N
N

N

HAL

open science

Using Automatic Differentiation to study the sensitivity
of a crop model
Claire Lauvernet, L. Hascoet, F.X. Le Dimet, Frédéric Baret

» To cite this version:

Claire Lauvernet, L. Hascoet, F.X. Le Dimet, Frédéric Baret. Using Automatic Differentiation to
study the sensitivity of a crop model. 6th International Conference on Automatic Differentiation, Jul

2012, Fort Collins, United States. 10 p. hal-01058645

HAL Id: hal-01058645
https://hal.science/hal-01058645
Submitted on 27 Aug 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-01058645
https://hal.archives-ouvertes.fr

6th International Conference on Automatic Differentiatio, Fort Collins, USA, July 23 - 27, 2012.

Using Automatic Differentiation to study the
sensitivity of a crop model

Lauvernet, C., Hascoét, L., Le Dimet, F.-X., and Baret, F.

Abstract Automatic Differentiation methods are often applied to codes that solve
partial differential equations, e.g. in the domains of geophysical sciences, such as
meteorology or oceanography, or Computational Fluid Dynamics. In agronomy, the
differentiation of crop model has never been performed since the models are not
fully deterministic but much more empirical. This study shows the feasability of
constructing the adjoint model of a crop model referent in the agronomic community
(STICS) with the TAPENADE tool, and the use of this adjoint to perform some
robust sensitivity analysis. This aims at giving a return of experience from users
working in the environmental thematic, and presents a somewhat unusual field of
application of Automatic Differentiation.
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1 Field of application : the agronomic crop model STICS

STICS (Brisson et al, 1998) is a crop model with a daily time-step. Its main aim is
to simulate the effects of the physical medium and crop management schedule vari-
ations on crop production and environment at the field scale. From the characteri-
zation of climate, soil, species and crop management, it computes output variables
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relating to yield in terms of quantity and quality, environment in terms of drainage
and nitrate leaching, and to soil characteristics evolution under cropping system'.

The two key output variables simulated by STICS that we will need in this paper
are the Leaf Area Index and the biomass. The Leaf Area Index (LAI) is the total
one-sided area of leaf tissue per unit ground surface area (no unit). This is a canopy
parameter that allows to directly quantify green vegetation biomass. As the leaves
are considered to be the main interfaces with the atmosphere for the transfer of
mass and energy (Rosenberg et al. [221]), the LAI indirectly describes properties
of the observed surface such as potential of photosynthesis available for primary
production, quantification of plant respiration, evapotranspiration and carbon flux
between the biosphere and the atmosphere, and gives evidence of severely affected
areas (areas burned, attacked by parasites). Because this is the canopy parameter the
most observable by remote sensing, the LAl is a very commonly used variable, for
example in crop performance prediction during cultivation [5], in models of soil-
vegetation-atmosphere [13], in crop models [2, 3], in radiative transfer models for
calculating the reflectance [17]. Its values can range from O for bare soil to 6-7 for a
crop during its life cycle, and up to 15 in extreme cases (tropical forests).

LAT

Fig. 1 Simplistic scheme of
the stages simulated by the L >
STICS model on dynamics of iLEV iANF iLAX iSEN iMAT temps
LAL

The model STICS simulates the crop growth from sowing to harvest, represented
by the evolution of the LAI at selected vegetative stages [2] (Fig. 1). This partly ex-
plains the problems to differentiate it described in Sect. 3.2, since it is composed of
process threshold. For wheat crop, the main phenological stages are the stage ear at
1 cm stage heading, stage flowering, stage maturity (indicated by the water content
of the grains). In this work focused on the variable LAI, we are only interested on
vegetative stages (LEV, AMF, LAX, SEN), because we do not simulate grain yield
but only the total biomass. Stage LEV determines emergence or budding. Stage
AMEF (maximum acceleration of leaf area index) is the beginning of the elongation
of the stem at the end of juvenile growth, and is also called ear I cm. Stage LAX
(maximum LAI) represents the end of leaf growth. Stage SEN is the onset of net
senescence.

U http://www.avignon.inra.fr/agroclim_stics_eng
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2 Sensitivity Analysis

A model is a more or less realistic or biased simplification of the state variable it
simulates. This is especially true for agronomic models, since the functioning of
vegetation is not a priori described by exact equations: agronomic models attempt
to predict the behavior of the crop by incremental improvements of the simulation
code, based on observations made on the field and then published by specialists.
Thus, in some parts of the model, this empirical approach is not based on the equa-
tions of some underlying physics or chemistry. Sensitivity analysis, which consists
in studying the impact of perturbing the control parameters on the model output
allows to understand the model better, improve the quality of the response of the
model, and simplify the model.
A sensitivity analysis requires two essential ingredients:

e A model:
F(X,K)=0

where X is the state variable (LAI, biomass . ..), K are the control variables of the
model (parameters 0, forcing variables . ..) that the model needs to describe the
evolution of X; F is a differential operator a priori non-linear finite-dimensional.
We assume that for given K, the system has a unique solution X (K). In this study,
what we call the model is corresponding exactly to the STICS computer program.

e A response function G which combines one or more outputs of the model into
a scalar value, of which one wants to evaluate the sensitivity (for example final
value or integral on time of an output).

By definition, the sensitivity of G with respect to K is the gradient of G with
respect to X. If we are able to get the adjoint model, the gradient can be computed
in only 2 steps: run once the direct model for the value of the parameter in the
neighborhood of which the sensitivity analysis is requested, then solve once the
adjoint model and the sensitivity is obtained by [10]:

JdF!
VG = K P
where P is the adjoint variable of X. The method of sensitivity analysis using adjoint
model is the only one to calculate formally the gradient of the response function and
is particularly suitable when the number of entries is large comparing to the size of
the response function to analyze [12, 11].

The other sensitivity methods consist in approximating the gradient: finite dif-
ference approximation of the gradient require extensive direct model computations,
whereas a single run of the adjoint method provides all sensitivities [4]. Stochas-
tic sampling techniques are very intuitive since they consist (roughly speaking) in
exploring the space of control to determine an overall (global) sensitivity [15, 8].
These methods have been largely used on the agronomic models and in particular
on STICS (e.g. [7, 14, 16]).
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If in most of the cases, the response function G is a real function of X, it can hap-
pen that the model is driven by threasholds (the code is defined by a lot of branches).
Theoretically, a piecewise continuous function is not continuously differentiable,
but it has a right derivative and left derivative. The differentiation of such a code
does not allow to obtain a gradient of the model but a sub-gradient. In practice, this
is not a real problem since the local sensitivty is valid in the vicinity of the points it
is evaluated.

3 Automatic Differentiation : application on the STICS crop
model

3.1 The TAPENADE Automatic Differentiaton tool

TAPENADE [6] is an Automatic Differentiaton tool based on source transformation.
Given a source program written in FORTRAN, TAPENADE builds a new source
program that computes the derivatives of the given program. In one mode (tangent
mode), TAPENADE builds the program that computes directional derivatives. In a
second mode (adjoint mode), TAPENADE builds the program that computes the
gradient of the output with respect to all input parameters.

Considering the complete set of derivatives of each output with respect to each
input, i.e. the Jacobian matrix of the function computed by the program, the tangent
mode yields a column of the Jacobian whereas the adjoint mode yields a row of the
matrix. Therefore in our particular case where the output is a scalar G, one run of
the adjoint code will return the complete gradient. In contrast, it takes as many runs
of the tangent mode as there are inputs to obtain the same gradient. Although we are
going to experiment with the two modes, it is clearly the adjoint mode that fits our
needs.

However, the adjoint mode needs to evaluate the derivatives in the inverse order
of the original program’s execution order. This is a tremendous difficulty for large
programs such as STICS. The Automatic Differentiation model copes with this dif-
ficulty by a combination of storage of intermediate values and duplicated evaluation
of the original program, and this has a cost either in memory or in execution time,
and generally both. As for the TAPENADE tool, the strategy is essentially based
on storage of intermediate values, combined with the storage/recompute tradeoff
known as checkpointing that automatically takes place at each procedure call.

3.2 STICS adjoint : the pains and sufferings of an AD end-user

The STICS model being written in FORTRAN 77, it is theoretically possible to
calculate its adjoint with the Automatic Differentiation tool TAPENADE. However,
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things didn’t go so well with the early versions of TAPENADE i.e. before 2005.
Later versions brought notable improvements but we believe it is worth describing
the main problems that we encountered at these early stages.

Automatic Differentiation allows for instructions which are forbidden by the
symbolic differentiation systems. It also provides a real gain in computational time.
However, it requires the model to follow some specific hygiene rules to be differen-
tiable: all the input parameters, and especially the “independents”, must be clearly
identified and if possible separate from the other variables. The same holds for the
outputs and especially the ”dependents”. The precision level of all floating point
variables must be coherent, especially for validation purposes: if the chain of com-
putation is not completely “double precision”, then the divided differences that is
used to validate the analytic derivatives will have poor accuracy, validation will be
dubious and may even fail to detect small errors in the differentiated code.

Validation helped us detect small portability problems in STICS. As divided dif-
ferences requires to call STICS twice, we discovered that two successive calls to
STICS apparently with the same inputs gave different results. In fact the first call
was different from all the others, which pointed us to a problem of hidden uninitial-
ized remanent global. Fixing this gave us correct divided differences, and a more
portable STICS code.

More specifically to this agronomy application, we had problems with the high
number of tests and other conditional jumps in an average run. In more classical situ-
ations of Scientific Computing, programs are derived from mathematical equations.
Typically, they solve a set of ODE’s or PDE’s. This forces some amount of regu-
larity into the code that discretizes and solves these equations. Even if branches do
occur, they rarely introduce discontinuity and the derivative itself often remains con-
tinuous. In our application, the program itself basically is the equation. The model
evolves by introducing new subcases and subdivisions, i.e. more tests, by hand di-
rectly in the source. If, like here in the field of agronomy, this evolution is not made
with differentiation in mind then it may introduce sharp discontinuities that do not
harm the original code but make it non-differentiable. It took us time to replace
faulty branches with a cleaner, differentiable implementation. On the other hand,
one can argue that this results in a better code.

Still, the number of branches in the STICS model is very large: thresholds, con-
ditions, loops, and other control all are tests that the adjoint code must remember
to run backwards. For these reasons, STICS consumes an unusually large memory
to remember this control. Until recently, TAPENADE did not store this control effi-
ciently, using a full INTEGER value to store only a boolean in general.

Chekpointing the time-stepping was difficult. Before binomial checkpointing
was introduced in TAPENADE, we had to split the main time loop of 400 itera-
tions into two nested loops of 20 iterations each, and place these two loops into two
new subroutines to force checkpointing. We did not have the time at INRA to ex-
periment with the new TAPENADE directives for binomial checkpointing and for
checkpointing arbitrary pieces of code, but missing those at the time of our work
was a big drawback.
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Anticipating on Sect. 3.3, the run time of the adjoint code that gave us the first
correct sensitivities is surprisingly slow. This question was put aside for a while, to
concentrate on exploiting the sensitivity. The problem has been identified since: it
comes from the default checkpointing strategy applied to a chain of 4 nested pro-
cedure calls, each of them doing little else than calling the next nested call. As the
size of the memory stored by the checkpoint is (inevitably) large, this slowed the
code enormously. The answer is to decide not to checkpoint these calls. This finally
yields an adjoint code that runs reasonably fast. This also raises the question of find-
ing which procedure calls should be checkpointed and which shouldn’t. Support for
this is badly missing in TAPENADE.

More than five years after this sensitivity study, both STICS and TAPENADE
have evolved. The latest version of STICS model (STICS 6) has been modified, giv-
ing a quite more differentiable code than previously. TAPENADE 3.6 had several
bugs fixed and more importantly provides a set of user directives to control check-
pointing better.

3.3 Validation of the adjoint model

The Taylor test has been performed and converges to 1 for o = 27¢, validating
the tangent code. The adjoint code was validated by a dot-product test repeated in
several directions of perturbation. The times we obtained at the time of the study
are:

Direct model : 0.21s Tangent model : 0.39s Adjoint model : 30.96s

The run time of the adjoint code is surprisingly slow, 150 times slower than the
direct code. We left the problem to the TAPENADE developers to go on with the
sensitivity study. The problem was eventually identified, coming from too many
checkpoints on procedure calls. This results in the following times, obtained by the
TAPENADE team with TAPENADE 3.6:

Direct model : 0.22s Tangent model : 0.52s Adjoint model : 0.86s

4 Results : sensitivity analysis of STICS

The adjoint of STICS was calculated in relation to variables of interest (LAI and
biomass). The response functions proposed are their integrals on the cycle (up to
time T at harvest), in particular to represent the sensitivity of the growth dynamics:

T T
GLAI = Z LAI(tl) Gbiomass - Z biomass(ti)
i=1 i—1

1
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4.1 Selection of input parameters for sensitivity analysis of output
variables

For this feasibility study, the agro-pedo-climatic conditions correspond to wheat
crops from the Danube’s plain in Romania in 2000-2001 in the frame of the ADAM
experiment’ [1]. The adjoint model was calculated according to the following
choices on the input parameters: for LAI, we chose the varietal parameters acting on
the dynamics of LAI, and dlaimaxbrut that strongly characterizes the aerial growth.
Varietal parameters were adapted to the ADAM database in Romania, including
the variety of wheat (Flamura) which has particularities towards the cold resistance
and phenology. The optimization method used for calibration is the simplex algo-
rithm of Nelder-Mead, which consists in minimizing the gap between simulations
and measurements of LAI using a geometric exploration of the space of optimized
parameters.

For biomass, efficiencies at three important phases of the cycle of wheat (juvenile
phases, vegetative and grain filling) and vmax2 were chosen following the previous
sensitivity analysis combined with the knowledge accumulated by users of the crop
model. Table 1 describes the role and the values of these parameters in the vicinity
of which the sensitivity was calculated.

Table 1 Parameter role and values in the neighborhood of which the sensitivity of LAI and biomass
will be calculatedin the ADAM conditions

parameter  definition value
dlaimaxbrut maximum rate of gross leaf surface area production 0.00044
stlevamf cumulated development units between the LEV and AMF stages  208.298
stamflax cumulated development units between AMF and LAX stages 181.688
jve number of days of vernalisation, expresses the need of cold neces- 35

sary to lift
durvieF lifespan of a cm of adult leaf 160
adens parameter to compensate between the number of stems and the den- -0.6

sity of plants
efcroijuv maximum growth efficiency during juvenile phase (LEV-AMF) 22
efcroiveg  maximum growth efficiency during vegetative phase (AMF-DRP) 2.2
efcroirepro maximum growth effiicency during grain filling phase (DRP-MAT) 4.25
vmax2 maximum rate of nitrate absorption by absorption system 2 (low 0.05
affinity) in roots

¢ all the STICS parameters are described in the user guide http://www.avignon.inra.fr/ agro-

clim_stics_eng/notices_d_utilisation

2 The ADAM (Data Assimilation through Agro-Modelling) project and database can be found at
http://kalideos.cnes.fr/spip.php?article68



6th International Conference on Automatic Differentiatio, Fort Collins, USA, July 23 - 27, 2012.

8 Lauvernet, C., Hascoét, L., Le Dimet, F.-X., and Baret, F.

4.2 Sensitivity results of LAI and biomass

Sensitivity analysis of the variable LAI led to the following conclusions (Fig. 2): the
most influential parameters on the response function integrating the LAI from those
we have considered here are adens (47%), dlaimaxbrut (21%), stlevamf (17%), jvc
(10%), and finally stamflax (2%). adens represents the ability of a plant to withstand
increasing densities, and since it depends on the species and varieties, its influence
may be particularly strong for this type of wheat and less for other crops. For the
response function including biomass, we observe that the hierarchy is modified by
the strong influence of the efficiency efcroiveg (maximum growth efficiency during
vegetative phase) which is similar to that of adens (27%). This means that we can ig-
nore the estimate of efcroiveg if we only want to assimilate LAI data, but absolutely
not if we need to simulate biomass. stlevmaf and dlaimaxbrut are also equivalent
(14 and 12%). Finally, there is a relatively low sensitivity (5% and 3%) of biomass
integrated over the cycle to the other two parameters of efficiency efcroirepro and
efcroijuv, meaning that the biomass is not so dependant on the juvenile and the grain
filling phases but essentially on the vegetative phase. The fact that only the integral
over the entire cycle was studied involves a very small influence of the parameters
efcroirepro and efcroijuv, and a most important one of efcroiveg. These efficiencies,
which are related to phenology are characteristic of certain phenological stages, and
it can be assumed that an analysis of the integral of LAI between two consecutive
stages only would modify the hierarchy of influent parameters [14].

LAI is actually dependant on 4 parameters and biomasse on 5 on the 10 tested,
which will help the user to concentrate on these ones and to estimate them better,
allowing to let more uncertainty on the other ones.

100

: : : : é z : : 1

60 - : : H : : H H : m

i i i

stlevamf jve adens efcroiveg vmax2
diaimaxbrut stamflax durvieF efcroijuv efcroirepro

100

so- i i i i : : i ; -
60 : : : : F : : : E
a0 : : : : : : : : .

20

stlevamf jve adens - efcroiveg vmax2
diaimaxbrut stamflax durvieF efcroijuv efcroirepro

Fig. 2 Relative sensitivity of parameters in % in STICS of the ouput variable Leaf Area Index
(LAI above) and biomass (below) given by the adjoint model run.
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5 Conclusion and outlook

This case study illustrates the potential interest of Automatic Differentiation for
sensitivity analysis methods for agronomic models. It can as well be used for as-
similation of remote sensing data into crop models, for precision agriculture [5], in
radiative transfer model [9], by using the adjoint model as a way to minimize the
discrepancy cost function. This work shows the feasability of applying and develop-
ing variationnal methods in the agronomic field, in the same way it is widely applied
in oceanography or meteorology.

For the agronomic community, the adjoint model of STICS is a very interesting
tool to perform sensitivity analysis since it requires the calculation only once for
each agro-pedo-climatic situation. The most difficult work is the differentiation of
the model, which must be done only once, and with the help of AD tools that keep
improving. However, the local sensitivity analysis is valid only in a small neighbor-
hood and it is quite possible that the hierarchy would be modified under different
conditions. These results are therefore only the first step. Following work could
concentrate on:

1. performance of a “multi-local” sensitivity analysis, keeping the crop manage-
ment and climate of the base ADAM, in order to generalize the hierarchy of all
possible values of the parameters in the ADAM conditions. To do this, the ad-
joint model has to be run on the set of intervals defining the parameters using a
sufficiently representative sample of possible values.

2. application of this analysis to other conditions (climate, soil...) to check that the
hierarchy is preserved in general. Extending to other varieties is also important.
The generalization of these first results, however, seems unlikely since the change
of climate and soil conditions should change the hierarchy of limiting factors
(stress for the plant) and thus the influence of certain parameters.

3. study of the sensitivity to several phenological stages of the cycle to study the
effect of variables temporally valid (especially efficiency) on the general hierar-
chy.

The unlimited (within the limits of computational cost) of variable inputs and out-
puts against which we can calculate the adjoint model gives it a completeness. In
fact, the sensitivity analysis will anticipate the lack of determinism of STICS to
represent certain processes and guide users’attention on some of STICS modules,
parameters or variables according to their objectives. The agronomic field has the
special problem to consider the variables of interest (total biomass, yield, balance...)
that are not observable by remote sensing. They can not thus be assimilated into the
model. The sensitivity analysis will quantify the sensitivity of these variables to
those we assimilate (LAI, fAPAR...).
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INRA Avignon and the University of Grenoble.
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