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Robust nonlinear adaptive control of multiphase synchronous buck power

converters
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ABSTRACT

The problem of controlling multiphase synchronous buck power converters is considered. The aims are
to regulate the output voltage of the converter and to ensure adequate current sharing between its
different channels. Using the backstepping technique, an adaptive controller is designed based on a
large-signal bilinear model of the whole multi-channel converter. A parameter projection is used to
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1. Introduction

Rapid evolution in microprocessor technology is creating new
power supply requirements. This evolution began when the high-
performance Pentium processor was invented. This processor is
driven by a non-standard (less than 5 V) power supply, rather than
drawing its power from the 5V supply on the motherboard.
In order to meet the demands for faster and more efficient
data processing, modern microprocessors are being designed
with lower voltage requirements. The voltage supplies of future
processors are expected to be below 1V. More devices will
be packed onto a single processor chip and operated at higher
frequencies (above 3 GHz). Therefore, microprocessors need
aggressive power management, and future generations are
expected to draw currents of up to 100 A. These requirements
will necessitate special power supplies and voltage regula-
tor modules (VRMs) to provide lower voltages with higher
currents and faster transient capabilities. As processors get faster,
the VRMs must also be speedier. Future microprocessors are
typically expected to exhibit higher current slew rates (5A/ns).
Such small slew rates may significantly disturb the VRM voltage in
the presence of equivalent series resistance (ESR) and equiva-
lent series inductance (ESL). When these parasitic impedances
are not sufficiently small, the supplied voltage may fall out of
the admissible range, especially during transient periods
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ensure that the obtained adaptive controller is robust to parasitic resistances. The controller is formally
shown to meet the objectives of closed-loop asymptotic stability, output reference tracking, and equal
load sharing. The attraction region depends on the uncertain parasitic impedance size, with the
attraction region being larger for smaller parasitic impedances. In the ideal case of no parasitic
impedances, the closed-loop asymptotic stability is global. These theoretical results are confirmed by

(Zhang, Jovanovic, & Lee, 1996). On the other hand, the imposed
voltage tolerance is only 2%, which means that for 1.1V at VRM
output, the voltage deviation must not exceed +33 mV. This
requirement is a challenging problem for VRM designers.

Parallel connection of switching converters is an interesting
technique from both practical and fundamental viewpoints
(Chang & Knights, 1995; Perreault & Kassakian, 1997). Several
parallel converters share the same output, contributing to the
production of a large global current with a low supply voltage.
This is suitable for next-generation microprocessors (Zhou, Xu, &
Lee, 2000; Panov & Jovanovic, 2001). Load sharing is effective in
improving reliability and fault tolerance; this method also ensures
reduced ripple in the output current. This is convenient because it
allows for reductions of the involved filter size and the losses
therein. Finally, current sharing reduces switching and conduction
losses, as well as electromagnetic interference (EMI).

Interleaved buck converters (IBCs) are widely used in the
personal computer industry. In particular, central processing units
(CPUs) are powered using VRMs. This topology is widely used, as
interleaving the converters results in reduced input and output
capacitor ripple currents compared to a single buck power stage.
The reduction in input and output capacitor root mean square
(RMS) currents makes it possible to reduce the size of the needed
input and output capacitance. Parallel mode operation of dc-dc
converters has been realized with multiple control schemes. In
(Zhou et al., 2000), a linear VRM controller was proposed, and was
shown to ensure equal load sharing between branches. However,
the parasitic resistances in the output capacitors were neglected
and the effects of uncertainty or changes in the converter load
were totally ignored. In Huang, Schuellein, and Clavette (2003),



experimental results were reported for a parallel buck converter
controlled with feed-forward voltage mode control; however, no
experimental evaluation or theoretical analysis was performed for
the control performances in the presence of a changing load. In
Abu-Qahouq, Mao, and Batarseh (2004), a hysteresis-type control
technique was proposed for parallel buck converters. The
technique is simple, but asymptotic perfect voltage regulation
cannot be achieved, as the hysteresis feature causes output
ripples. Furthermore, the parasitic elements in switches, induc-
tances, and capacitances were not accounted for in this study. The
study also did not include any formal analysis of closed-loop
stability and performance, particularly in the presence of load
variations. In Berbel, Guerrero, Cruz, Miret, and Castilla (2005), a
linear regulator was designed using a linear model that neglected
the R-ON resistance of switches. There was no formal analysis of
the robustness of regulator stability in the presence of a changing
load. The regulation performances were only illustrated through
simulations. In Saito, Tasaki, and Torikai, (2005), a winner-take-all
switching technique was used to control the converter switches,
and a chaos analysis was presented. It was shown that current
ripples can be reduced by making a judicious choice of the
switching rule. However, the study contained no formal proof that
equal load sharing is guaranteed, or that robustness with respect
to load change is ensured.

The present paper focuses on the problem of controlling
interleaved, synchronous, PWM buck converters. The controller is
obtained directly from the large-signal bilinear model of the
whole system, which involves some uncertain parameters. An
adaptive controller is designed with the backstepping technique;
the goals of the controller are closed-loop stability, tight output
voltage regulation, fast transient response, and equal current
sharing between modules. Parameter adaptation is limited to the
load resistance, which is the only parameter that varies. The
remaining uncertain parameters correspond to parasitic impe-
dances, which in practice are quite small. The effects of these
parasitic elements are considered as modeling errors. These errors
may cause parameter drift if standard update laws are used.
Therefore, a modified parameter adaptive law involving a
projection onto a convex set containing the true value of the
unknown parameter is chosen. The adaptive controller thus
obtained is robust, and its performance can be formally shown
to achieve the design specifications. More specifically, the closed-
loop system is given a state space representation; the state
variables are the tracking errors of output voltage and current and
parameter estimation error. It is proven that this closed-loop
system is asymptotically stable, with an attraction region that
depends on the parasitic impedances; the smaller these impe-
dances, the larger the attraction region. In the ideal situation of no
parasitic impedances, the attraction region extends to the whole
state space, meaning that the system exhibits global asymptotic
stability. These theoretical results are confirmed by numerical
simulations on the Texas Instruments Evaluation Module
TPS40090EVM-002.

The paper is organized as follows: in Section 2, the interleaved
synchronous buck converter is described and modeled. Controller
design and analysis are dealt with in Sections 3 and 4,
respectively. In Section 5, controller tracking performances are
illustrated through numerical simulations. A conclusion and list of
references end the paper.

2. Multiphase synchronous buck converter modeling

Fig. 1 shows the topology of a multiphase synchronous buck
converter. It consists of N synchronous buck converters connected
in parallel, all sharing the common load represented by the pure
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Fig. 2. Equivalent circuit of interleaved buck converter.

resistor R, which corresponds to the microprocessor load. The kth
converter (k=1,...,N) includes synchronous switches, an
inductance L, and a capacitor C,. Due to their lower voltage
drop, synchronous switches are much more efficient than
conventional Schottky diodes in applications necessitating high
current at low voltage. Each converter is controlled using an
interleaved PWM. A phase shift of (360/N) degrees is introduced
between each channel. The overall current of the converter is then
the addition of N pulsating currents, each with a (360/N) phase.
The ripple frequency of the total current is N times the
fundamental switching frequency of a single converter.
Therefore, the total current ripple turns out to be smaller than
the current ripple of an individual converter. For a given current
ripple, interleaving the channels allows for much smaller and
lighter inductances. As the capacitors C, (k=1,...,k) are all in
parallel, the scheme of Fig. 1 can be redrawn as shown in Fig. 2,
with C = 38 ,C.

Fig. 3 shows an averaged equivalent model of the kth single
synchronous buck converter, where R; and R, represent the R-ON
of switches S1 and S2, respectively; r;, and rg, are the ESR values
of L, and Gy, respectively. Fig. 2 also defines the control input u of
the synchronous buck converter. This variable takes the discrete
value u;, = 1 when switch S1 is on and S2 is off, and u; = 0 when
switch S1 is off and S2 is on. For simplicity, the ESL of C is not
taken into account, as it only affects the high frequency spike, as
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E(@ R,

shown in Berbel et al. (2005). The current source (ir — i)
represents the sum of all supplied currents from the other cells.
Considering identical inductances and capacitors, the following
expressions can be obtained:

rM=rp=-=IrNN=r1_

rc1 =Tz =---=TcNn=T¢

Li=L=---=Ly=1L

Ci=Cy=--=Cy=C (1)

Applying Kirchoff’'s laws to the circuit of Fig. 3, and using the
averaging technique (Iannelli, Johansson, Jénsson, & Vasca, 2008;
Krein, Bentsman, Bass, & Lesieutre, 1990) yield the following
average model of the kth converter:

di, 1 - 1_ E
d—Ltk = _I[RL + Ry + (R — Ry lip — Vot Hk (2a)
dig 1 - 1 _ .
E_C—EIT—R—CEVO+Q(t) (2b)
With
. RC T l_/o d;T
4] —mQT—ﬁ) +(RC//R)E
_ 1 RR,+Ry) 17+ 1 NR 17
S e e e o] B oAl
R N N
+———[—(R; —R i +E 2c
(R+RC)L[ (R 2); Lic Mg ;#k]} (2¢)
and
- N -
e i (2d)
k=1

where N denotes the number of units connected in parallel, iy is
the average value of the current in the inductor Ly, 7y the average
value of the output voltage, and u the average value of the
discrete control uy, with values in the range [0 1]. The continuous
signal p, usually called the duty ratio, acts as the input control
variable of the kth module. The parameters R;, Rc, and C. are
defined as follows:

N
;
Ri=ri Re=: Ce=3 Ce=NC 3
k=1

The function {(t) represents an output disturbance in (2a) and
(2b). In (2¢), it is seen that {(t) arises as a consequence of parasitic
resistances in the capacitors. Furthermore, {(t) converges to zero
in steady state (after the output voltage has converged). The
adaptive regulator under development must be robust to the
presence of this disturbance.

3. Adaptive controller design

In this study, the load resistance R in model (2) may be subject
to infrequent jumps. This phenomenon is especially relevant in
microprocessor power supply devices. The load jumps occur when
microprocessors switch from sleep mode to active mode, and vice
versa. To cope with this uncertain parameter, the controller will be
given some capacity to learn. More specifically, the designed
adaptive controller must involve on-line estimation of the
unknown parameter

1
0= R (4)
The corresponding estimate is denoted 0, and the estimation error
is

0=0-0 (5)

The control scheme seeks to fulfill the following three objectives:
asymptotic stability of the closed loop system, tight regulation of
the voltage vo, and fast transient response and proper current
sharing. To this end, an adaptive nonlinear regulator will be
designed using the backstepping approach. Closely following
(Krsti¢, Kanellakopoulos, & Kokotovi¢, 1995), the controller is
designed in two steps.
Step 1. The following tracking error is introduced:

V4#0) (6)

where V; denotes the constant desired output reference
value.! Achieving the tracking objective means forcing the
error z; to vanish. To this end, the dynamics of z; need to be
clearly defined. Differentiating (6) with respect to time, one
obtains from (2b):

Z]=l_/0—vd

. 1- 0_
Z1=C—elT—C—eV0+é (7)
In the above equation, the quantity ir/C. stands as a virtual
control variable. Consider the following Lyapunov function:

Vi =052 +050 )y (8)

where y>0 is any real constant, called the parameter adaptation
gain. The time-derivative of V; along the trajectory of (7) is

. 1- N0/
Vi=2z; <C—elT+W]9> —§<9—"/W]Z]) (9)

where the first regressor function is defined by

wy = —1g/Ce (10)
One can eliminate 0 from V; with the update law 9 = y11, where
T1 = W1izg (11)

Furthermore, z; can be controlled to zero if iy/C. = &y, where o is
a stabilizing function defined by

o = —W]é—C]Z] (12)
where ¢y >0 is a design parameter. Since lTT/Ce is not the actual
control input, one can only seek convergence of the error ir/C, —
o1 to zero, and 9:;}11 is not taken as a parameter update
law. Nevertheless, 7; is retained as the first tuning function,
and the presence of § in V; is tolerated. Keeping the current
sharing requirement in mind, the following second error variables

! For the sake of simplicity, only constant references are considered. Never-
theless, subsequent controller design can easily be extended to general reference
signals provided these are twice derivable with respect to time and their two first
derivatives are known, bounded and piecewise continuous.



are defined:

Zyp =i/Ce — 0 /N, k=1,...,N (13)

The next step is to determine a control law for each control signal
U, and an adaptive law for the parameter estimate 0, so that the
set of errors {z1,zy; k= 1,...,N} vanish asymptotically. First, the
derivatives z; and V; must be expressed as functions of the new
errors z,, (k = 1,...,N). Adding both sides of all equalities in (13),
and using (2d), yields

N
> zu=ir/Ce— (14)
j=1

Then, using (12) and (14), Eq. (7) becomes

N
2 =—C1Z1+Zzzk+W19+év (15)
k=1

The derivative (9) of the Lyapunov function is also rewritten:

N ~ A
Vi=—cazi+z1 ) zu+ 0t —0/y) + 2L (16)
k=1
Step 2. The objective is now to make the error variables
{z1,zok(k = 1,...,N)} vanish asymptotically. To this end, the
dynamics of zy, are first determined. Differentiating (13) and
using (2a), (12), and (15), the following equation is obtained:

. 1
Zok = E[E — (R1 — Ry)ippty + w20 C — (R + Ry)ik

sz (q —%)c (17)

where w, represents the second regressor function, defined as
follows:

_ (C] - é/Ce)W1
- N

In (17), the actual control inputs g arise explicitly for the first
time. Now, the goal is to find a control law for the 's and an
adaptive law for 6, so that the (21,221, . .., Zan, 0)-system becomes
globally asymptotically stable. To this end, consider the augmen-
ted Lyapunov function:

(18)

V= V1+ZZZZJ 9 +2222k (19)

Using (15)-(17), the time derivative of V is
. . N
V=Vi+> zuzn

k=1

= -0z + E ZZk[Z1
1 92 0 w
1

- (LC_NCZ> o ch'”wf’—*ﬁ ZZZk]

. N 0 1 AN
FO|T+wW >z —— |+ | a+gla—=] Dz |{ (20)
= Y N Ce

=1

- 1 -
E (R1 — Ry py — E(RL + Ro)ig

The control signals z; should be chosen so that V is a negative
definite function of the state variables (z1,z>1,...,2n, 9.). If the
disturbing term { were null, the above expression for V would

suggest the following control law:

~2
LC, 1 0 _
= R + Ry)ip + v
My Rz)lLk{ ic, Ry + Ryl (LC NC?) 0

E— (R —

é - wq A <C% ) C1 N
+——ir——0+ -1z —= ) 2z — 27 21
NC?T N N 1 N,§=1 2k — €220k (21)
as well as the adaptive law 0= Y12 with
def N
Ty =T1+Wy E sz=WZ (22)

k=1
where ¢, >0 and y >0 are design parameters and

=[w1 wy wy .-+ Wy] (23)

Z=1[z1 221 Z22 -+ ZoN]" (24)

In fact, (21) is obtained by setting the first term between the
brackets on the right side of (20) equal to —c,z,y. The adaptive law
0= y7, is obtained by setting the second term between the
brackets on the right side of (20) equal to zero. In (22) and (23), 7>
is referred to as the second tuning function, and W and z are called
the regression and error vectors, respectively.

If { were null, an adaptive regulator implementing the control
law (21) and the parameter adaptive law 0 = yt2 would ensure
that V = —c123 — c23°}_17%,, which is actually a negative function
of the state z. As ( is not null, the above adaptive regulator is not
sufficient to guarantee the intended control performances. In
particular, the disturbing input { is likely to cause the parameter
adaptive law 0 = Y7, to diverge, due to the integral nature of the
law. To avoid such parameter drift, a modified version is used to
constrain 0 to stay within a convex, bounded set that contains the
true parameter 6. One may consider this convex set to be the
closed interval C = [-My, My], where M, is any real number such
that My > |0|. Then, the gradient algorithm with projection is
proposed (see, e.g., loannou & Sun, 1996):

2 o 2
0 = Pyr,) ] 772 IO <Mj or if (@ =M} and
0  otherwise

7120 < 0)

(25)

where 0(0) is chosen such that 92(0) < M2, and P(-) is a projection
operator. It is readily seen that the above adaptive law keeps the
estimate 0 within the convex bounded set C at all times. That is,
no risk of parameter drift exists anymore. More interestingly, it
has been shown in the literature, e.g., (Ikhouane & Krstic 1998;
Ioannou & Sun, 1996), that the projection operator P(-) exhibits
the following key property:

—0P(yty) < —Oy1, (26)

which simply means that the parameter convergence is not
slower when using the modified adaptive law (25) than it was
when using the standard law 9:;}12. Hence, the projection
feature in (25) not only prevents parameter drift, but also
improves the convergence capability of the standard algorithm
0 =vy13.

The adaptive regulator is thus defined by the control law
(21) and the parameter adaptive law (25). Note that the
assumption that Mg > |0] is common in the robust adaptive
control literature (e.g., loannou & Sun, 1996). From a practical
viewpoint, this is not an issue since the bound My may be chosen
to be arbitrarily large.

Remark 3.1. Note that the backstepping design technique
has already been applied to control power converters, see,
e.g., (Alvarez-Ramirez, Espinosa-Pérez, & Noriega-Pineda, 2001;



El Fadil & Giri, 2007; Sira-Ramirez, Garcia-Esteban, & Zinober,

0=—0=—P@yr 29
1996). (r72) (29)
where A7 is a skew-symmetric matrix defined by
4. Closed-loop performance analysis - 1 1 1 1
-1 —c; O 0 0
First, a state space representation of the closed-loop system is -1 0 —c O 0
developed. Substituting the right side of (21) for y in (17) yields: A= _1 0 0 - 0 (30a)
. ~ 1 0 :
22k=—C222k—Z1+W29+N<C1—C>C (k=1,....N) (27) :
€ -1 0 0 0 -
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4.1. Closed-loop analysis in the ideal case &(t) = 0

The stability of the closed-loop system described by (28) and
(29) is now analyzed in the ideal situation, where &(t) = 0. The
main result is summarized in the following theorem:

Table 1
Parameters of the four-phase synchronous buck converters.

Parameter Symbol Value
Number of phases N 4

Input voltage IE} 12V
Inductance value L 0.62 uH
Inductance ESR R =1 1.75 mQ
Equivalent capacitor value Ce 1800 pF
Capacitor ESR Re 1.875 mQ
R-ON of switch S1 Ry 4mQ
R-ON of switch S2 Ry 1.5 mQ
Switching frequency fs 420kHz

CONTROLLER

Interleaved
PWM-1

Fig. 5. Experimental control bench for interleaved buck power converters.

Output voltage v (V)

1 AN
it et

0.8
0.6
04
0.2
0
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Load resistor R ()
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0.04
0.02
0

0 0.005 0.01

time (s)

Theorem 1. Consider the closed-loop system consisting of the multi-
phase interleaved buck converter represented by model (2a) and (2b),
where the load resistor R is uncertain, and the adaptive controller
composed of the control law (21) and the parameter update law (25).
Then, the closed-loop system can be described by the state space
representation (28) and (29), involving the error variables z; = 7y — Vg,
Zow = (i /Ce) — (@1/N) (k= 1,...,N), and 0 = 0 — 0. Furthermore, the
system is globally asymptotically stable, implying that all control
objectives have been achieved. Specifically, for any initial conditions:

(i) the output voltage 7y converges to its reference value Vy,
(i) all currents iy, converge to the same value (Ceot;)/N, ensuring
perfect current sharing, and
(iii) the parameter estimate 0 converges to its true value 6 whenever
9(0) € [—MO,MO].

Proof. See Appendix A.

4.2. Closed-loop analysis in the general case £(t)#0

In this analysis, the disturbing term &(t) is no longer neglected
in the closed-loop system (28) and (29). The following theorem
describes the obtained closed-loop performances.

Theorem 2. Consider the closed-loop system described in Theorem
1. There is a positive real r* such that, for all Rc € [0 1*], there exists a
real v*(Rc) > 0 such that, if V(0) <v*(Rc¢), then the Lyapunov function
V(t) converges to zero, and consequently:

(i) the output voltage 7y converges to its reference value Vg,
(i) all currents iy, converge to the same value (Ceoty)/N, ensuring
perfect current sharing, and
(iii) the parameter estimate 0 converges to its true value 0 whenever
9(0) € [—MO,MO].

Furthermore, if Rc — 0, then v*(R¢) — oo.

Total Inductor Current it (A)

100
50
0

0 0.005 0.01

Duty ratio [,
0.1
0.08 ’

0.06

0 0.005 0.01

time (s)

Fig. 6. Controller behavior in response to a step reference V4 = 1V and changes in the load resistance.



Proof. See Appendix B. ideal situation of Rc = 0. The global asymptotic stability result of
Theorem 1 is thus recovered.

Remark 4.1. Theorem 2 shows that the error system (28) and (29)
is asymptotically stable, and that its attraction region depends on 5. Simulation results
the size of the parasitic resistance Rc. The size of the attraction

region (0 v*(Rc)) increases as Rc decreases. In particular, the The performances of the proposed adaptive controller are
attraction region becomes the whole positive real set (0 o) in the illustrated through numerical simulations. The controlled system
Inductor current i | (A) Courant inducteur iy 5 (A)
30 30
20 20
10 10
0 0
0 0.005 0.01 0 0.005 0.01
Inductor current iy 3 (A) Courant inducteur ij 4 (A)
30 30
20 20
10 10
0 0
0 0.005 0.01 0 0.005 0.01
time (S) time (s)

Fig. 7. Inductor currents in response to a step reference V4 = 1V and changes in the load resistance.
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Fig. 8. Uncertain parameter and its estimate; if plotted in the same frame, the two curves cannot be distinguished after the time t =5 x 107 (s).
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Fig. 9. Controller behavior during startup.

is the four-phase synchronous buck converter of Fig. 4; its
characteristics are listed in Table 1. These correspond to the
Texas Instruments Evaluation Module TPS40090EVM-002 (see the
user’s guide, available at http://focus.ti.com/lit/ug/sluu195/
sluu195.pdf). The converter is numerically simulated using the
real model (2a)-(2c), and all parasitic terms, especially the
disturbance {(t), are included.

The experimental control bench is described by Fig. 5, and is
simulated using the MATLAB software. The controller design
parameters are given the following values: ¢; =11 x 104, ¢, =
8 x 10%,9 =4 x 107%, and M, = 200.

The resulting control performances are illustrated by
Figs. 6-9. Fig. 6 illustrates the closed-loop system responses
to a step reference V;=1V (at time t=0), and successive
load resistance jumps. The jumps vary between 0.01 and
0.05 Q, yielding variations in the output current between 20 and
100A. It is seen that the control performances are quite
satisfactory, despite uncertainty and variation in the load
resistance. Figs. 7 and 8 show satisfactory current sharing
between interleaved inductor currents, and perfect parameter
estimation despite model uncertainty and variation. The zooms in
Fig. 9 provide a detailed view of the controller behavior during
startup.

6. Conclusion

The problem of controlling multiphase synchronous buck
converters has been considered. A regulator, based upon the
nonlinear average model (2), has been designed by applying a
robust, adaptive version of the backstepping approach. When
compared to previous works, the proposed regulator design
presents some interesting new features:

(i) the parasitic parameters (Ry, Ry, R;, and R¢) are considered in
the converter model; in fact, the nonlinear feature of the
model comes from the resistances (R, R,),

(ii) the load R is allowed to be uncertain and time-varying, and

(iii) the non-standard adaptive law (21), which includes para-
meter projection, is used to cope, not only with uncertainty
and variations in the load, but also with the effects of
parasitic elements, which are assimilated into the modeling
error {(t) in (2b).

Using both formal analysis and simulation, it has been proven that
the obtained adaptive regulator achieves the performances for
which it was designed, namely:

(i) perfect asymptotic output voltage regulation,
(ii) excellent current sharing among modules, and
(iii) robustness to uncertainty in the load and parasitic para-
meters.

This is the first time that such a high level of performance has
been formally achieved.
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Appendix A. Proof of Theorem 1

Substituting the right side of (21) for p in (20), and neglecting
the term &(t), the following derivative of the Lyapunov function V



is obtained:

N . A
V=—azi-a) 2, +0 (12 - §> (using (22))
|
= -z -0 ZZZk +- (Oyrz — 0P(yt2)) (using (25))
=1
< -z -¢ Zzgk (using (26)) (A1)
|

In light of (19), inequality (A.1) shows that V is a negative semi-
definite function of the state vector [z 0]. Therefore, [z7 0] = [0 0]
is globally stable. Applying LaSalle’s Invariance Theorem, it further
follows that the state vector [zI 0] converges to the largest
invariant set of (28) and (29) contained in the set
{Iz" 8] € IRN*?/V = 0}. In light of (A.1), the invariant set, denoted
M, is itself contained in E¥{[z" 0] ¢ IR"?2/z = 0}. Consequently,
one has z(t) —» 0 as t — oo.

Now, one can prove by contradiction that the invariant set is
limited to the origin, i.e., M = {[0 0]}. To this end, suppose that

[0 A1e M, forsome A#0 (A.2)
Let [z7(0) 0(0)] =[O /. It follows from the invariance of M that:
z(t) = 0 (and thus), z(t) = 0), forall t>0 (A3)
which, together with (28), yields

Wt)0(t) =0, forallt>0 (A4)

On the other hand, using (A.3) and (22), it can be shown that
T2(t) = 0 for all t>0. This, in turn, yields:

é(t) =0 (forallt>0) (using(25)and (29)) (A.5)
Since 0(0) = 2, it follows from (A.5) that:

0ty = 2#0 (forallt > 0) (A.6)
Combining (A.4) and (A.6), it is shown that

W(t)=0, forallt>0 (A7)
The following will show that (A.7) cannot hold. From (10), one has
wy = —1g/Ce, and from (6), z; = 7o — V4. Since (A.3) ensures that

= 0 (for all t>0), it follows that wy = V;/C. 0 for all t>0. This
means that W(t)=0 for all t>0, which contradicts (A.7). Hence,
assumption (A.2) is false. Thus, M = {[0 0]} has been proven. This
implies that 0 converges to its true value 0. The proof of Theorem
1 is complete.

Appendix B. Proof of Theorem 2

Substituting the right side of (21) for g, in (20), the following
derivative of the Lyapunov function V is obtained:

V=—azt - ZZZk += (9vrz — 0P(y12)) + 8(2. 0)¢

k=1
(using (22) and (25))
N
< -G -6 Y 25 +8z 0 (using(26) (B.1)
k=1
with
(2,0)=2z +l<c —L>XN:Z +L(~92N:z (B.2)
g’_1N1RCek=12kNCek=12k .
Using (19), it follows from (B.1) that:
V < —ooV + x(2,0,0) (B.3)

with
g = min(cy, ¢3) (B4)
22.0,0) = g(z.0)¢ (B.5)

The next step is to show that the term y(z,,() in (B.3) can be
bounded above by a polynomial function of V. It follows from (21)
that:

Eye — (Ri — Ryt
A2
1 = 1 0 _
= LCQ{LCE(RL + Rz)l[_k + (LCe — NC?) Vo

0 - w:z <C% ) R
+—sir——0+(—1)z21 —= ) Zy— 2z
NC?T N N 1 ngz] 2k — €223k
which yields

N N
E> e —(Ri —R) > inefiy
= =

2
N 0 )\._
= Lce{ (RL + Ry)ir + (LC C§> [

0 - ; S S
+ i Wi0+(ci —N)zi —C1 Y Zok—C2 Y Zok
= p

e

This, together with (2c), implies that

{ = Ren(z,0) (B.6)
with #(z, 9) of the form
~ N ~ ~
1’](Z, 9) =Mz1+ A ZZZk + A30 4+ 14210
k=1
N ~
+75 Y 20 + Z6(z1 + Vg)IP(yT2) (B.7)

k=1

where the 4; =4;(Rc)(i=1,...,6) are real functions of the
parasitic resistance Rc. For the sake of presentation, the expres-
sions of these functions are precisely defined in Appendix C. These
expressions show that

max |4i(Re)| < Amax<oo (i=1,...,7) (B.8)
0<Rc <0

where Anax is a real constant, independent of Rc. On the other
hand, from (25)
IP(yT2)| < 772l (B.9)
which implies, due to (23), (24), (10), and (18), that

Zsz ) (B.10)

In light of (B.10), (B.6), (B.7), (B.8), (B.5), and (B.2), it is easily seen
that y(t) is bounded above by a function of V of the form
1%2.0,01 = Re(BoV + B1V?) (B.11)

for some constants >0, f; >0, independent of R.. Combining
(B.11) and (B.3), one obtains

V <~V + Re(BoV + B1V?) (B.12)

The rest of the analysis will show that V remains bounded if V(0) is
within a certain neighborhood of the origin. To this end, the
notation r* cﬁcfxo /By and the following polynomial functions are
introduced:

F1(v) = (a0 = RcPo)v  and  f,(v)

) i
IP(yt2)| < . 1z1 + Val <|Z1| + N NRCe NC

= Repyv? (B.13)



f2(v) f1»)

0 Va
Fig. 10. Plot of functions f;(v) and f5(v).

It follows from (B.13) that if Rc<r*, then oy — Rcfly>0, and the
plots of the above functions are as shown in Fig. 10. The
intersection point, denoted A, has the abscissa

Va = %o — RePo 12
A Rcpo

As f>(v) - f1(v)<0 in the open interval (0 vy), it follows from
(B.12) that V<0 whenever V € (0 v4). Consequently, if V(0)<vyg,

then V(t) converges to zero. Furthermore, it is readily seen from
(B.14) that

(B.14)

lim Vpa = 00
Rc—0

(B.15)

This establishes Theorem 2, with v*(R¢) = va.

Appendix C

The constants /; (i=1,...,7) in (B.7) are defined by the
expressions:

1
)L‘l = (E — C]Ce) +ax + b3LCe(C% — N) (Cl)
Ao =a1Ce — b3LCe(C1 + C3) (CZ)
75 =(a _“—B_a)v (C3)
3 4 R 1 d .
1
)L4 =044 — 043 (E — C]Ce) —aq (C4)
)LS = —G3Ce (CS)
J6 = bsL (C.6)
where
— by + b3 R+ Ry + (C7)
a; = D1+ D3 K + 2+E .
4 = by + b (N—L) (€8)
2 = Dby + D3 RC, .

3= (C9)
4= szgeL (C.10)
b1=—R+1RC {w+a (€11)
e L] €12
bs = (R+LRC)L (C.13)
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