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Using the quasiclassical formalism, we determine the low-temperature phase diagram of a quasi-one-
dimensional superconductor, taking into account the interchain Josephson coupling and the paramagnetic spin
splitting. We show that the anisotropy of the onset of superconductivity changes in the FFLO state as compared
with the conventional superconducting phase. It can result in anomalous peaks in the field-direction dependence of
the upper critical field when the magnetic field length equals to the FFLO period. This regime is characterized by
the lock-in effect of the FFLO modulation wave vector, which is governed by the magnetic length. Furthermore, in
the FFLO phase, the anisotropy of the upper critical field is inverted at T ∗∗

1 = 0.5Tc0, where the orbital anisotropy
disappears. We suggest that an experimental study of the anisotropy of the upper critical field can provide very
reach information about the parameters of the FFLO phase in quasi-1D samples.

DOI: 10.1103/PhysRevB.89.224506 PACS number(s): 74.70.Kn, 74.78.Fk

I. INTRODUCTION

Among the numerous studies of the physics of supercon-
ductivity in low-dimensional systems the effect of magnetic
field has been (stirred) one of the main research subjects
(interests). This is because a series of new superconducting
compounds with unique (remarkable) properties in magnetic
field and pronounced reduced dimensionality has been dis-
covered. Notable examples include the quasi-1D organic
Bechgaard salts (TMTSF)2X, where anion X is PF6, ClO4, etc.
[1–8], polysulfur nitride (SNx) [9], the metal-chalcogenide-
based compounds [10–15], transition-metal carbides [16], the
quasi-1D M2Mo6Se6 compounds (relatives of the quasi-3D
Chevrel phases) [17–19], lithium purple bronze [20], and
arrays of 4-Å superconducting carbon nanotubes embedded in
the linear pores channels of AFI zeolite single crystals [21,22].
Moreover, the analysis of the behavior of the upper critical
field, especially for a field oriented in the highly conducting
plane formed by a sheet of highly conducting 1D chains can
provide information about the nature of superconductivity in
these compounds.

In particular, at low temperature in the compound
(TMTSF)2PF6, the upper critical field exhibits a pronounced
upturn with no sign of saturation. Its magnitude exceeds the
Pauli paramagnetic limit, HP , for a magnetic field aligned
parallel to their most conducting plane and reaches values
Hc2 = 90 kOe [6], which is more than four times larger than
HP � 22 kOe. An enhancement of almost two times over
HP � 27 kOe is observed in the compound (TMTSF)2ClO4,
Hc2 � 50 kOe [3]. An array of superconducting 4-Å carbon
nanotubes grown in zeolite crystals shows a Pauli limit in a
field of HP ∼ 18 T, where the resistivity tends to saturate.
However, a small finite slope indicates the persistence of
superconducting correlations up to 28 T [22]. The upper
critical field of purple bronze Li0.9Mo6O17 is also found to
exhibit a large anisotropy. The most striking feature is that
in the magnetic field aligned along the most conducting axis,
Hc2 increases monotonically with decreasing temperature to
a value five times larger than the estimated paramagnetic
pair-breaking field (Hc2 � 15 T, HP � 3.1 T) [20]. A new

transition metal-chalcogenide compound Nb2Pd0.81Se5 with
Tc ∼ 6.5 K displays a remarkably large superconducting upper
critical field for fields applied along the most conductive or
needle axis. Hc2 � 37 T in this multiband superconductor with
nearly cylindrical and quasi-one-dimensional Fermi surface
sheets having hole and electron character, significantly exceeds
the Pauli limit imposed by quantum statistics on spin singlet
superconductors, HP � 12 T, making a very large Maki pa-
rameter αM = √

2Hc2/HP � 4.4 [13]. The superconducting
state in quasi-one-dimensional compounds Tl2Mo6Se6 and
In2Mo6Se6 undergoes a normal metal state transition at critical
fields approaching the Clogston limit HP ∼ 4.9 T and the upper
critical field does not saturate down to 50 mK [17,18]. This
inorganic compound has great uniaxial anisotropy, comparable
to the most anisotropic organic superconductors.

The high crystallographic quasi-one-dimensional
structure of these compounds and high values of the
Maki parameter convert them into prime candidates for the
search of additional superconducting phases such as the
Fulde-Farrel-Larkin-Ovchinnikov [23,24] state [25–28] and
triplet state [5,6,29,30]. The unusual high critical fields, as
well as NMR relaxation and Knight shift results, suggest the
possibility that equal spin triplet pairing may be responsible for
the superconductivity in the organic compound (TMTSF)2PF6,
although this statement is not completely settled by the
community. The NMR measurements as well as the anomalous
in-plane anisotropy of the upper critical field [3,31] in the
organic compound (TMTSF)2ClO4 favor, for a magnetic field
parallel to the conducting chains, the existence of FFLO state
with a spin singlet pairing. Moreover, it has been shown within
the layered superconductor model under the applied in-plane
magnetic field in the FFLO phase that the experimentally
observed anomalous field-direction dependence of the upper
critical field [3] as well as the anomalous cusps in this
dependence due to resonances between the modulation wave
vector and the vector potential can serve as a direct evidence for
the appearance of the FFLO phase in layered superconductors
[32–35]. This peculiar behavior of the in-plane anisotropy
of the FFLO phase completes the anomalous oscillatory
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out-of-plane angular dependence of the critical field in FFLO
state [36–40]. The authors of Ref. [41] have explained the
experimentally observed destruction of superconductivity
in these compounds in a magnetic field parallel to the most
conducting axis in the framework of a triplet superconductivity
scenario, provided that the interplane distance is less than the
corresponding coherence length. Nevertheless, as indicated
in Ref. [20], the experimentally observed highly anisotropic
superconducting state in the Q1D purple bronze with a very
large Maki parameter can also be attributed to the formation
of the FFLO phase.

Motivated by the recent experimental findings of clean
quasi-one-dimensional compounds with the orbital pair-
breaking effect sufficiently weaker than the Pauli paramagnetic
limit, we investigate in this work the possibilities of the
spatially modulated superconducting phase formation in quasi-
1D superconductors with s-wave pairing. We show that the
vector potential of magnetic field modulates the coupling
between the conducting chains. The period of this modulation
may be in resonance with the FFLO modulation leading to the
anomalies in the upper critical field behavior and to a lock-in
effect of the FFLO. This study provides a valuable insight
into this unconventional state in quasi-1D samples along with
a few of its benchmarks (keys findings). Their experimental
observation may serve as a direct evidence for the FFLO phase
and hence inspire experimentalists for further research with
such superconductors.

II. THE MODEL HIGHLIGHTS

We consider a quasi-one-dimensional (quasi-1D) conductor
with the following electron spectrum:

Ep = p2
x

2mx

+ 2ty cos(pydy) + 2tz cos(pzdz), (1)

where dy and dz are the interchain distances along the y and
z axes, respectively. We assume that the couplings between
chains in both directions are small [see Fig. 1], i.e., tz � Tc0

and ty � Tc0, but sufficiently large to suppress the CDW
and SDW transitions, to stabilize the superconducting long-
range order and to make the mean-field treatment justified,
T 2

c0/EF � tz, T 2
c0/EF � ty . Here, Tc0 is the critical tempera-

ture of the system at H = 0.
We choose the gauge for which the vector potential of

the external magnetic field is A = [H × r] [[r = (x,0,0)]
is a coordinate along the x-chain], i.e., Az = −xHy =
−xH sin α sin θ , Ay = xHz = xH cos α sin θ , Ax = 0, where
H is the amplitude of the magnetic field and α accounts for its
direction from the positive z axis in the y-z plane, while θ is the

FIG. 1. (Color online) Scheme of the quasi-1D conductor in a
parallel magnetic field.

angle accounting the field direction from the positive x axis.
Taking into account that the system is near the second-order
phase transition, we can employ the linearized Eilenberger
equation for a quasi-1D superconductor in the presence of the
magnetic field (in the momentum representation with respect
to the coordinate y and z) [42]:

(�n + �̂)fω(x,k⊥,p⊥) =
[
�(x,k⊥) + 〈fω〉

2τ

]
sign(ωn) (2)

with

�̂ ≡ �

2
vF

∂

∂x
+ 2ity sin(pydy) sin

(
Qyx − kydy

2

)

+2itz sin(pzdz) sin

(
Qxx−kz

2
dz

)
,

where k⊥ = (ky,kz), p⊥ = (py,pz) and we have assumed
that the vector potential varies slowly at the interchain
distances (this assumption means that we neglect the
diamagnetic screening currents and take the magnetic field
as uniform and given by the external field, H ), and Qy =
πdyHz/φ0 = πdyH cos α sin θ/φ0, Qx = −πdzHy/φ0 =
−πdzH sin α sin θ/φ0 with φ0 = π�c/e, h = μBH is the Zee-
man energy, vF = vFx

i is the Fermi velocity along the x axis,
and �n ≡ ωn + 1/2τ − ihsign(ωn). Usually a quasi-1D su-
perconductor can be considered as a system in the clean limit,
meaning that the mean free path is much larger than the cor-
responding intrachain coherence length, ξx

0 = vFx/(2πTc0).
The order parameter is defined self-consistently as

1

λ
�(x,ky,kz) = 2πT Re

∑
ω>0

〈fω(x,py,ky,pz,kz)〉, (3)

where λ is the pairing constant and the brackets denote
averaging over py and pz and vFx

,

〈...〉 ≡ N (1)
∫ π

dy

− π
dy

dydpy

2π

∫ π
dz

− π
dz

dzdpz

2π

1

2

∑
±vF

(. . . ) (4)

with N (1) ≡ m/2πpxdydz. The temperature unit is so that the
Boltzmann constant kB = 1. The maximum critical tempera-
ture corresponds to ky = 0 and we have freedom in choosing
kz, so we make kz = 0. For the purpose of simplicity, choosing
the external magnetic field in the x-y plane, finally we obtain

�̂ ≡ �

2
vF

∂

∂x
+ 2itz sin(pzdz) sin(Qxx). (5)

If the angle between the external magnetic field H and the
x axis, which is along the chains, is not too small, we can
proceed as follows (quantitative analysis will be given later).
We seek the solution of the linearized Eilenberger equation,
Eq. (2), in the form

fω(x,y,pz) = eiqr
∑
m

eimQ.rfm(ωn,pz). (6)

Because of the form for fω(x,y,pz) of Eq. (6), one can write
�(x,y) as

�(x,y) = eiqr
∑
m

ei2mQ.r�2m(kz). (7)

We reserve here the possibility to fix the modulation vector q
not only along the x axis. Therefore we keep in the derivation
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also its y component. From symmetry considerations, it
follows that �−2m = �2m. Adopting a second-order approxi-
mation in the small parameter tz/Tc0 to the solution of Eq. (2)
and substituting Eqs. (6) and (7) back into Eq. (2) one gets

Ln(q)f0 + t̃f−1 − t̃f1 = �0, (8)

Ln(q ± 1Q)f±1 ± t̃f0 ∓ t̃f±2 = 0, (9)

Ln(q ± 2Q)f±2 ± t̃f±1 ∓ t̃f±3 = �±2, (10)

Ln(q ± 3Q)f±3 ± t̃f±2 ∓ t̃f±4 = 0, (11)

Ln(q ± 4Q)f±4 ± t̃f±3 ∓ t̃f±5 = �±4, (12)

Ln(q ± 5Q)f±5 ± t̃f±4 = 0, (13)

where fm ≡ fm(ωn,pz), Ln(s) = �n ± i�vF sx/2
[Ln(q ± Q) = �n ± i�vF (q ± Q)x/2] and t̃ = tz sin(pzdz).
Here we took into account that �±(2m+1) = 0 and also f±4

and f±5 harmonics in order to make description symmetric
for the case of resonances (see further discussion).

Solving the system of coupled equations (8)–(11) in a way
similar to that described in Ref. [32] and making use of the
definition for the order parameter function, Eqs. (3) and (4),
we obtain two systems of coupled equations:

�0
[
P + t2

z b0
] = t2

z [g∓0�∓2 + g±0�±2],

�+2
[
P + δ±2 + t2

z b±2
] = t2

z [g±0�0 + g±2�±4],
(14)

�−2
[
P + δ∓2 + t2

z b∓2
] = t2

z g∓0�0,

�+4
[
P + δ±4 + t2

z b±4
] = t2

z g±2�±2,

where

δξn = πT
∑

ω

〈
1

Ln(qx)
− 1

Ln(qx + ξnQx)

〉∣∣∣∣
TcP

= πT

2

∑
ω,±

1

B±
0

− 1

B±
4ξ

, (15)

bξn = πT
∑
ω,ζ

〈
L−2

n (qx + ξnQx)L−1
n (qx + ξnQx + ζQx)

〉∣∣
TcP

= πT

2

∑
ω,ζ,±

1

B±2
nξ [B±

nξ ± i�vF ζQx/2]
, (16)

gξn = πT
∑

ω

〈
L−1

n (sx)L−1
n (sx+ξQx)L−1

n (sx + ξ2Qx)
〉∣∣

TcP

= πT

2

∑
ω,±

1

B±
0 B±

1ξB
±
2ξ

, (17)

where sx = qx + ξnQx , B±
nξ ≡ �n ± i�vF (qx + ξnQx)/2

with ξ = 0, ± 1. In Eq. (14), the following notations are in-
troduced: P = (Tc − TcP )/AcTc and Ac = 1 − h

TcP

∂TcP

∂h
. Here,

TcP is the superconducting onset temperature in the pure Pauli
limit determined by (if takes into account influence of the
nonmagnetic impurities)

ln

(
Tc0

TcP

)
= πTcP

∑
n

1

ωn

−
〈
L−1

n (q)
〉

1 − 〈
L−1

n (q)
〉
/2τ

, (18)

where 〈L−1
n (q)〉 = 1

2

∑
±(�n ± i�vF qx/2)−1 and the FFLO

modulation vector q corresponds to the maximum of TcP (q)
and its direction is along x axis (see Appendix A). �TcP =
Tc − TcP is the shift of the critical temperature due to the
orbital effect. The solution of the system of Eqs. (14) is
given by

Tc = TcP [1 − Ac(SO + SR)] (19)

with the “orbital” term SO ≡ t2
z b0(q,Q) and the “resonance”

term SR(q,Q) = minξ S
ξ

R(q,Q) with

S
ξ

R(q,Q) ≡ − (aξ − bξ )t2
z − δξ

2

− t2
z

2

√(
aξ − bξ − δξ /t2

z

)2 + 4g2
1ξ ,

where

aξ = b0 − g2
−ξ0t

2
z

δ−ξ2
, bξ = bξ − g2

±2t
2
z

δξ4

and those values of ξ = ± are chosen to maximize the critical
temperature. When the system is out of resonance [32], the
second harmonic of the order parameter, �±2, can be neglected
and the solution is just Tc = TcP /[1 + AcSO] [34]. However,
if δξ = 0 then the term (P + t2

z bξ=± + δξ ) in the left-hand
side (l.h.s.) of the first line of Eq. (14) is the same as the
corresponding term in the second or third line of Eq. (14) and
the precise resonance is established with S

ξ

R(q,Q) = −cξ t
2
z . In

this expression, where the FFLO modulation vector is fixed
along the x axis, the resonance occurs when |q ± 2Q| = |q|,
i.e., q = ±Q.

Let us consider the limits of validity of our calculations. As
was indicated in Ref. [32], our method is valid for tz � �vF Q

or H � tzφ0/π�dvF . Since for the magnetic field orientation
we have chosen the hopping ty does not play any role, we
get tz � �vF Qx = −�vF (πdH/φ0) sin θ and hence sin θ �
tzφ0/π�dHvF . Therefore the developed formalism is valid
only for the field orientation satisfying the following relation:

sin θ � tzφ0

π�dzHvF

. (20)

In consequence, all calculations were performed for the
external magnetic fields satisfying this condition.

III. RESULTS AND DISCUSSIONS

In our numerical calculations, we restrict ourselves to
the parameters mostly similar to that of Nb2Pd0.67Se5 with
dx = 0.339 nm, dy = 1.283 nm, and dz = 1.539 nm [12].
The Fermi velocity has been varied in the range vF =
0.5 ÷ 3 × 105m/ sec, the superconducting temperature was
chosen to be Tc0 = 6.5 K [13], and the band couplings are
tz = 1.6 K ∼ ty . Introducing the dimensionless Fermi velocity
parameter, η = π�dzvF /φ0μB = �vF Qx/μB , this value of
vF corresponds to η = 1.3 ÷ 7.8. The summation over the
Matsubara frequencies was performed numerically.

Figure 2 illustrates the temperature dependence of the
absolute value of the FFLO wave vectors q (red lines) and the
upper critical field in the Pauli limit (green lines) calculated
in the clean limit (solid lines) and when moderate disorder is
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FIG. 2. (Color online) The upper critical field Hc2 and the abso-
lute value of the FFLO modulation vector q as a function of TcP /Tc0

for an s-wave quasi-1D superconductor in the pure Pauli limit. Solid
lines: q 
= 0, 1/τ = 0; short dashed lines: q 
= 0, 1/τ 
= 0; dashed
line: q = 0.

present in the sample with τkBTc/� � 1 (short-dashed line).
The magnitude of the q vector monotonically increases from
zero at the tricritical point until infinity in the clean sample or
until some large values depending on the mean-free path while
accounting for the disorder [43,44]. The optimal direction
of the modulation vector is along the conductive chains for
0 < T < T ∗ with T ∗ � 0.56Tc0 for the clean sample. The
upper critical field in the inhomogeneous superconducting
state diverges at T → 0 in the clean limit and it is appreciably
higher than the paramagnetic limit already for TcP /Tc0 < 0.3.
At τ 
= 0, HP

c2 approaches a finite value. As it was shown in
Ref. [45], if the corrugation of the Fermi surface due to the
interchain coupling is taken into account, the system looses
its 1D character at T → 0 resulting in the finite value of the
Hc2(T → 0).

Figure 3 presents the normalized correction of �Tc =
Tc − TcP due to the orbital effect as a function of TcP /Tc0

for different directions of the applied field. In sequel, the
tilting of the external field is characterized by θ , the angle the
applied field H makes from the principal x axis of the quasi-1D
compound. This figure shows the results for η = 3.16. The
dashed lines illustrate the solution P = −t2

z b0, which is
justified when the second harmonics of the order parameter
is negligible, �±2 = 0. The orbital effect generates the higher
harmonics q ± Q, q ± 2Q, . . . as well. For �vF Qx � tz,
we may treat them perturbatively anywhere except for the
resonance case q ≈ Q, when the order parameter harmonics
�q and �q−2Q should be treated on equal footing. The solid
lines exhibit the results obtained with the full Eq. (19). At some
values of TcP /Tc0, we see an essential discrepancy between
the solid and dashed lines. This discrepancy is induced by
the resonance effect discussed above (see Fig. 4) [32]. The
physics of the resonance effect in a quasi-1D sample is of the
same origin as in the quasi-2D case. As seen from Eq. (5), the

FIG. 3. (Color online) Contribution of the orbital effect as a
function of TcP /Tc0 for several magnetic field tilting angles θ between
H and q, when the Fermi velocity is η = 3.16 and t/Tc0 = 0.25.

projection of the vector potential of the magnetic field on the
x axis results in a modulation of the interchain coupling as
tz sin(Qxx). The period of this modulation, λH = 2φ0/dzHx ,
which depends on the magnitude and direction of the external
field, may interfere with the period of the FFLO modulation
vector λFFLO, leading to the anomalies in �Tc, when λFFLO =
λH . Figures 5 and 6 show the influence of the interchain
coupling on the orbital-motion induced normalized correction
of �Tc = Tc − TcP . In addition to an overall decrease of
the orbital corrections with a decrease of interchain coupling
strength tz, one may note also that the resonant cusp becomes
narrower.

FIG. 4. (Color online) Temperature variation of the magnetic
wave vector and its relation to the FFLO modulation wave vector
as a function of TcP /Tc0 for several magnetic field tilting angles θ ,
when the Fermi velocity is η = 3.16 and t/Tc0 = 0.25.
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FIG. 5. (Color online) Contribution of the orbital effect as a
function of TcP /Tc0 for several magnetic field tilting angles θ between
H and q, when the Fermi velocity is η = 3.16 and t/Tc0 = 0.35.

Figure 7 displays the orbital correction of �Tc as a function
of reduced temperature for different magnitudes of the Fermi
velocity parameter, η, when the external field is fixed at
θ = 45◦. We see that the orbital correction exhibits strong
anomalies in the upper critical field in a wide range of the
Fermi velocities. As seen from Fig. 2, the curves of the FFLO
wave vector q and those of the magnetic wave vectors Q are
almost parallel in a wide range of the reduced temperature.
This makes the resonance condition easier to fulfill in practice.
For instance, our calculations show that the anomaly in the
curve �Tc as a function of TcP /Tc0 for θ = 90◦ occurs in the
range η = 1.4 ÷ 2.2, for θ = 60◦, it takes place in the range
η = 1.7 ÷ 2.5, and for θ = 35◦, in the range η = 2.9 ÷ 3.7.

FIG. 6. (Color online) Contribution of the orbital effect as a
function of TcP /Tc0 for several magnetic field tilting angles θ between
H and q, when the Fermi velocity is η = 3.16 and t/Tc0 = 0.1.

FIG. 7. (Color online) Contribution of the orbital effect as a
function of TcP /Tc0 for different Fermi velocity parameters in the
range η = 1.4–6.7 and for θ = 45; tz = 1.625 K, t/Tc0 = 0.25.

The orbital wave vector Qx is determined by the para-
magnetic effect and turns out rather large for �vF Qx �√

tzTc0 for all angles θ except a narrow vicinity of θ = 0.

In such a situation, the angular (Q) dependence of the critical
temperature is given by the Q expansion of b0 in Eq. (B8) [see
Appendix B]. Interestingly, at T ∗∗

1 = 0.5Tc0, the coefficient
in front of Q2 in this expansion disappears, making the
orbital correction isotropic. Exactly this we observe in Fig. 7,
where the curves for different field orientations intersect at
the same point T ∗∗

1 . Note that for T < T ∗∗
1 , the orbital effect

increases the critical field—the Lebed’s effect ([41]) and a
similar situation is realized at T > T ∗∗

2 = 0.8Tc0. However, in
the range at T ∗∗

1 < T < T ∗∗
1 , we have the opposite role of the

orbital effect. Therefore we may expect a qualitative change of
the critical field anisotropy at T ∗∗

2 and T ∗∗
1 . Figure 7 illustrates

how the anisotropy of the upper critical field becomes two
times inverted at these points while sweeping the external
conditions of the system from TcP /Tc0 > 0.8 till deep into
the FFLO phase. These effects are based on the properties of
the FFLO state and hence the experimental observation of the
anisotropy inversion may also serve as an additional evidence
for the FFLO state.

The existence of the temperature and the Fermi velocity-
dependent anomalies in the orbital-motion-induced correc-
tions result in particular features of the anisotropy of the upper
critical field in the spatially modulated FFLO phase. Figure 8
shows the magnetic field angular dependence of the nor-
malized superconducting transition temperature, Tc(θ )/TcP ,
calculated at several values of TcP /Tc0 for η = 3.16, when
the modulation wave vector is along the x axis. For the
sake of clarity, the inset of this figure shows the same result
but in the polar system. In the polar plot, the direction of
each point seen from the origin corresponds to the magnetic
field direction, and the distance from the origin corresponds
to the normalized critical temperature, when the orbital
destructive effect is taken into account. The regions in the close
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FIG. 8. (Color online) Normalized transition temperature
Tc(θ )/TcP as a function of θ for several values of TcP /Tc0 and
η = 3.16; tz = 1.625 K, t/Tc0 = 0.25. Solid lines: �±2 
= 0; Dashed
lines: �±2 = 0.

vicinity of field orientation angles θ = 0,180 were excluded,
sin θ < tzφ0/π�dzHvF = tz/ημBH , because the developed
formalism is not applicable, see Eq. (20). The short-dashed
lines are extrapolations to correct values. Indeed, for θ = 0,
as it is seen from Eq. (3), the orbital influence of the magnetic
field is absent and the upper critical field should reach the value
of the paramagnetic limit, TcP . The solid lines are the results
accounting for the contribution of the second harmonics of the
order parameter, �±2 
= 0, while the dashed ones are obtained
when approximating it by �±2 = 0. In this case, the solution
(19) simplifies to Tc = TcP [1 − AcSO] and such a solution is
valid for

√
tzTc0 � �vF Qx , or sin θ <

√
tzTc0/ημBH , which

is the beginning of the superconductivity re-entrant regime
[41]. For the intermediate tilting angles of the applied field
tz/ημBH < sin θ <

√
tzTc0/ημBH , one has to account for

the contributions from the higher-order perturbations, SR(q,Q)
in Eq. (19). The second harmonics of the order parameter
generate the Lowerence-Doniach term in the final solution
[34]. We see that the difference between both solutions is
negligible for large tilting angles of the field. However, it
is noticeable already for angles smaller than 20◦. So we
can infer that the observed knobs or upturn at low angle
are due to the Lowerence-Doniach term [34]. Again, we
would like to stress one more time that at θ = 0 the upper
critical field should become equal to TcP (short-dashed lines).
Because the second-harmonics term becomes less important
with the field, the knobs are absent for large tilting angles.
Nevertheless, in Fig. (8), one can see cusps at some large
angles. The deviation between the solutions this time is due
to the resonance between the FFLO modulation wave vector
and the interchain coupling modulated by the vector potential.
Thus, in addition to the overall anisotropy induced by the FFLO
modulation, additional cusps develop for certain directions of
the applied field, when the resonance conditions are realized.
To describe the resonances, we have to account for the second
harmonics, �±2.

FIG. 9. (Color online) The absolute value of the FFLO modu-
lation vector q vs TcP /Tc0 for an s-wave quasi-1D superconductor
when accounting for the orbital effects within the first iteration. Here,
tc/Tc = 0.2. Solid line takes into account the influence of resonance.
Short dashed line shows the field vector Q.

In the previous discussions, we assumed, while investigat-
ing the orbital contributions to the upper critical field, that
the absolute value of the FFLO wave vector is determined by
Eq. (18). However, the orbital contribution, in its turn, may
influence the absolute value of the FFLO modulation vector.
To investigate this issue, we optimized the full Eq. (19) with
respect to the vector q. The result of the calculations depicted in
Fig. 9, which illustrates the modulus of the FFLO wave vector
versus the reduced temperature, shows that the orbital effect on
the modulation vector is weak except for the region in the close
proximity to the resonance. In the vicinity of the resonance,
where the unperturbed q and Q curves intersect, an interesting
lock-in effect appears; while sweeping the TcP /Tc0 across the
resonance, the FFLO vector jumps from its almost unperturbed
value q0, determined without the orbital contribution, to the
magnetic field vector Q, crosses the resonance, and then jumps
back on the original q0 curve. Further iterations on q and Q

will make the resonance observed in Fig. 3 wider due to the
lock-in effect.

In conclusion, we have described the behavior of the
quasi-1D superconductors in high magnetic field with different
tilting with respect to the principal axis of the compound.
We demonstrated that (i) the experimentally observed in
quasi-1D compounds, such as purple bronze Li0.9Mo6O17,
the transition-metal-chalcogenide compound Nb2Pd0.81Se5, or
4-Å carbon nanotubes grown in zeolite crystals, large values
of the upper critical field in the fields parallel to the compound
principal axis and at low temperature may be attributed to
the stabilization of the FFLO superconducting phase. The
low-temperature FFLO phase is characterized by an essential
reduction of the magnetic field induced orbital effect as
compared to the high-temperature FFLO phase. This makes
the Tc(θ )/TcP dependence much closer to the paramagnetic
FFLO limit. The finite magnitude of the paramagnetic limit
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may result, for example, from the impurities scattering. (ii)
We found that the upper critical field is maximal for the
modulation vector q parallel to the most conducting direction.
(iii) We demonstrate that in quasi-1D compounds one can
explore experimentally all field regimes, from the weak field
up to the re-entrant one at high magnetic field, by rotating the
magnetic field direction [46]. The high-field superconductivity
survives because the quasi-1D Fermi surface stabilizes the
FFLO state that can exist above the Pauli limited fields. (iv)
The resonance between the modulation vector of the FFLO
phase and the vector potential of the magnetic field may lead
to anomalous cusps in the field-direction dependence of the
upper critical field analogous to those calculated previously in
quasi-2D conductors. At the resonance, the interplay between
the orbital and paramagnetic effects may result in a lock-in
effect. (v) We discussed that the inverse effects pertinent to the
T ∗∗

1 = 0.5Tc0 and T ∗∗
2 = 0.8Tc0 may become an additional

tool to evidence the FFLO state. We suggest that observation
of these effects may serve as a direct proof for the appearance
the FFLO phase in quasi-1D superconductors. The possibility
to experimentally observe the orbital effect in quasi-1D
superconductors should provide very reach information about
the parameters of the FFLO phase. In our study, we have
assumed s-wave pairing, however, the model can be easily
extended to the d-wave pairing [35]. We expect that all the
obtained results will remain qualitatively similar.
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APPENDIX A: DIRECTION OF THE FFLO WAVE VECTOR

In the above discussion, we explicitly assumed that the
FFLO modulation vector is fixed along the x axis due to the
symmetry of the crystal field [17]. The symmetry of the order
parameter can provide additional source of pinning for the
modulation vector [35]. The direction of the FFLO vector
can be modified by the orbital effects too. Let us investigate
the latter case in more details and consider the situation near
the tricritical point, where we may expand the Eilenberger
equation with respect to gx = gxvF , gy = 2ty sin( gydy

2 ) and
gz = 2tz sin( gzdz

2 ) up to the fourth order, where g = q + ξQ.
The result can be written as

ln

(
TP 0

TP

)
= − 1

8(2πT )2

(
g2

x + g2
y + g2

z

2

)
χ (2)

(
ih

2πT

)

+ 1

384(2πT )4

[
g4

x + 3g2
x

(
g2

y + g2
z

) + 3g2
yg

2
z

2

+3
(
g4

y + g4
z

)
8

]
χ (4)

(
ih

2πT

)
,

where χ (n)(ix) ≡ 1/2[ψ (n)(1/2 + ix) + ψ (n)(1/2 − ix)]. The
FFLO modulation vector q corresponds to the maximum of
TcP (q) and its direction is either along x axis or along y axis.

If we neglect the orbital contribution then g = q. Let us first
suppose that gx = 0 and gz = 0 than this equation gives

ln

(
TP 0

TP

)
= −

g2
y

2

8(2πT )2
χ (2)

(
ih

2πT

)

+
3g4

y

8

384(2πT )4
χ (4)

(
ih

2πT

)
.

Extremum of this expression results in

TP 0 − TP

TP

∣∣∣∣
Qx=0

= − χ (2)( ih
2πT

)2

χ (4)

(
ih

2πT

) . (A1)

Next, we suppose that gy = 0 and gz = 0 and this constrain
gives

ln

(
TP 0

TP

)
= − g2

x

8(2πT )2
χ (2)

(
ih

2πT

)

+ g4
x

384(2πT )4
χ (4)

(
ih

2πT

)
.

The extremum of this expression gives rise to

TP 0 − TP

TP

∣∣∣∣
Qy=0

= −3

2

χ (2)
(

ih
2πT

)2

χ (4)
(

ih
2πT

) . (A2)

Near the tricritical point, h/2πT ∼ 0.3. In this case, the right-
hand sides (r.h.s.) of these expressions are negative and we
can conclude that the direction is fixed along the x axis. If
the in-plane orbital effects become strong then we recover the
result of Ref. [47].

APPENDIX B: ORBITAL TERM EXPANSION

Below the tricritical point, q = 0, if (�vF Qx) � Tc0, or
Hx � φ0

π�dzvF
Tc0, then P + t2b± � δ± and we find from Eq.

(14) that

�±2 ≈ t2c±
δ±

�0, (B1)

with [see Eqs. (15) and (17)]

δ± = πTcP

∑
n

1

�n

(
1 − 1/2

1 + iQ
− 1/2

1 − iQ

)
, (B2)

c± = πTcP

∑
n,±

1

2�3
n

1

(1 ± iQ)(1 ± iQ/2)
, (B3)

where Q ≡ �vF Qx/�n. Expansion of these expressions with
respect to g � 1 gives

δ± ≈ πTcP

∑
n

(�vF Qx)2

�3
n

, (B4)

c± ≈ πTcP

∑
n

1

�3
n

[
1 − 7(�vF Qx)2

4�2
n

]
, (B5)

and from Eq. (B1), we find that �±2 reads as

�±2 ≈ t2

(�vF Q)2
�0. (B6)

224506-7



M. D. CROITORU AND A. I. BUZDIN PHYSICAL REVIEW B 89, 224506 (2014)

Substitution of �±2 back into Eq. (14) leads to the following
equation, determining the temperature Tc of the onset of the
superconducting state, when the orbital effects of the applied
magnetic field are accounted for within the second-order
approximation in parameter t/Tc0,

P + t2b0 = t4

(�vF Q)2

∑
±

c±, (B7)

where

b0 = πTcP

∑
n

1

2�3
n

(
1

1 + iQ/2
+ 1

1 − iQ/2

)
. (B8)

Making use of the expansion of b0 into a series

b0 ≈ πTcP

∑
n

1

�3
n

[
1 − 1

4

(�vF Q)2

�2
n

]
, (B9)

we obtain an equation for Tc:

P = −πTcP

∑
n

t2

�3
n

[
1 − 1

4

(�vF Q)2

�2
n

− t2

(�vF Q)2
+ 7t2

4�2
n

]
.

(B10)
Neglecting the last term, which is beyond our approximation,
we get

P = πTcP

∑
n

t2

�3
n

[
− 1 + 1

4

(�vF Q)2

�2
n

+ t2

(�vF Q)2

]
.
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[18] A. P. Petrović, R. Lortz, G. Santi, M. Decroux, H. Monnard,
O. Fischer, L. Boeri, O. K. Andersen, J. Kortus, D. Salloum,
P. Gougeon, and M. Potel, Phys. Rev. B 82, 235128 (2010).
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