermions. Our work also starts with the Dirac equation. This wave equation is the linear approximation of our nonlinear homogeneous equation of the electron.

The wave equation presented here is a wave equation for a classical wave, a function of space and time with value into a Clifford algebra. It is not a quantized wave with value into a Hilbertian space of operators. Nevertheless and consequently we get most of the aspects of the standard model, for instance the fact that leptons are insensitive to strong interactions. The standard model is much stronger than generally thought. For instance we firstly did not use the link between the wave of the particle and the wave of the antiparticle, but then we needed a greater Clifford algebra and we could not get the necessary link between reversions1 that we use in our wave equation. We also needed the existence of the inverse to build the wave of a system of particles from the waves of its components. And we got two general identities which exist only if all parts of the general wave are left waves, only the electron having also a right wave.

The most important property of the general wave is its form invariance under a group including the covering group of the restricted Lorentz group. Our group does not explain why space and time are oriented, but it respects these orientations. The physical time is then compatible with thermodynamics, and the physical space is compatible with the violation of parity by weak interactions.

The wave accounts for all particles and anti-particles of the first generation. We have also given [START_REF] Daviau | Double Space-Time and more[END_REF][7][8] [START_REF] Daviau | Relativistic gauge invariant wave equation of the electron-neutrino[END_REF] the reason of the existence of three generations, it is simply the dimension of our physical space. Since the SU (3) gauge group of chromodynamics acts independently from the index of generations, the physical quarks may be combinations of quarks of different generations. Quarks composing protons and neutrons are such combinations. Our wave equation allows only two masses at each generation, one for the lepton part of the wave, the other one for the two quarks. The mixing can give a different mass for the two quarks of each generation.

Since the wave equation with mass term is gauge invariant, there is no necessity to use the mechanism of spontaneous symmetry breaking. The scalar boson certainly exists, but it does not explain the masses.

A wave equation is only a beginning. It shall be necessary to study also the boson part of the standard model and the systems of fermions, from this wave equation. A construction of the wave of a system of identical particles is possible and compatible with the Pauli principle [START_REF] Daviau | Cl * 3 invariance of the Dirac equation and of electromagnetism[END_REF] [10].

[13] D. Hestenes. A unified language for Mathematics and Physics and Clifford Algebra and the interpretation of quantum mechanics. In Chisholm and AK Common, editors, Clifford Algebras and their applications in Mathematics and Physics. Reidel, Dordrecht, 1986.

[14] S. Weinberg. A model of leptons. Phys. Rev. Lett., 19:1264-1266, 1967.

A Calculation of the reverse in Cl 1,5

Here indexes µ, ν, ρ . . . have value 0, 1, 2, 3 and indexes a, b, c, d, e have value 0, 1, 2, 3, 4, 5. We use2 the following matrix representation of Cl 1,5 :

L µ = 0 γ µ γ µ 0 ; L 4 = 0 -I 4 I 4 0 ; L 5 = 0 i i 0 ; i = iI 2 0 0 -iI 2 γ 0 = γ 0 = 0 I 2 I 2 0 ; γ j = -γ j = 0 σ j -σ j 0 , j = 1, 2, 3 (A.1)
where σ j are Pauli matrices. This gives

L µν = L µ L ν = 0 γ µ γ µ 0 0 γ ν γ ν 0 = γ µν 0 0 γ µν (A.2) L µνρ = L µν L ρ = γ µν 0 0 γ µν 0 γ ρ γ ρ 0 = 0 γ µνρ γ µνρ 0 (A.3) L 0123 = L 01 L 23 = γ 0123 0 0 γ 0123 = i 0 0 i (A.4)
We get also

L 45 = L 4 L 5 = 0 -I 4 I 4 0 0 i i 0 = -i 0 0 i = -L 54 (A.5) L 012345 = i 0 0 i -i 0 0 i = I 4 0 0 -I 4 (A.6) L 01235 = L 0123 L 5 = i 0 0 i 0 i i 0 = 0 -I 4 -I 4 0 . (A.7)
Similarly we get3 

L µ4 = γ µ 0 0 -γ µ ; L µ5 = γ µ i 0 0 γ µ i (A.8) L µν4 = 0 -γ µν γ µν 0 ; L µν5 = 0 γ µν i γ µν i 0 (A.9) L µνρ4 = γ µνρ 0 0 -γ µνρ ; L µνρ5 = γ µνρ i 0 0 γ µνρ i (A.10) L µ45 = 0 γ µ i -γ µ i 0 ; L µν45 = -γ µν i 0 0 γ µν i (A.11) L µνρ45 = 0 γ µνρ i -γ µνρ i 0 ; L 01234 = 0 -i i 0 (A.12)
Scalar and pseudo-scalar terms read

αI 8 + ωL 012345 = (α + ω)I 4 0 0 (α -ω)I 4 (A.13) αI 8 -ωΛ 012345 = (α -ω)I 4 0 0 (α + ω)I 4 (A.14)
For the calculation of the 1-vector term

N a L a = N 4 L 4 + N 5 L 5 + N µ L µ we let β = N 4 ; δ = N 5 ; a = N µ γ µ . (A.15)
This gives

N a L a = 0 -βI 4 + δi + a βI 4 + δi + a 0 . (A.16)
For the calculation of the 2-vector term

N ab L ab = N 45 L 45 + N µ4 L µ4 + N µ5 L µ5 + N µν L µν we let ǫ = N 45 ; b = N µ4 γ µ ; c = N µ5 γ µ ; A = N µν γ µν (A.17)
This gives

N ab L ab = -ǫi + b -ic + A 0 0 ǫi -b -ic + A . (A.18)
For the calculation of the 3-vector term

N abc L abc = N µ45 L µ45 + N µν4 L µν4 + N µν5 L µν5 + N µνρ L µνρ we let d = N µ45 γ µ ; B = N µν4 γ µν ; C = N µν5 γ µν ; ie = N µνρ γ µνρ (A.19)
This gives with (A.3) and (A.9)

N abc L abc = 0 di -B + iC + ie id + B + iC + ie 0 . (A.20)
For the calculation of the 4-vector term

N abcd L abcd = N µν45 L µν45 + N µνρ4 L µνρ4 + N µνρ5 L µνρ5 + N 0123 L 0123
we let

D = N µν45 γ µν ; if = N µνρ4 γ µνρ ; ig = N µνρ5 γ µνρ ; ζ = N 0123 (A.21)
This gives with (A.4) and (A.10)

N abcd L abcd = -iD + if + g + ζi 0 0 iD -if + g + ζi . (A.22)
For the calculation of the pseudo-vector term

N abcde L abcde = N µνρ45 L µνρ45 + N 01234 L 01234 + N 01235 L 01235 we let ih = N µνρ45 γ µνρ ; η = N 01234 ; θ = N 01235 (A.23)
This gives with (A.7) and (A.12)

N abcde L abcde = 0 h -ηi -θI 4 -h + ηi -θI 4 . (A.24)
We then get

Ψ = Ψ l Ψ r Ψ g Ψ b (A.25) =       (α + ω)I 4 + (b + g) + (A -iD) -(β + θ)I 4 + (a + h) + (-B + iC) +i(-c + f ) + (ζ -ǫ)i +i(-d + e) + (δ -η)i (β -θ)I 4 + (a -h) + (B + iC) (α -ω)I 4 + (-b + g) + (A + iD) +i(d + e) + (δ + η)i +i(-c -f ) + (ζ + ǫ)i       This implies Ψ l = (α + ω) + (b + g) + (A -iD) + i(-c + f ) + (ζ -ǫ)i (A.26) Ψ r = -(β + θ) + (a + h) + (-B + iC) + i(-d + e) + (δ -η)i (A.27) Ψ g = (β -θ) + (a -h) + (B + iC) + i(d + e) + (δ + η)i (A.28) Ψ b = (α -ω) + (-b + g) + (A + iD) + i(-c -f ) + (ζ + ǫ)i (A.29)
In Cl 1,3 the reverse of

A =< A > 0 + < A > 1 + < A > 2 + < A > 3 + < A > 4 is A =< A > 0 + < A > 1 -< A > 2 -< A > 3 + < A > 4
we must change the sign of bivectors A, B, iC, iD, and trivectors ic, id, ie, if and we then get

Ψ l = (α + ω) + (b + g) + (-A + iD) + i(c -f ) + (ζ -ǫ)i (A.30) Ψ r = -(β + θ) + (a + h) + (B -iC) + i(d -e) + (δ -η)i (A.31) Ψ g = (β -θ) + (a -h) -(B + iC) -i(d + e) + (δ + η)i (A.32) Ψ b = (α -ω)I 4 + (-b + g) -(A + iD) + i(c + f ) + (ζ + ǫ)i (A.33)
The reverse, in Cl 1,5 now, of

A =< A > 0 + < A > 1 + < A > 2 + < A > 3 + < A > 4 + < A > 5 + < A > 6 is A =< A > 0 + < A > 1 -< A > 2 -< A > 3 + < A > 4 + < A > 5 -< A > 6
Only terms which change sign, with (A.13), (A.18) and (A.20), are scalars ǫ and ω, vectors b, c, d, e and bivectors A, B, C. These changes of sign are not the same in Cl 1,5 as in Cl 1,3 . Differences are corrected by the fact that the reversion in Cl 1,5 also exchanges the place of Ψ l and Ψ b terms. We then get from (A.25) .34) This link between the reversion in Cl 1,3 and the reversion in Cl 1,5 is necessary to get an invariant wave equation. It is not general, for instance the reversion in Cl 3 is not linked to the reversion in Cl 2,3 .

Ψ =       (α -ω)I 4 + (-b + g) + (-A -iD) -(β + θ)I 4 + (a + h) + (B -iC) +i(c + f ) + (ζ + ǫ)i +i(d -e) + (δ -η)i (β -θ)I 4 + (a -h) -(B + iC) (α + ω)I 4 + (b + g) + (-A + iD) -i(d + e) + (δ + η)i +i(c -f ) + (ζ -ǫ)i       = Ψ b Ψ r Ψ g Ψ l . ( A 

B Scalar densities and χ terms

There are 6 × 5/2 = 15 such complex scalar densities:

s 1 = 2(ξ 1ur η * 1ug + ξ 2ur η * 2ug ) = 2(η * 2ur η * 1ug -η * 1ur η * 2ug ) (B.1)
s 2 = 2(ξ 1ug η * 1ub + ξ 2ug η * 2ub ) = 2(η * 2ug η * 1ub -η * 1ug η * 2ub ) (B.2)
s 3 = -2(ξ 1ur η * 1ub + ξ 2ur η * 2ub ) = 2(η * 2ub η * 1ur -η * 1ub η * 2ur ) (B.3) s 4 = 2(ξ 1dr η * 1dg + ξ 2dr η * 2dg ) = 2(η * 2dr η * 1dg -η * 1dr η * 2dg ) (B.4) s 5 = 2(ξ 1dg η * 1db + ξ 2dg η * 2db ) = 2(η * 2dg η * 1db -η * 1dg η * 2db ) (B.5)
s 6 = -2(ξ 1dr η * 1db + ξ 2dr η * 2db ) = 2(η * 2db η * 1dr -η * 1db η * 2dr ) (B.6) s 7 = 2(ξ 1ur η * 1dr + ξ 2ur η * 2dr ) = 2(η * 2ur η * 1dr -η * 1ur η * 2dr ) (B.7) s 8 = 2(ξ 1ug η * 1dg + ξ 2ug η * 2dg ) = 2(η * 2ug η * 1dg -η * 1ug η * 2dg ) (B.8) s 9 = 2(ξ 1ub η * 1db + ξ 2ub η * 2db ) = 2(η * 2ub η * 1db -η * 1ub η * 2db ) (B.9)
s 10 = 2(ξ 1ur η * 1dg + ξ 2ur η * 2dg ) = 2(η * 2ur η * 1dg -η * 1ur η * 2dg ) (B. 10 
)
s 11 = 2(ξ 1ug η * 1db + ξ 2ug η * 2db ) = 2(η * 2ug η * 1db -η * 1ug η * 2db ) (B.11)
s 12 = -2(ξ 1dr η * 1ub + ξ 2dr η * 2ub ) = 2(η * 2ub η * 1dr -η * 1ub η * 2dr ) (B. 12 
)
s 13 = 2(ξ 1ur η * 1db + ξ 2ur η * 2db ) = 2(η * 2ur η * 1db -η * 1ur η * 2db ) (B.13) s 14 = -2(ξ 1dr η * 1ug + ξ 2dr η * 2ug ) = 2(η * 2ug η * 1dr -η * 1ug η * 2dr ) (B.14)
s 15 = -2(ξ 1dg η * 1ub + ξ 2dg η * 2ub ) = 2(η * 2ub η * 1dg -η * 1ub η * 2dg ). (B.15)
We used in [START_REF] Daviau | Relativistic gauge invariant wave equation of the electron-neutrino[END_REF] 

χ l = 1 ρ 2 1 a * 1 φ e + a * 2 φ n σ 1 + a * 3 φ n -a * 2 φ eL σ 1 + a * 3 φ eR a 2 φ eL σ 1 + a 3 φ eR a 1 φ e -a 2 φ n σ 1 + a 3 φ n (B.16)
with φ eR = φ e (1 + σ 3 )/2 and φ eL = φ e (1 -σ 3 )/2, and we need now 

ρ 2 2 χ r =      s * 4 φ dg -s * 6 φ db -s * 7 φ ur -s * 12 φ ub -s * 14 φ ug σ 1 s * 1 φ ug -s * 3 φ ub + s * 7 φ dr +s * 10 φ dg + s * 13 φ db σ 1 -s 1 φ ug + s 3 φ ub -s 7 φ dr -s 10 φ dg -s 13 φ db σ 1 -s 4 φ dg + s 6 φ db + s 7 φ ur +s 12 φ ub + s 14 φ ug σ 1      (B.17) ρ 2 2 χ g =      s * 5 φ db -s * 4 φ dr -s * 8 φ ug -s * 10 φ ur -s * 15 φ ub σ 1 s * 2 φ ub -
φ ′ dc = C φ dc -iS φ uc σ 3 (C.4) φ ′ uc = C φ uc -iS φ dc σ 3 (C.5)
or to the system

η ′ 1dc = Cη 1dc -iSη 1uc ; η ′ * 1dc = Cη * 1dc + iSη * 1uc (C.6) η ′ 2dc = Cη 2dc -iSη 2uc ; η ′ * 2dc = Cη * 2dc + iSη * 2uc (C.7) η ′ 1uc = Cη 1uc -iSη 1dc ; η ′ * 1uc = Cη * 1uc + iSη * 1dc (C.8) η ′ 2uc = Cη 2uc -iSη 2dc ; η ′ * 2uc = Cη * 2uc + iSη * 2dc (C.9)
We then get 

s ′ 1 = C 2 s
χ r = A B B A ; χ ′ r = A ′ B ′ B ′ A ′ (C.
η ′ 1dc = Cη 1dc + Sη 1uc ; η ′ * 1dc = Cη * 1dc + Sη * 1uc (C.39) η ′ 2dc = Cη 2dc + Sη 2uc ; η ′ * 2dc = Cη * 2dc + Sη * 2uc (C.40) η ′ 1uc = Cη 1uc -Sη 1dc ; η ′ * 1uc = Cη * 1uc -Sη * 1dc (C.41) η ′ 2uc = Cη 2uc -Sη 2dc ; η ′ * 2uc = Cη * 2uc -Sη * 2dc (C.42)
We then get We name f 1 the gauge transformation

s ′ 1 = C 2 s 1 + S
A ′ = e -iθ A ; A ′ = e iθ A ( 
f 1 : Ψ c → iΓ 1 (Ψ c ) = 0 iΨ g iΨ r 0 (C.82)
which implies with C = cos(θ) and S = sin(θ)

[exp(θf 1 )](Ψ c ) = 0 CΨ r + SiΨ g CΨ g + SiΨ r Ψ b = 0 Ψ ′ r Ψ ′ g Ψ ′ b (C.83) Ψ ′ r = CΨ r + SiΨ g (C.84) Ψ ′ g = CΨ g + SiΨ r (C.85) Ψ ′ b = Ψ b (C.86)
The equality (C.84) is equivalent to the system

η ′ * 1dr = Cη * 1dr + iSη * 1dg ; η ′ * 1ur = Cη * 1ur + iSη * 1ug (C.87) η ′ * 2dr = Cη * 2dr + iSη * 2dg ; η ′ * 2ur = Cη * 2ur + iSη * 2ug (C.88)
The equality (C.85) is equivalent to the system

η ′ * 1dg = Cη * 1dg + iSη * 1dr ; η ′ * 1ug = Cη * 1ug + iSη * 1ur (C.89) η ′ * 2dg = Cη * 2dg + iSη * 2dr ; η ′ * 2ug = Cη * 2ug + iSη * 2ur (C.90)
This gives for the invariant scalars s j 

s ′ 1 = s 1 ; s ′ 4 = s 4 ; s ′ 9 = s 9 (C.91) s ′ 2 = Cs 2 -iSs 3 ; s ′ 3 = Cs 3 -iSs 2 (C.
χ r = A r B r B r A r ; χ ′ r = A ′ r B ′ r B ′ r A ′ r (C.106) χ g = A g B g B g A g ; χ ′ g = A ′ g B ′ g B ′ g A ′ g (C.107)
and we get with (B.17) and (B.18) We name f 8 the gauge transformation 

A ′ r = CA r -iSA g ; B ′ r = CB r -iSB g (C.108) A ′ g = CA g -iSA r ; B ′ g = CB g -iSB r . ( 
f 8 : Ψ c → iΓ 8 (Ψ c ) = 0 i √ 3 Ψ r i √ 3 Ψ g -2i

  (Ψ c ) = Ψ c L 35 we get Ψ ′ c = [exp(θP 1 )](Ψ c ) = Ψ c exp(θL 35 ) (C.1) Ψ ′ c = Ψ c e θγ3i , c = r, g, b. (C.2)We letC = cos(θ) ; S = sin(θ) (C.3)Then (C.2) is equivalent to the system

2 Since P 2 (

 22 27)A = (-s 4 φ dg + s 6 φ db + s 7 φ ur + s 12 φ ub + s 14 φ ug )σ 1 (C.28)B = (-s 1 φ ug + s 3 φ ub -s 7 φ dr -s 10 φ dg -s 13 φ db )σ 1 . (C.29)and we getA ′ = C A -iS Bσ 3 (C.30) B ′ = C B -iS Aσ 3 (C.31) χ ′ r = χ r C -iSσ 3 -iSσ 3 C = χ r e θγ3i . (C.32)Since we get the same relation for g and b colors we finally getχ ′ c = χ c exp(θL 35 ) (C.33)C.2 Gauge group generated byP Ψ c ) = Ψ c L 5012 we get Ψ ′ c = [exp(θP 2 )](Ψ c ) = Ψ c exp(θL 5012 ) (C.34) Ψ ′ c = Ψ c e θγ3 , c = r,g, b. (C.35) We let C = cos(θ) ; S = sin(θ) (C.36) Then (C.35) is equivalent to the system φ ′ dc = C φ dc + S φ uc (C.37) φ ′ uc = C φ uc -S φ dc (C.38) or to the system

  C.78) B ′ = e iθ B ; B ′ = e -iθ B (C.79) χ ′ r = χ r e iθ 0 0 e -iθ = χ r e θi . (C.80) Since we get the same relation for g and b colors we finally get χ ′ c = χ c exp(-θL 3012 ) (C.81) C.4 Gauge group generated by iΓ 1

3 We name f 3 the gauge transformation f 3 : Ψ c → iΓ 3 (( 1 =G ′ 3 = G 3 C. 6

 3331336 C.109) This gives the awaited result χ ′ r = Cχ r -iSχ g ; χ ′ g = Cχ g -iSχ r . (C.110) C.5 Gauge group generated by iΓ 1dr = e -iθ η * 1dr ; η ′ * 1ur = e -iθ η * 1ur (C.118) η ′ * 2dr = e -iθ η * 2dr ; η ′ * 2ur = e -iθ η * 2ur (C.119)η ′ * 1dg = e iθ η * 1dg ; η ′ * 1ug = e iθ η * 1ug (C.120) η ′ * 2dg = e iθ η * 2dg ; η ′ * 2ug = e iθ η * 2ug s 1 ; s ′ 2 = e -iθ s 2 ; s ′ 3 = e iθ s 3 (C.122) s ′ 4 = s 4 ; s ′ 5 = e -iθ s 5 ; s ′ 6 = e iθ s 6 (C.123) s ′ 9 = s 9 ; s ′ 8 = e -2iθ s 8 ; s ′ 7 = e 2iθ s 7 (C.124) s ′ 10 = s 10 ; s ′ 11 = e -iθ s 11 ; s ′ 12 = e iθ s 12 (C.125) s ′ 14 = s 14 ; s ′ 15 = e -iθ s 15 ; s ′ 13 = e iθ s 13 (C.126) from which we get s ′ j s ′ * j = s j s * j , j = 1, 2, . . . , 15 (C.127)ρ ′ = ρ (C.128) χ ′ r = e -iθ χ r (C.129) χ ′ g = e iθ χ g (C.130)These relations are the awaited ones because∂ ∂ ∂Ψ ′ r = ∂ ∂ ∂(e iθ Ψ r ) = e -iθ (-i∂ ∂ ∂θΨ r + ∂ ∂ ∂Ψ r ) (C.131) ∂ ∂ ∂Ψ ′ g = ∂ ∂ ∂(e -iθ Ψ g ) = e iθ (i∂ ∂ ∂θΨ g + ∂ ∂ ∂Ψ g ) (C.132) Gauge group generated by iΓ 8

  1.19) with the operators P j in (1.24), (1.25), (1.26) and (1.30) and Γ k in (2.3) to (2.8) and with Ψ c in (1.28)

  -s 2 φ ub + s 1 φ ur -s 8 φ dg -s 11 φ db -s 14 φ dr σ 1 -s 5 φ db + s 4 φ dr + s 8 φ ug +s 10 φ ur + s 15 φ ub σ 1 -s 3 φ ur + s 2 φ ug -s 9 φ db -s 12 φ dr -s 15 φ dg σ 1 -s 6 φ dr + s 5 φ dg + s 9 φ ub +s 11 φ ug + s 13 φ ur σ 1

	C Gauge invariance, details		
	C.1 Gauge group generated by P 1	
	Since P 1					
					s * 1 φ ur + s * 8 φ dg 11 φ db + s * +s * 14 φ dr	σ 1	    
	ρ 2 2 χ b =	    	s * 6 φ dr -s * 5 φ dg -s * 9 φ ub -s * 11 φ ug -s * 13 φ ur	σ 1	s * 3 φ ur -s * 2 φ ug + s * 9 φ db +s * 12 φ dr + s * 15 φ dg	(B.18)  σ 1    
						(B.19)

  1 -S 2 s 4 + iCS(s 10 -s 14 )

	and also	
	s ′ 3 = C 2 s 3 -S 2 s 6 + iCS(s 12 -s 13 ) s ′ 6 = C 2 s 6 -S 2 s 3 + iCS(s 12 -s 13 ) s ′ 12 = C 2 s 12 + S 2 s 13 + iCS(s 3 + s 6 )	(C.20) (C.21) (C.22)
	s ′ 13 = C 2 s 13 + S 2 s 12 -iCS(s 3 + s 6 ).	(C.23)
	This implies	
	s ′ 3 s ′ * 3 + s ′ 6 s ′ * 6 + s ′ 12 s ′ * 12 + s ′ 13 s ′ * 13 = s 3 s * 3 + s 6 s * 6 + s 12 s * 12 + s 13 s * 13 .	(C.24)
	Moreover we get	
	s ′ 7 = s 7 ; s ′ 8 = s 8 ; s ′ 9 = s 9 .	(C.25)
	We then get	
	ρ ′ = ρ	(C.26)
	Next we have	
		(C.10)
	s ′ 4 = C 2 s 4 -S 2 s 1 + iCS(s 10 -s 14 ) s ′ 10 = C 2 s 10 + S 2 s 14 + iCS(s 1 + s 4 )	(C.11) (C.12)
	s ′ 14 = C 2 s 14 + S 2 s 10 -iCS(s 1 + s 4 ).	(C.13)
	This implies	
	s ′ 1 s ′ * 1 + s ′ 4 s ′ * 4 + s ′ 10 s ′ * 10 + s ′ 14 s ′ * 14 = s 1 s * 1 + s 4 s * 4 + s 10 s * 10 + s 14 s * 14 .	(C.14)
	Similarly, permuting colors, we get	
	s ′ 2 = C 2 s 2 -S 2 s 5 + iCS(s 11 -s 15 ) s ′ 5 = C 2 s 5 -S 2 s 2 + iCS(s 11 -s ) s ′ 11 = C 2 s 11 + S 2 s 15 + iCS(s 2 + s 5 )	(C.15) (C.16) (C.17)
	s ′ 15 = C 2 s 15 + S 2 s 11 -iCS(s 2 + s 5 ).	(C.18)
	This implies	
	s ′ 2 s ′ * 2 + s ′ 5 s ′ * 5 + s ′ 11 s ′ * 11 + s ′ 15 s ′ * 15 = s 2 s * 2 + s 5 s * 5 + s 11 s * 11 + s 15 s * 15 .	(C.19)

  2 s 4 -CSs 10 + CSs 14 (C.43) s ′ 4 = C 2 s 4 + S 2 s 1 + CSs 10 -CSs 14 (C.44) C 2 s 3 + S 2 s 6 -CSs 12 + CSs 13 (C.53) s ′ 6 = C 2 s 6 + S 2 s 3 + CSs 12 -CSs 13 (C.54) s ′ 12 = C 2 s 12 + S 2 s 13 + CSs 3 -CSs 6 (C.55) s ′ 13 = C 2 s 13 + S 2 s 12 -CSs 3 + CSs 6 .

	Next we get with (C.27)	
		(C.46)
	This implies	
	s ′ 1 s ′ * 1 + s ′ 4 s ′ * 4 + s ′ 10 s ′ * 10 + s ′ 14 s ′ * 14 = s 1 s * 1 + s 4 s * 4 + s 10 s * 10 + s 14 s * 14 .	(C.47)
	Similarly, permuting colors, we get	
	s ′ 2 = C (C.51)
	This implies	
	s ′ 2 s ′ * 2 + s ′ 5 s ′ * 5 + s ′ 11 s ′ * 11 + s ′ 15 s ′ * 15 = s 2 s * 2 + s 5 s * 5 + s 11 s * 11 + s 15 s * 15 .	(C.52)
	and also	
	s ′ 3 = (C.56)
	This implies	
	s ′ 3 s ′ * 3 + s ′ 6 s ′ * 6 + s ′ 12 s ′ * 12 + s ′ 13 s ′ * 13 = s 3 s * 3 + s 6 s * 6 + s 12 s * 12 + s 13 s * 13 .	(C.57)

s ′ 10 = C 2 s 10 + S 2 s 14 + CSs 1 -CSs 4 (C.45) s ′ 14 = C 2 s 14 + S 2 s 10 -CSs 1 + CSs 4 . 2 s 2 + S 2 s 5 -CSs 11 + CSs 15 (C.48) s ′ 5 = C 2 s 5 + S 2 s 2 + CSs 11 -CSs 15 (C.49) s ′ 11 = C 2 s 11 + S 2 s 15 + CSs 2 -CSs 5 (C.50) s ′ 15 = C 2 s 15 + S 2 s 11 -CSs 2 + CSs 5 .

  C 2 s 7 -S 2 s 8 + iCSs 10 + iCSs 14 (C.96) s ′ 8 = C 2 s 8 -S 2 s 7 + iCSs 14 + iCSs 10 (C.97) s ′ 10 = C 2 s 10 -S 2 s 14 + iCSs 7 + iCSs 8 (C.98) s ′ 14 = C 2 s 14 -S 2 s 10 + iCSs 8 + iCSs 7

	s ′ 7 = (C.99)
	We then get	
	s ′ 2 s ′ * 2 + s ′ 3 s ′ * 3 = s 2 s * 2 + s 3 s * 3	(C.100)
	s ′ 5 s ′ * 5 + s ′ 6 s ′ * 6 = s 5 s * 5 + s 6 s * 6	(C.101)
	s ′ 11 s ′ * 11 + s ′ 13 s ′ * 13 = s 11 s * 11 + s 13 s * 13	(C.102)
	s ′ 12 s ′ * 12 + s ′ 15 s ′ * 15 = s 12 s * 12 + s 15 s * 15	(C.103)
	s ′ 7 s ′ * 7 + s ′ 8 s ′ * 8 + s ′ 10 s ′ * 10 + s ′ 14 s ′ * 14 = s 7 s * 7 + s 8 s * 8 + s 10 s * 10 + s 14 s * 14	(C.104)
	ρ ′ = ρ.	(C.105)
	Next we let	
		92)
	s ′ 5 = Cs 5 -iSs 6 ; s ′ 6 = Cs 6 -iSs 5 s ′ 11 = Cs 11 + iSs 13 ; s ′ 13 = Cs 13 + iSs 11	(C.93) (C.94)
	s ′ 12 = Cs 12 + iSs 15 ; s ′ 15 = Cs 15 + iSs 12	(C.95)

The reversion is an anti-isomorphism changing the order of any product (see[START_REF] Daviau | New Insights in the Standard Model of Quantum Physics in Clifford Algebra. Je Publie, Pouillé-les-coteaux[END_REF] 1.1). It is specific to each Clifford algebra. The Appendix A explains the link between the reversion in Cl 1,3 and the reversion in Cl 1,5

I 2 , I 4 , I 8 are unit matrices. The identification process allowing to include R in each real Clifford algebra allows to read a instead of aIn for any complex number a.

i anti-commutes with any odd element in space-time algebra and commutes with any even element.

Since we get the same relation for g and b colors we finally get

C.3 Gauge group generated by P 3 

We then get