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Accounting for Input Limitation in the Control of

Buck Power Converters
Hassan El Fadil, Fouad Giri, Fatima-Zahra Chaoui, and Ouadia El Magueri

Abstract—We are considering the problem of controlling a
DC–DC switched power converter of the Buck type. The converter
involves an inherent control limitation; accordingly the control
signal (duty ratio) can only take values in the interval �� ��.
In the relevant literature, such a physical control limitation is
generally not taken into account when designing the converter
regulators. This is only dealt with in the control implementation
stage, placing an isolated limiter between the (linear) controller
and the controlled system. Furthermore, the presence of such a
limiter is generally ignored when analyzing the closed-loop control
system. In the present paper, the control signal limitation is dealt
with using a nonlinear regulator that involves an internal limiter.
The resulting closed-loop control system is shown to be equiva-
lent to a nonlinear feedback involving a linear dynamics block
in closed-loop with a nonlinear static element. Using absolute
stability tools, sufficient conditions are established for the involved
feedback to be �-stable. If these conditions are respected when
choosing the control design parameters then the regulator meets
its objectives (closed-loop stability and output reference tracking).
It is worth noting that, though the focus is made on a specific
power converter, the paper includes an important theoretical
dimension that may be of general interest.

Index Terms—Absolute stability, DC–DC power converters,
input limitation, voltage regulation.

I. INTRODUCTION

T
HERE are three main types of switched power con-

verters, namely boost, buck, and buck–boost. These

have recently received an increasing deal of interest both in

power electronics works and in automatic control applications.

This is due to their wide applicability domain, e.g., domestic

equipments, communication systems, computers, industrial

electronics, battery-operating, embedded equipments, uninter-

ruptible power sources. From an automatic control viewpoint, a

switched power converter constitutes a challenging case study

as it is variable-structure and nonlinear. Its rapid structure

variation is generally coped with using averaged models [1],

[2], [16]. Based on these average models, different nonlinear

controllers have been developed using passivity techniques

[2], feedback linearization, flatness methods [5], sliding mode

control ([3], [4], [14]) and backstepping control technique

[6]–[8]. In all works the proposed controllers are designed

to achieve closed-loop global stability and voltage reference
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Fig. 1. Basic control setup of Buck converters.

tracking. However, in these studies it was never accounted for

the limitation of the control signal (namely, the duty ratio ).

As a matter of fact, the control is not allowed to be outside

the interval (0, 1), due to the technological nature of the con-

trolled circuits. Therefore, the usual practice consists, when

it comes to implementing the controllers, in simply placing

an isolated limiter between the designed controller and the

controlled system (see Fig. 1). Unfortunately, the nonlinear

effect of such a limiter is never taken into account when ana-

lyzing the closed-loop system ([2]–[8]). As a consequence, the

aforementioned stability results may loose their global nature,

the controller transient performances may deteriorate and the

output-reference tracking objective may not be achieved.

On the other hand, the problem of controlling linear systems

subject to input saturation constraint has received a great deal

of interest over the last two decades [11]. Most theoretical re-

sults have focused on (local/global) stabilization. This was car-

ried out following two main approaches. The first one consists

in enforcing the control signal to stay all time within the al-

lowed limits so that the closed-loop system stays in a region

of linear behavior, see e.g., [12], [13] and reference list therein.

It is proved that linear regulators can be designed so that to en-

sure the positive invariance of this linear region (or a subset of it

including all admissible initial conditions). Such a positive in-

variant set is then a local region of stability. The second research

direction to handle input constraints is one where the control

signal is allowed to saturate. During the time intervals of con-

trol saturation, the closed-loop system is no longer linear and the

controlled system is steered in open loop. Then, global asymp-

totic stabilization is only possible for stable systems [11]. The

problem of output-reference (in presence of control input limi-

tation) has not been so deeply investigated. When the controlled

system is of type-1 and the reference signal is step-like, then the

tracking problem can be transformed into a disturbance-free reg-

ulation problem and existing solutions can be applied, see e.g.,

[15]. For non-type-1 systems, an integrator should be incorpo-

rated in the regulator to make the tracking objective achievable.

But, the presence of an integrator generally results in large con-

trol actions which, due to the control limitation, may lead to
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undesirable oscillatory behavior. To avoid such behavior, many

authors have proposed linear regulators together with ad hoc

“anti-windup” devices (examples of such devices can be found

in [11]). Unfortunately, there is generally no formal proof that

the proposed anti-windup regulators actually ensure the tracking

objective for a specific class of reference signals.

The present paper is precisely focusing on the tracking issue

in presence of control limitation. The focus is made on dc-to-dc

Buck power converters operating according to the PWM prin-

ciple. Our approach consists in first designing a linear control

law that achieves the tracking objective in the absence of con-

trol limitation. Then, an adequate anti-windup device is incor-

porated, in the above control law, leading to a nonlinear regu-

lator. It is shown that the resulting closed-loop control system

is equivalent to a nonlinear feedback consisting of a linear dy-

namics block in closed-loop with a nonlinear static element.

Sufficient conditions for -stability of this feedback are then

established using tools from the absolute stability theory (circle

criterion, Barbalat’s lemma ). The main condition is the real-

positivity (RP) of a specific transfer function that involves, on

one hand, the poles of the controlled system and, on the other

hand, those of the underlying linear closed-loop system (i.e., the

linear closed-loop system obtained when the controller never

saturates). In fact, the RP condition defines a neighborhood of

the controlled system poles in which should be assigned those

of the closed loop. Such a requirement can always be satisfied

through an adequate choice of the controller parameters. Finally,

it is shown that if the reference signal is slowly varying (in a

well defined sense) then the proposed nonlinear controller stops

saturating after finite transient-periods (following the reference

signal changes) and the system output tracks asymptotically its

reference. Additional simulation results show that the developed

regulator has quite interesting robustness capability e.g., it pre-

serves a reasonable level of performances when facing uncer-

tain load changes and transient discontinuous conduction mode

operation.

The paper is organized as follows: in Section II, the Buck

converter is described and the control objective is formulated;

Sections III and IV are devoted to the regulator design and the-

oretical analysis; the closed-loop performances are illustrated in

Section V. A conclusion and a reference list end the paper.

II. CONVERTER MODELING AND CONTROL OBJECTIVE

A. Converter Modeling

A Buck converter is constituted of power electronic compo-

nents connected together, as shown in Fig. 2. It operates ac-

cording to the so-called Pulse Width Modulation (PWM) prin-

ciple and is described by the following instantaneous model:

(1a)

where . Resorting to averaging techniques (see, e.g.,

[1], [2]), it is shown that the circuit, supposed to be operating

Fig. 2. Buck converter circuit.

in the continuous conduction mode, can be represented by the

following averaged model:

(2a)

As averaging is performed over cutting periods, the state vari-

ables and denote the average input current and

average output capacitor voltage , respectively. The control

signal (said duty ratio) is in turn the average value of the actual

binary-type control . As a consequence of the binary nature of

, the duty ratio turns out to be a continuous function of time

that only takes values in the real interval i.e., ,

all the time. By definition, the system output is:

(2b)

In the sequel, the symbol ‘ ’ refers generally to the time-deriva-

tion operator, i.e., . Then, for a given signal , one has:

(3)

Using this notation, the state-space model (2a) may be given the

following input-output representation 1

(4)

where

(5a)

(5b)

The parameters , , are supposed to be constant and

known during all stages of the regulator design (Section III)

and closed-loop theoretical analysis (Section IV). Nevertheless,

the effect of uncertain load changes and transient discontinuous

conduction mode operation will be investigated when evalu-

ating the regulator performances in Section V.

B. Control Objective

The control problem at hand is to design, for the considered

circuit, a controller that meets the following.

1) The control action, i.e., the generated duty ratio function

, should satisfy the following inequalities

(6)

1When clear from the context, the symbol ‘�’ will also used to designate the
Laplace Transform variable. For instance, the transfer function of the system (4)
is simply denoted ���������.
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where are any real constants such that

.

2) All the closed-loop signals should remain bounded.

3) The output tracking error should converge to

zero, where is a given bounded reference signal. This

represents the desired trajectory of the output . But, for

this tracking objective to be achievable, the signal has

to be compatible with the control constraint (6), i.e.,:

(7)

Note that and this quantity is nothing other

than the static gain of the system (4). The reference signal is

further supposed to be slowly varying in the sense that:

(8)

Remark 2.1:

1) Condition (7)–(8) will prove to be crucial in achieving the

tracking objective in presence of the control limitation (6).

In other words, a reference signal that does not satisfy

the double condition (7)–(8) is not admissible in presence

of the constraint (6) (though it is admissible in the con-

straint-free case).

2) Theoretically, one may let and in (6).

However, it is not recommended in practice to impose to

the duty ratio the extreme values 0 and 1. Therefore

and should be given values close to (but different from)

0 and 1, respectively.

III. REGULATOR DESIGN

The first step in the regulator design consists in transforming

the initial tracking problem into a regulation problem. To this

end, introduce the following tracking error:

(9)

Operating on and using (4) gives the following

fictive system:

(10)

The latter is viewed as a system of input and output .

The quantity , which belongs to due to (8),

stands as a disturbance in the new system (10). Enforcing the

output of the initial system (4) to track a reference , amounts

to enforcing the output of the new system (10) to vanish

asymptotically. If the control input were not constrained, it

would have been possible to achieve the new regulation objec-

tive using a linear regulator of the form .

The differential operators and can be determined by

linear design methods (e.g., pole-placement, linear-quadratic,

see e.g., [10]). Since the control signal is constrained to stay

in the interval , we consider the following nonlinear

controller:

(11a)

(11b)

Fig. 3. Closed-loop system obtained with the nonlinear controller (11a)–(11b)
that incorporates a control limiter.

Fig. 4. Closed-loop system obtained with the standard linear controller (14)
that involves no control limitation.

where and are differential operators of the form:

(12a)

(12b)

and denotes the (nonsymmetrical) saturation function de-

fined by

if

if

if

(13)

The real coefficients in (12a)–(12b) will be de-

fined later. The closed-loop system thus obtained is represented

by Fig. 3. Note the presence of the nonlinear element in

the controller block.

Remarks 3.1:

a) Suppose that the computed control action satisfy the

constraint all the time. Then, it follows

from (13) that: and, consequently, the control law

(11a) reduces to a standard linear regulator of the form

(14)

The closed-loop control system then turns out to be a stan-

dard linear feedback as shown by (Fig. 4). Notice that (14)

contains an integral action . Moreover, the above

control law is nothing other than a PID controller. In-

deed, using (12a)–(12b), it can be easily checked by direct

substitution that the transfer function may be

given the following form

with

b) Contrary to (14), the nonlinear controller (11a)–(11b)

involves two control variables, namely and . The
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Fig. 5. Closed-loop system obtained with the standard controller (14) and an
isolated control limiter.

first represents the control action that is suggested by

the underlying linear controller (11a). The second is the

control action that is actually applied to the controlled

system. Equation (11a) shows that the suggested control

action accounts for the actual control action . Con-

sequently, the nonlinear controller involves a feedback

around the saturation element (see Fig. 3). This

contrasts with the usual practice (Fig. 1) that consists

in just placing the saturation element outside the

loop, as this is illustrated by Fig. 5. In the later, there is no

compensation of the disturbing effect due to the control

limitation. It is clear that if the controller (11a)–(11b)

never saturates (i.e., and ) it will coin-

cide with the linear controller (14). When this happens,

the closed loop systems (Figs. 3 and 4) will be identical.

c) As this was mentioned in Section I, controllers like

(11a)–(11b) that attempt to compensate the effect of

control limitation are usually referred to anti-windup

controllers (see e.g., [11]). In this respect, the controller

of Fig. 5 involves no anti-windup device

Many design techniques may be used to obtain the operators

and in (11a). Specifically, all linear design methods

can be used e.g., pole-placement and linear-quadratic [10]. For

the sake of simplicity, let us consider the pole placement tech-

nique. Accordingly, the above operators are uniquely obtained

solving the following Bezout equation:

(15)

where

(16a)

(16b)

are any Hurwitz polynomials whose choice will be subject to

conditions précised later 2. For now, let us just note that for these

polynomials to be Hurwitz, their coefficients must be positive

(because of the Routh criterion). That is, one has:

(16c)

IV. ANALYSIS OF THE CLOSED-LOOP CONTROL SYSTEM

The closed-loop control system of Fig. 3, consisting of the

controlled system (4) and the regulator (11a)–(11b), will now

be analyzed. The outcome of such an analysis will help making

2Recall that the operators � ��� � � ��� are said Hurwitz if their zeroes have
negative real parts. Then, the transfer functions ��� ��� � ������ are asymp-
totically stable, (see e.g., [11]).

Fig. 6. Nonlinear feedback relating the signals �� and ��.

suitable choices of the design parameters, namely the operators

and , so that the control objective of Section II can

be achieved. To this end, the closed-loop system will first be

given a feedback representation that allows application of abso-

lute stability theorems [9].

A. A Suitable Feedback Representation of the Closed-Loop

System

Combining (10) with (11a) so that to eliminate yields:

(17)

Equation (17), together with the fact that , can be

given the feedback representation of Fig. 6, with

(18)

(19)

and is a (nonlinear) operator that maps into .

B. Conicity of the Nonlinear Element

The following analysis aims at establishing a sufficient con-

dition (on the polynomial ) that ensures the -stablity of

the above feedback. The first step is to show that belongs to

the sector .

Proposition 1: The nonlinear element , in the feedback of

Fig. 6, belongs to the sector in the sense that:

, where and

Proof: It follows from (13) that, for all :

(20)

On the other hand, one has from (11b):

(21)

Multiplying both sides of (21) by gives:

(22)

which, together with (20), implies that

(23)

This proves Proposition 1.
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C. -Stability of the Feedback of Fig. 6

Proposition 1 will now be used to establish a sufficient con-

dition, on the operator , that ensures the -stability of the

feedback system of Fig. 6.

Proposition 2: Let the polynomial , in (15) and (16a),

be chosen so that:

(24)

which, in view of (18), amounts to

(25)

Then, the feedback of Fig. 6 is -stable and, consequently

(26)

Proof: As belongs to the sector and satisfies

the positive real property (24), it follows from the circle criterion

(see e.g., [9, p. 265]) that the feedback of Fig. 6 is -stable. On

the other hand, as is Hurwitz and is a proper

transfer function 3, one has from (8) and (19) that

(27)

Then, it follows that all internal signals of the above feedback

belong to . This particularly means that

(28a)

(28b)

Noting that is Hurwitz, it follows from (10), (27), and

(28a) that

(29)

Also, from (8) one gets

(30)

which together with (8) and (29), gives

(31)

This ends the proof of Proposition 2

In the light of Proposition 2, it is seen that all signals of the

control system (Fig. 3) vary slowly, in the sense that their deriva-

tives belong to . This will be used to establish a more cru-

cial result, namely the fact that the deviation , be-

tween the computed and applied control, belongs to . This is

the subject of the following proposition.

Proposition 3: Consider the control system of Fig. 3 where:

i) is any Hurwitz operator satisfying inequality (25)

ii) and are solutions of (15)

iii) is any Hurwitz operator of the form (16b)

3Recall that a transfer function is proper if the degree of its numerator is equal
or less than the degree of the denominator. An improper transfer function is not
physically realizable.

Then, one has

(32)

Proof: In view of (12b), (11a) can be rewritten as follows:

(33)

where

(34)

Using (28a) and (29) and the fact that is Hurwitz, it follows

from (34) that

(35)

On the other hand, (4) can be transformed as follows:

(36)

with

(37)

Furthermore, one readily gets from (4) that

(38)

Since (by (28a)) and the transfer function

is Hurwitz and strictly proper, it follows from (38) that

. Then, using (31), it follows from (37) that

(39)

On the other hand, multiplying (36) by gives

(40a)

Also, letting in (15) yields . Using this in

(33), one gets

(40b)

Combining (40a) and (40b) gives

(41)

Now, let us introduce the notation

(42)

It is readily seen from (7) that

(43a)

and from (8) that

(43b)
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With the above notation, (41) can be rewritten

(44)

with

(45)

Using (35), (39) and the fact that is Hurwitz, it follows

from (45) that

(46)

Now, adding to

the right-hand side of (44), one gets (rearranging terms)

(47)

In view of (15b), (47) simplifies to

(48)

The last equation is given the more compact form

(49)

with

(50)

Since is Hurwitz, it follows from (50) [using (43b), (28a)

and (46)] that

(51)

The rest of the proof consists in showing that

. To this end let us consider the three cases suggested by

(13).

Case 1 . Equation (11b) and (13) imply that

. Then, as and , are positives

constants, one has

This together with (49) yield , which

implies

(52)

Case 2 . Equations (11b) and (13) yield

and, consequently

(53)

Case 3 . Equation (11b) and (13) give that

and . Also, (43a) implies

that

(54)

Using the above observations one gets from (54)

(55)

which immediately gives

(56)

In view of inequalities (52), (53) and (56) it follows that,

whatever the value of , the following inequality holds:

(57)

Then, it follows from (51) that

(58)

This establishes Proposition 3

Proposition 3 is in turn used to demonstrate a new crucial

result stated in the following proposition.

Proposition 4: Consider the control system of Fig. 3 where

the different differential operators are chosen as in Proposition

3. Then, one has

Proof: Let us operate on both sides of (10) and

on both sides of (11a). Adding the resulting equa-

tions one get

(59)

where (15) has been used. Since the transfer functions on the

right side of (59) are -stable and , it

follows that

(60)

This establishes Proposition 4

Propositions 3 and 4 are key ingredients to get the main results

of this paper i.e., the tracking objective and the fact that the

control signal stops saturating asymptotically. This is properly

formulated in the following theorem.

Theorem 1: Consider the closed-loop system sketched by

Fig. 3 and composed of:

i) the Buck power converter of Fig. 1, represented by (4)

and subject to the control saturation constraint (6);

ii) the nonlinear controller (11a)–(11b), where satis-

fies conditions (7)–(8) and the operator satisfies the

real positive condition (25).
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Then, the tracking error and the deviation ,

between the computed and the applied controls, both vanish

asymptotically

Proof: Let us first show that vanishes asymp-

totically. As , it is sufficient to show that

and are continuous. From (17) one gets

(61)

where is an exponentially vanishing term due to initial

conditions. Using (11b), (61) can be rewritten as follows:

(62)

Let denote any state-space realization of the (strictly

proper) transfer function . Then

(62) can be given the following state-space representation:

(63a)

(63b)

with

(63c)

Equations (63a)–(63c) imply

(64)

The function is Lipschitz because the operator is

so. Furthermore, is piecewise continuous as and are so.

Then, it follows from the existence theorem (see, e.g., [9, p. 93])

that, for any initial conditions, the differential equation (64) has

a unique solution . Furthermore, and its derivative are

both continuous. Then, it follows from (63b) that the signal is

in turn continuous. The continuity of is an obvious

consequence of the continuity of . Since the signal

is continuous and belongs to it converges to zero (by Bar-

balat’s Lemma, see, e.g [9, p.323]). Finally, it follows from (4)

that is continuous and in view of (10) so is . But this also

belongs to . Then, using again Barbalat’s Lemma, the signal

in turn vanishes asymptotically. Theorem 1 is established.

Remarks 4.1:

1) The fact that converges to zero means that the

tracking objective is perfectly reached asymptotically.

2) As vanishes asymptotically, the nonlinear

controller (11a)–(11b) stops saturating (for sufficiently

large ). Consequently, the controller behaves asymp-

totically like the underlying linear controller (defined by

(16)). In practice, the transient period (before the nonlinear

controller stops saturating) will last a finite time after each

change in the output reference signal.

3) Conditions (7), (8), and (25) turned out to be crucial in

achieving the above two results. Condition (7) ensures that

the tracking objective is achievable with a control signal

that takes its steady-state values in the interval .

Condition (8) stipulates that the output reference signal

should be slowly time-varying. This is necessary to limit

the control activity. Finally, the positive real condition (25)

defines a neighborhood of the controlled system poles (i.e.,

the zeros of ) in which those of the closed-loop system

(i.e., the zeros of ) should be assigned. This means that

the closed-loop system is not allowed to be too much faster

than the controlled system. Doing so, one limits the in-

volved control activity and avoids long saturation periods.

4) In practice, an appropriate choice of the polynomial

consists in using the following general rule:

with

It is clear that if then and condition

(25) is satisfied because then one has:

But, letting means that the closed-loop system is

not allowed to be faster than the controlled system. For the

closed-loop to be faster, the parameter should be positive

because then the zeros of are obtained left shifting

those of with . More specifically, if has a zero

at then will have a zero at . The larger is

the faster the closed-loop system (provided that condition

(25) holds).

5) can also be chosen of the form

with . This choice is compatible with the fact that

corresponds (in the state-space interpretation of the

controller (11a)–(11b)) to the poles of the observer (see

e.g., [11]). Indeed, it is well known that the observer poles

(zeros of ) should preferably be faster that the regula-

tion poles (zeros of ).

6) It is worth noticing that in the usual control practice the

input constraints (6) are essentially carried out limiting the

time-variation of the output reference signal and slowing

down the closed-loop system rapidity. However, these re-

quirements are generally met using heuristic rules (gen-

erally try-an-error). One major motivation of the present

work is the development of a theoretical background to

that usual practice and formulates rigorously accurate re-

quirements on the allowed reference time-variation and the

closed-loop rapidity.

V. REGULATOR EVALUATION

A. Circuit Simulation

The controlled Buck circuit is simulated by its instantaneous

model defined by (1a) with the following characteristics:

, H, F, V. The switching

frequency (used in the PWM process) is fixed bearing in

mind several considerations. First, the averaged model (2a) is

obtained supposing that is sufficiently large compared to the

cut-off frequency of the underlying low-pass filter see e.g., [16].

In the present case, the underlying low-pass filter is a second

order whose cut-off frequency is equal to . There-

fore, the above averaging requirement amounts to let

which numerically yields Hz. Further-

more, in practical applications where highly silent circuits are

7



required, the switching frequency should be above the audible

frequency i.e., kHz. On the other hand, to minimize

the current ripple in the coil, the switching frequency must be

chosen large enough. In the light of the above discussion, it is

seen that a suitable choice of the switching frequency can be

200 kHz.

B. Regulator Design

The regulator design is based on the average model equations

(2a)–(2b) and the associated transfer function which, in view of

the above circuit characteristics, turns out to be the following:

(65)

The next step in the regulator design is to solve the Bezout (15)

to get the operator and . In view of (5a), (12), and

(16a)–(16c), it can be easily checked that the solution of (15) is

defined by

(66a)

(66b)

(66c)

(66d)

In the above equations the parameters and are

freely chosen. But, the parameters and should be chosen

bearing in mind the positive real condition (25). To this end, one

gets from (5a) and (15a)

(67)

For the positive real condition (25) to hold, it is sufficient to

choose and such that: and either

(68a)

or and . But,

the last two conditions are in turn equivalent to the following

single inequality:

(68b)

In summary, condition (25) is satisfied if and

either (68a) or (68b) are fulfilled. Now, following Remark 4.1

(Part 4), the polynomial may be chosen of the form

(69a)

where is any real number such that either (68a) or (68b)

hold with:

(69b)

Fig. 7. Experimental setup used for regulator evaluation.

Substituting (69b) in (68a) and (68b), it follows that must

satisfy either

(70a)

or

(70b)

C. Experimental Setup

The experimental control setup is described by Fig. 7 and is

implemented using the MATLAB/SIMULINK software.

D. Simulation Results

The behavior of the closed-loop control system of (Fig. 7) is

illustrated by Figs. 8–16, where the parameters that

characterizes the saturation function (13) are given the values

0.05 and 0.95, respectively.

1) Tracking Performance in Presence of Time-Varying

Output Reference Signal (Figs. 8 and 9): Bearing in mind

(70a)–(70b) and Remark 4.1 (Parts 4 and 5), the following

(non-unique) choice is made for the design parameters and

Then, it follows from (69) that

(71a)

Similarly, letting one gets

(71b)
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Fig. 8. Tracking behavior of the controller in presence of a time-varying output
reference signal � ��� switching between 9 and 15 V.

Fig. 9. Comparison between the computed duty ratio ���� and the applied value
���� in presence of a time-varying input reference.

Fig. 8 shows the closed-loop behavior in ideal conditions (no

model uncertainty) when the output reference trajectory

is a signal switching between 9 V and 15 V. It is clearly seen

that the output voltage tracks perfectly its reference after

transient periods (following the reference signal changes).

Fig. 9 shows the computed and applied control signals,

and . It is seen that the former tracks the latter, after finite

transient periods. That is, the controller stops saturating after

these periods, confirming thus Theorem 1.

Remark 5.1: It is readily seen from Fig. 8 that the closed-loop

settling time is nearly 0.5 ms. This is much smaller than the set-

tling time of the (open loop) controlled converter. Indeed, step

responses of the (average) transfer function (65) show that the

converter settling time is nearly equal to 10 ms. That is, the

closed loop control system is much more rapid than the (open

loop) controlled circuit. It may be possible to further increase the

closed-loop rapidity using different polynomials and .

However, there is a limit imposed by conditions (68a)–(68b).

Fig. 10. Robustness of the controller with respect to load resistance changes.

Fig. 11. Comparison between the computed duty ratio ���� and the applied
value ���� in presence of load resistance changes.

Indeed, if these are violated the regulator will be too rapid and

may generate an excessive control activity. The control limita-

tion (13) will then cause the saturation of the regulator, if not

all time, at least over long periods. Consequently, there will be

no guarantee that the tracking performances of Theorem 1 will

be preserved. Hence, a suitable choice of the design parame-

ters is one which leads to the best compromise between the in-

volved control activity and the achievement of perfect asymp-

totic tracking.

2) Regulator Sensitivity to Load Uncertainty (Figs. 10 and

11): In practical situations the load resistance is changing and

sometimes its value may not be precisely known. The point is

that such features are not accounted for in the control model

(2a). Therefore, it is important to see whether the controller

(11a)–(11b) is robust with respect to such load uncertainty.

Fig. 10 illustrates the response of the closed-loop system to a

reference step of 12 V, in presence of a load change of 50% of

the nominal value. Specifically, the load switches from 1.5 to

0.75 and vice-versa. While the load resistance is changing,

9



Fig. 12. Regulator behaviour in presence of discontinuous conduction mode.

Fig. 13. Inductor current � during the discontinuous conduction period.

its value in the controller design is kept constant all the time

(it is set to the nominal value 1.5 ). It is seen from Fig. 10

that the proposed regulator compensates very well the effect of

load uncertainty and variations. Fig. 11 shows that the involved

control activity remains acceptable and, again, the controller

stops saturating after these transient periods.

3) Regulator Behavior in Presence of Discontinuous Con-

duction Mode Operation (Figs. 12 and 13): In practice, dc-dc

converters may enter into a discontinuous conduction mode op-

eration. This means that, in each switching period, the current

vanishes during a very short time interval. The point is

that such phenomenon is not accounted for in the control model

(2a), based on in the regulator design. Therefore, it is of interest

to check whether the regulator (11a)–(11b) preserves its perfor-

mances when it faces such converter behavior. To push the con-

verter into discontinuous mode operation, a sudden and drastic

change of the load is produced at time instant s

(Fig. 12). This results in a drastic decrease of the current that

makes the converter operate in discontinuous mode during an

interval following the sudden load change. This is il-

lustrated making a zoom on the inductor current during the

Fig. 14. Real part of ����������� versus �.

Fig. 15. Deterioration of tracking performances when condition (25) is not
satisfied.

interval Fig. 13. Fig. 12 shows that such disturbing phe-

nomenon produces only a temporary and slight deviation of the

output voltage from its reference value.

4) Regulator Tracking Behavior When Condition (25) is Not

Satisfied (see Figs. 14–16): Here, the values of the coefficients

and have been chosen in such a way that the real positive

condition (25) is not satisfied. Then the regulator performances

may deteriorate drastically. Figs. 15 and 16 illustrate such dete-

rioration when

(72)

The simulation conditions are similar to those of

Sections V-A–C. It is seen from Fig. 14 that

is actually negative for some values of . Figs. 15 and 16

show that the regulator behaviour deteriorates significantly

(compared to Figs. 8 and 9). In particular, it is observed that: (i)

the reference-output tracking performance is not satisfactory;

(ii) the controller never stops saturating.

10



Fig. 16. Control activity when condition (25) is not satisfied: ���� computed
value of the duty ratio, ���� the applied value.

VI. CONCLUSION

The control limitation (6) is inherent to all power converters

operating according to the PWM principle, whatever the control

design approach. In the present paper, such issue has been dealt

with, for converters of the Buck type, using the nonlinear con-

troller (11a)–(11b). This involves an internal loop around the

saturation function , see Fig. 3. It contrasts with previous

solutions (Fig. 5) that consist in first designing a (linear) con-

troller as if there was no control limitation and then incorpo-

rating an isolated limiter, placed between the controller and the

controlled system. The point is that the effect of such a limiter is

also ignored, in previous works, when analyzing the closed-loop

control system.

The control solution developed in the present paper has been

analyzed using tools from the absolute stability theory. The key

step is to have shown that the resulting (nonlinear) closed loop

system (Fig. 3) gives rise to the feedback system of Fig. 6. This

is composed of a linear direct path and a nonlinear feedback path

of the conic type. Then, -stability of this feedback system is

guaranteed provided that satisfies the real positive condi-

tion (25). In fact, this defines a neighborhood of the controlled

systems poles (zeros of ) in which the closed-loop poles

(zeros of ) should be assigned. For the sake of simplicity,

the pole placement design technique has been resorted to meet

such requirement. But other linear design techniques could as

well be used. The stability of the feedback of Fig. 6 makes it

possible to establish the tracking objective for a class of slowly

varying reference signals defined by (7)–(8). The proposed reg-

ulator shows quite interesting robustness properties especially

against uncertain load changes and discontinuous conduction

mode operation.
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