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ABSTRACT

The observation of a class of multi-input multi-output (MIMO) state affine systems with constant
unknown parameters and discrete time output measurements is addressed. Assuming some persistent
excitation conditions to hold and the sampling steps to satisfy some boundedness hypotheses, system
observability is ensured and a class of global exponential observers is synthesized.
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1. Introduction

The synthesis of observers for continuous-time systems with
sampled measurements has received much attention over the
past decades. A classical solution used to handle the discrete
nature of the system output consists either in appropriately
discretizing a known continuous time observer (Arcak and
Nesi¢, 2004) or in synthesizing a discrete-time observer for
a consistent approximation of the exact discretized system
(Arcak and NeSi¢, 2004; Dabroom & Khalil, 2001) for instance.
Numerical schemes can also be applied (Biyik & Arcak, 2006;
Moraal & Grizzle, 1995), but such observers usually require high
computational capacities (Biyik & Arcak, 2006) and are only local.
An alternative to these approaches is to design a continuous-
time observer fed by discrete-time system measures and thus
called a continuous-discrete observer. This approach is particularly
interesting when the observer dynamics is much faster than
the system one (that is the case when high speed processor
computers are used). Therefore, the approximation of having
a continuous-time observer, although implemented digitally, is
acceptable. Moreover, contrary to the discrete-time approach,
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obtained stability properties are global and asymptotic (in most
cases) (Deza, Busvelle, Gauthier, & Rakotopora, 1992; Hammouri,
Kabore, Othman, & Biston, 2002; Nadri, Hammouri, & Astorga,
2004) and not semiglobal practical like in the discrete-time
formulation (Arcak and NeSi¢, 2004).

Sampled system measures imply some additional difficulties
for the observation compared with the case where outputs are
continuously known. Indeed, despite the fact that continuous
observation methods have to be adapted to the periodic availability
of the output, the system observability also depends on the
sampling times. For obvious reasons, if the time interval between
two successive measures is too large, the system may lose its
observability, as shown in Nadri et al. (2004). Furthermore,
considering nonlinear systems with inputs, it is well known that
there may exist inputs which make the system unobservable.
Hence, the notion of universal input has been introduced to denote
the class of inputs which make considered systems observable.
This class of inputs, called regularly persistent inputs, has been
characterized for some classes of state affine systems in Bornard,
Celle, and Couenne (1988), Celle, Gauthier, Kazakos, and Sallet
(1989) and Hammouri and Morales (2002).

Existing continuous-discrete time observers are mostly based
on extended Kalman filter techniques. In Deza et al. (1992), a
class of global exponential observers has been synthesized for
multi-input single-output nonlinear systems put into a canonical
form. The principle is to divide the observation into two steps:
one, called prediction, between sampling times, that consists of
‘copying’ system dynamics with no correction term and updating
the dynamical observation gain, and another one, at the sampling
times, where the error between the system and the observer
output is used to correct the estimate state trajectory. Deriving



some conditions on the sampling times through the observer
stability analysis, the exponential convergence of the observation
error is then ensured. The work of Deza et al. (1992) has been
extended to other classes of system. In Nadri and Hammouri
(2003), observers for a MIMO class of state affine system where the
dynamical matrix depends on the input, have been designed when
the inputs are regularly persistent. In Astorga, Othman, Othman,
Hammouri, and McKenna (2002), a similar method has been used
for a larger class of systems and applied to the observation of
emulsion copolymerization process. The observation of a class of
systems with output injection has been treated in Nadri et al.
(2004). Recently, in Hammouri, Nadri, and Mota (2006), a high
gain continuous-discrete observer has been developed but using
constant observation gains.

On the other hand, it appears that for a number of physical
processes some parameters may not be known, that makes existing
results on continuous-discrete time observers non-applicable. In
this paper, the observation of the class of systems studied in Nadri
and Hammouri (2003) is extended to the adaptive case. Early
developments of adaptive observers were made in Kresselmeier
(1977) and Liiders and Narendra (1973) for linear systems.
Adaptive observation of nonlinear systems has been investigated
using different techniques that basically rely on linear adaptive
algorithms, through coordinate change or output injection for
instance, see Bastin and Gevers (1988), Besancon (2000), Cho and
Rajamani (1997), Marino and Tomei (1995) and Zhang (2002). In
Zhang (2005), a unified interpretation of the latter references has
been proposed that emphasizes their characteristics. In Besancon,
Le6n-Morales, and Huerta-Guevara (2006), adaptive observation
for state affine systems in continuous-time is discussed and the
work (Zhang, 2002) is extended. In this study, the approach
developed in Besangon et al. (2006) on extended Kalman filters
for a class of MIMO linear time-variant, is adapted to the sampled
measures problem at the difference that, here, the estimation law
is based on discrete-time adaptive techniques.

After having defined the class of systems considered and
recalled the main objective, a class of adaptive continuous-discrete
observers is designed. Assuming some persistent excitation
conditions and some hypotheses on the system output sampling
times to hold, the global exponential stability of the observation
error is proved. Finally, a simulation example is performed which
illustrates the design procedure.

2. Nomenclature

. . .. def
First some mathematical notation is introduced. Let R = (—o0,

00), R o (0, o0), Rg o [0, 00) and define the Euclidean norm

Il - |I. For p, q, n, m € N, RP*9 represents the set of real matrices of
order p x q and I, € RP*? stands for the identity matrix of order
pxplfX C RP*and Y C R™™, C(X, Y) denotes the space
of all continuous functions mapping X — Y.IfP € RP*? P > 0
means that P is positive definite. The notation ||P|, for P € RP*9,
represents the L,-norm of P. ForA : R — RP*%andt € R, the
notation A(t~) denotes the left limit of A at instant ¢, if it exists. In
all this study, the initial time is called ¢y € R.

3. Problem statement

The following class of systems is considered, for t € [ty, txt1),
k>0,

x(t) = A(w)x(t) + b(u) + ¢ (u)0, (1)
y(t) = Cx(ty),

where x € R" is the instantaneous state vector,u € » C R™ the
input vector (D is compact),y € RP is the output vector, € R'

is a vector of unknown constant parameters, A € C(R™, R™"),
b e CR™ R",C € RP*", ¢ € C(R™, R™) are known, with n,
m,p,l € Nand xy = x(tp). The notation (tx)x>o represents a
strictly increasing sequence such that lim,_, o, ty = oo that models
the sampling times. The maximum sampling step is denoted T =
max>o(tx), where tp = typq — t.

Note that the class of systems (1) contains systems of the form,
fork > 0,

x(t) = A(t, wx(t) + b(t, u) + ¢(t, u)o,
y(t) = Cx(t), t = tig1,

since the dependence on u can be considered like a time
dependence.

The main objective of this paper is to synthesize a global expo-
nential adaptive observer, as defined in Section 4.3, for system (1).

t € [t tig1), @)

4. Observer design and stability study

4.1. Observation structure

The proposed observer can be viewed as an extension to the
adaptive case of the structure developed in Nadri and Hammouri
(2003). An aucxiliary variable, A, which plays a key role in the
convergence of parameters estimator, is notably introduced as
in Besancon et al. (2006) and Zhang (2002).

Fork > 0,t € [ty, tg+1),

R(t) = AWR(t) + b(u) + WO (&), (3a)
$(t) = —AW)'S(t) — S(OAw) — uS(b), (3b)
A(6) = AWA() + p(w), (30)
o(t) = 0, (3d)
fort = tyyq,

X(ty1) = X(t ) + <)»(fk+1)A(fk+1)

+ 1S (6 )C) 0t 1) — CR(E ), (42)
S(ties1) = S(tes) + wC'C, (4b)
Ater1) = M (T, tir DA (G 1) (4c)
0(tis1) = 0(t0) + At ) ¥ (tie1) — CR(E ), (4d)

with, A(ty1) = At )'CT X Z(tg ),

€
el DTCTZ (4, DCAG )l
and M (i, tig1) = (In — pTS ™ (tk1)CTC). The notation X € R"

and 6 € R respectively denote the estimate of the state, x, and
the estimate of the unknown vector parameter 6, S(t) € R™"
is the so-called observation gain, A € R", ¥ € C(R,RP*P) is
symmetric positive definite for all t, and u,e € R, p € [1,00)
are some design parameters. Note that the existence of the inverse
of matrix S will be ensured in the following. The initial conditions
are denoted Xy € R", Sy > 0 symmetric, Ao € R" and éo eR.

The observer (3a)-(3d) and (4a)-(4d) is composed of a predictor
part (3a)-(3d) and a correction one (4a)—(4d). During [t, ty+1), the
state estimate X has the same dynamics than system (1) but using
the estimate of the unknown variable, 6, that is kept constant (3d).
As commonly done for high gain observers, the matrix S is defined
as the solution of the differential equation (3b), except that a term
of the form CTC is usually added in order to ensure S to be positive
definite, see for example in Nadri and Hammouri (2003). At each
sampling instant, the observer trajectory is corrected taking into



account the available measure (4a). Thanks to (4b), conditions on
the inputs and restriction on t, it will be shown that matrix S
remains positive definite. The dynamics of 6 are defined by a least
mean squares law (4d), that will guarantee the convergence of
the estimate to the true value, under some persistent excitation
conditions. The usefulness of variable A will be shown in the
stability analysis, as in Besancon et al. (2006) and Zhang (2002).

Remark 1. If the parameter vector 6 is equal to zero, the system
(3a)-(3d) and (4a)-(4d) has the same form as in Nadri and
Hammouri (2003).

The dynamical equation satisfied by the state observation error,
e = x — X, is, in view of (1), (3a)-(3d) and (4a)-(4d), for k > 0:

é(t) = A(we(t) + pw)d(ty), t € [te, tir1), (5a)

e(tir1) = (M(Tks tey1) — At 1) A(Ger10)) ety ),
t =ty (5b)

The following persistent excitation condition is assumed to hold
for system (1) in order to guarantee the identifiability of vector 0
(Besangon et al.,, 2006; Zhang, 2002).

Hypothesis 2. Let A(-) € R™ be the matrix solution of the im-
pulsive ordinary differential equations (3c),(3d) and (4a)—(4c). The
matrix A(-) is persistently excited so that there exist k; € N, > 0
and X' (1) € C([ty, >0), RP*P) a time-dependent bounded sym-
metric positive definite matrix, such that, for all k > 0,

k+kq
D KT I GCAE) = ST, (6)
j=k

Before stating the main theorem, some preliminary definitions
and results are required.

Definition 3. Consider the system, fort € [ty, 00):

x(t) = AWX(),
y(6) = Cx(D), )

and the transition matrix ¥, (-, ty) associated to system (7), such
that ¥, (ty, ty) = I, the bounded input u is said to be regularly
persistent if there exist ty, t; € [to, 00), @ € R_, such that, for all
t > by,

t+t
/ (s, t)CTCW, (s, to)ds > all,. (8)
t

As mentioned in the Introduction, regularly persistent inputs are
the class of inputs that guarantee the system to be observable.
For more details, see Bornard et al. (1988), Celle et al. (1989) and
Hammouri and Morales (2002).

Remark 4. In practice, condition (8) can be checked off-line, when
u(t) is known forall t € [tg, 00), using numerical tools for approx-
imating the integral term. Thus, coefficients t; and « are obtained
off-line in order to derive a sampling period that satisfies the bound
given in (9).

4.2. Technical results

The following proposition guarantees that matrix S is positive
definite forany t € [tg, 00), under conditions on the types of inputs
applied to the system and .

Proposition 5. Let u be a regularly persistent input for system (1), for
all pw > & where § = 2supy, |[A@(E)|, if T < T, where T is the

) . _ —5(ty+7)
unique positive term such that T = 25"“‘2%4”}“;) then, for all S(tp)

symmetric positive definite, there exist constants 8, 8, € R such
that, for t € [ty, 00),

:BlHn = S(t) = 132Hn~

The proof of Proposition 5 can be found in Nadri and Hammouri
(2003).

Remark 6. (a) Since considered inputs belong to a compact set, D,
and because A is continuous, & is well defined.
(b) There always exists such a 7; indeed writing condition T =

% as 2£|ICTC|I(t + 7)T = e $+D Joosely speak-
ing it is clear that, for positive values of 7, the polynomial term
on the left-hand side will ‘cross’ the exponential on the right-
hand side at a unique point.

(c) Considering regularly persistent inputs, the positive definition
of the solution S of Eqs. (3b)-(3d), (4a) and (4b) can only be
ensured under condition on the sampling steps, otherwise the
solution of Eq. (3b) may become non-positive definite (Nadri &
Hammouri, 2003).

(d) Notice that 1, B, implicitly depend on the maximum allow-
able sampling interval 7.

Lemma 7. Suppose the following system to be globally exponentially
stable,

¢ (te1) = F(6) ¢ (),

and let u be a bounded and integrable function of time that vanishes
exponentially fast, then, system

Z(t1) = F(ti)z(t) + u(te),

converges exponentially to 0.

k>0,

Remark 8. This lemma is a straight extension of Lemma IIl.1, in
Marino and Tomei (1995), for discrete-time systems.

4.3. Stability analysis

System (3a)-(3d) and (4a)-(4d) is said to be a global exponential
adaptive observer for system (1) if, along solutions to (1), (3a)-(3d)
and (4a)-(4d):

(i) for all (Xg, X0, Ao, B) € R" x R" x R" x Rl and any S, > 0
symmetric, there exist a;, az, b1, b, € R, such thatforall t >
to, lle(®)]| < a1e™1“~0 |leo|| and [6(6)]| < aze~"20~||6o]]. _

(i) there exist A,S € R, such that, for all t > to, [[A()]| < A,
SOOI < S.

Condition (i) ensure the exponential convergence of the state and

variable estimates to the corresponding true value, whereas (ii)

ensure that the other observer variables do not explode in (in)finite

time.

Theorem 9. Assuming Hypothesis 2 to hold, the input to be regularly
persistent, and choosing . > £ if,

2p— 1B f}
p?lIci? ")’

then system (3a)-(3d) and (4a)-(4d) is a global exponential adaptive
observer for system (1).

(9)

rgmin{



Proof. Asin Besancon et al. (2006) and Zhang (2002), the variable
n is introduced as n = e — 16, where 6 = 6 — 6. First, the global
exponential convergence of n to zero, along the solutions to dy-
namical equations to (1), (3a)-(3d) and (4a)-(4d), is proved. After
having noticed that variables A and S remain bounded, invoking
Lemma 7, the exponential convergence to the origin of errors e and
6 is deduced.
The candidate Lyapunov function is defined as, for t > t;:

V() = n©®'S@On().

Note that, according to Proposition 5 and since (9) is satisfied, the
symmetric matrix S is positive definite and of bounded norm. Let
k> 0.

1. Let t € [t, ty+1). The variable n satisfies the follpwing dynam-
ical equation, in view of (5a) and because, here, 6=0 (3d):
() = Awe(t) + ¢ (t) — A(H)6(t)

= AW)n(t) + (AWA() + ¢) — A(t)) O(ty).
Thus, according to (3c),
n(t) = Awn(t). (10)

Consequently, differentiating the Lyapunov function along the
solutions of (10),

V() = ()" (SOAW) +Aw)'S(E) + S)) n(b).

From (3b),

V(t) = —uV(t). (11)
Integrating (11) over [, t],

V() = e MWV (g, (12)
and so,
V(t ) = e "%V (ty). (13)

2. Consider now t = t; 1, it can be shown that, in view of (5b),
N(ter1) = (M(zh, ter1) — Altr1) At 1)C) ety )
— Mt 1)0 (1)
= Mo tirn) (160 + A5 )B () )

— A(trs1) <A(tk+l)ce(tk_+1) + é(tk+l)) .

Remarking that é(tk_+l) = é(tk) in view of (3d), and using
(4b)—(4d),
N(tkr1) = M (tk, b )0 (G q)- (14)
According to (4d),
V(tir1) = 0(ti1) " Stes )N (Gesr)
= N(tig) "M (Th, tis)" (S(tipy) + 7C'C)
X M (T, tiy 1)t )
= V(te) — 2o — Dl Cntg )’
+ 02T (6 ) CTCS T (b)) CTCn (b ).
Invoking Proposition 5, the following inequality holds:
~ pzrkncnz)
B
x ICn(te I (15)
Using (13) and because (9) holds,

V(ter1) < V(i) — T ((2,0 -1

V(tisr) < e M5V (t). (16)

Consequently, according to (12) and (16), for all t > to,
V(t) < e M0y (g,

&e_%
1

In()|l < =) |In(to) |l

the exponential stability of n = 0 for system (10)-(14) is proved.
Using similar arguments than for variable 7, in view of (3c) and (4c)
and since function ¢ is continuous and u takes values in a com-
pact set, it can be easily shown that there exists A € R, such that

IA@®)|l < A, for t > to.On the other hand, according to (4d),

0(tir1) = (In — Altr1)CA(L 1)) O(t) — At )Cn(t ). (17)

Attention is focused on the homogenous part of (17), which is typ-
ical of the normalized least mean squares algorithm:

0(ti1) = (In — Altir1)CA(t 1)) O (6). (18)

Using Theorem 2.8 in Anderson et al. (1986), since Hypothesis 2
holds, & = 0is globally exponentially stable for system (18). The
non-homogenous part of Eq. (17) vanishes exponentially fast,
because of the exponential convergence of 7 to 0 and the bounded-
ness of A. Therefore, applying Lemma 7, 6 =0is globally exponen-
tially stable for system (17). Writing the observation error as e =
n +0,the exponential convergence of e to 0, along the solutions of
(5a) and (5b), can be deduced from the facts that 6 and n converge
with an exponential rate to zero and that A is bounded. O

Remark 10. Throughout the paper, no stability assumption is
supposed to hold for A. In view of Theorem 9, even unstable
matrices can be considered.

Remark 11. The sampling interval must satisfy (9). In practice,
after having numerically found admissible t; and «, the upper
bound in (9) can be determined using parameters values.

4.4. Discussion on parameters choice

The selection of the observer parameters w, p, € illustrates the
logical compromise between convergence speed and bound on 7.

As it can be seen through (3b), parameter u (taken bigger that
& inview of Theorem 9) acts on the observation gain in such a way
that taking big values will increase the convergence speed of the
observer at the price of a smaller admissible 7. Indeed, this will
make the solution of (3b) go faster to non-positive definite matri-
ces and then decrease the value of 8, (see Remark 6(d)). Concern-
ing p, a quick analysis could conclude that p = 1 is the optimal
value to be chosen in view of (9), but a bigger value will help n to
converge faster to 0, again, under more severe conditions on 7 (see
(14) and the definition of M). On the other hand, parameter ¢ al-
lows one to modulate the convergence of the parameter estimate.

5. Illustrative example

For illustrative purposes, consider a second-order system
modeled by, fork > Oand t € [ty, tg+1),

X1 = sin(u)xy,
X, = —0.1sin(u)x; — 0.2x, + 0.1 cos(u)6, (19)
y =X,

where 6 is unknown and u(t) = 2 — (cos(0.1t))2. The sampling
step is chosen constant at T = 0.11. An observer of the form
(3a)-(3d) and (4a)-(4d) is designed for system (19). The design pa-
rameters have beenfixedatp = 1,e = 1, u = 2.1and ¥ = 1. Us-
ing numerical tools, the following values have been found @ = 0.5,
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t; = 0.01, & = 2.0396, 8; > 0.1125, consequently, condition (9)
is satisfied: T < min{0.1125, 0.21}. Therefore, since the input is a
persistent input for system (19), Theorem 9 applies. The initial con-
ditions are ty = 0, x;(0) = x,(0) = 50, %;(0) = X,(0) = H(0) =0
and 6 = 2. For comparative purpose, the Euler discretization of
observer (11-15) in Besangon et al. (2006) has been simulated.
Fig. 1 shows that, contrary to the continuous-time observer, the
state X, given by the emulation does not converge asymptotically
to x, but oscillates. As mentioned in the Introduction, this fact is
not surprising since only semiglobal practical stability properties
can be established when using the emulation of a continuous-time
observer (Arcak and NeSi¢, 2004). Moreover, the behavior of em-
ulation states present a big overshoot by opposite to the results
obtained by the observer (3a)-(3d) and (4a)—(4d). Obtained param-
eter estimates converge slowly asymptotically to the true value for
the continuous-discrete observer, and again, practically and with
large overshoots for the emulation (Fig. 2). Although not presented
here, simulation results show that the continuous-time observer
still works efficiently for larger values of 7 like T = 3 whereas, for
such a value, the emulation states explode.

6. Conclusions

The adaptive observation of a class of continuous MIMO
systems with sampled measurements has been realized. Assuming
that the input acts on the system to satisfy some persistent
excitation conditions and the sampling steps to respect given
bounds, a class of global exponential observers has been developed.
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