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Refined IV-based method for LPV partial differential equation model

identification

Julien Schorsch1,2, Vincent Laurain1,2, Marion Gilson1,2 and Hugues Garnier1,2

Abstract— This paper presents a direct identification method
for linear parameter varying models described by partial
differential equations in an input-output setting. The continuous
space-time model is firstly rewritten as a multiple-input single-
output model. The continuous filtering operations are refor-
mulated as a discrete convolution product and a refined instru-
mental variable technique is developed to efficiently estimate the
model parameters. The performance of the proposed method
is then illustrated via a representative simulation example.

I. INTRODUCTION

The linear parameter varying (LPV) partial differential

equation (PDE) identification case is considered in this

paper where the parameters are assumed to be function

of a measurable deterministic time-space varying signal.

This modeling concept allows for a wide representation of

physical processes.

Several identification methods for PDE models are avail-

able in the literature (see e.g. [6] for survey) and two

main approaches can be distinguished. The indirect ap-

proach including two steps involves the transformation of

the continuous time-space (CTS) model into a discrete time-

space (DTS) model and the identification of the DTS model

parameters [1]. The direct approach aims to estimate the

coefficients of the CTS model directly from sampled signals

([4] and [12]). However, only a few papers deal with the PDE

identification problem into the LPV framework. The use of

LPV models has been applied to the identification of linear

time invariant (LTI) PDE system by approximating the PDE

at each working point with a DT-LPV model [2].

A method has been already proposed to identify a con-

tinuous space-time LPV partial differential equation model

[13]. The approach is based on an iterative procedure develop

to estimate efficiently the model parameters into the error-

prediction minimization framework. However, as it will be

shown in the numerical example developed in this paper, in

the situation where the output is corrupted by an additive

colored noise, this method delivers biased estimates.

The proposed direct approach uses here an instrumental

variable (IV) based method which provides consistent pa-

rameter estimates whatever the kind of noise [14] or [16].

The Simplified Refined Instrumental Variable for Continuous-

time systems (SRIVC) method was recently extended to

continuous-time LPV ordinary differential equation (ODE)
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models [7] and to linear PDE models [12]. It is here adapted

for the LPV-PDE models.

An advantage of the SRIVC algorithm is to make use of

a filter which reduces the noise influence on the estimated

parameters. In the ODE model case, this filter follows the

same dynamic as the system. However, in the LPV-PDE

case, the filter should be dependent on an external variable

ρ, if it is chosen to follow the same dynamics as the

system. The influence of this dependency is twofold. First,

this dependency is injected on the filtered noise which de-

creases the quality of the estimated parameters. Secondly, the

classical algebraic properties (commutativity, associativity,...)

are not guaranteed. The proposed solution is based on the

reformulation of the single-input single-output (SISO) LPV-

PDE model to a multiple-input single-output (MISO) PDE

model. From this reformulation a new filter is emphasized.

It is not anymore dependent on ρ, keeps algebraic properties

and follows a dynamic part of the considered system.

However, the resulting filter is written in terms of par-

tial derivative operators and therefore it cannot be directly

defined as a rational transfer function. Usually, the transfer

functions associated with PDE models are irrational func-

tions which involve an infinite number of poles and zeros

[5]. Nevertheless, the solution developed here, is to discretize

the filter by using classical numerical schemes and to write

the filter operations as a convolution product.

The paper is organized as follows: in Section 2, the

general class of CTS-LPV-PDE models is introduced. The

reformulation of the system is provided Section 3 including

a description of the proposed filter. Section 4 deals with

the writing of this filter by using the discretization of the

differential operator. A description of the proposed estimator

is given in Section 5. Finally, an numerical example is used

in Section 6 to illustrate the performance of the proposed

approach.

II. PROBLEM FORMULATION

A. Deterministic model

Let Ω a close set and consider the continuous model

described by the following PDE:
{

A(∂, ρ)χ̊(t, x) = B(∂, ρ)u(t, x) on Ω×]0,+∞[
χ̊(0, x) = φ(x) on Ω

(1)

x ∈ Ω is the space variable, note that for clarity of the

presentation, x is supposed to be one-dimensional. t ∈ [0, T ]
is the time variable. χ̊(x, t) is the model output and u(x, t)
is the input. φ(x) is a continuous space function which



represents the model behaviour for t = 0. For (it, ix) ∈ N2,

∂it,ix denotes the partial differential operator:

∂it,ix χ̊(t, x) = ∂it
t ∂ix

x χ̊(t, x) =
∂it+ix χ̊(t, x)

∂tit∂xix
, (2)

where ∂it
t = ∂it

∂tit
is the it-th time partial derivative and

∂ix
x = ∂ix

∂xix
is the ix-th space partial derivative.

To complete Equation (1) boundary conditions needs to be

specify. A large number of boundary conditions can be

chosen, depending on the problem formulation, the number

of variables involved and the nature of the equation.

A(∂, ρ) and B(∂, ρ) are bivariate polynomials in ∂ of

degrees nt, nx and mt, mx respectively:







A(∂, ρ) = pnt,nx +

nt,nx
(it,ix) 6=(nt,nx)

∑

it,ix=0

a(ρ)it,ix∂
it,ix (3a)

B(∂, ρ) =

mt,mx∑

jt,jx=0

b(ρ)jt,jx∂
jt,jx (3b)

In order to represent a larger behavior range, the model is

assumed to be parameter varying. ait,ix(ρ) and bjt,jx(ρ) are

analytic functions with dependence on an external determin-

istic scheduling variable ρ(t, x) = ρ, which is called static

dependence. (nt, nx) are the orders of the system (assumed

to be known). In this work, it is assumed that nx ≥ mx,mt;

nt ≥ mx,mt; and A(∂, ρ) is a monic polynomial in ∂t
variable.

B. Process model

Assuming ρ a priori known, the A(∂, ρ) and B(∂, ρ)
polynomials can be parametrized as:






A(∂, ρ, θ) = ∂nt,nx +

nt,nx
(it,ix) 6=(nt,nx)

∑

it,ix=0

ait,ix(ρ)∂
it,ix

ait,ix(ρ) = a0it,ix +

nα∑

l=1

alit,ix fl(ρ)

it = 0, · · · , nt ix = 0, · · · , nx

(4)





B(∂, ρ, θ) =

mt,mx∑

jt,jx=0

bjt,jx(ρ)∂
jt,jx

bjt,jx(ρ) = b0jt,jx +

mβ∑

l=1

bljt,jxgl(ρ)

jt = 0, · · · ,mt jx = 0, · · · ,mx.

(5)

In this parametrization, {fl}
nα

l=1 and {gl}
mβ

l=1 are meromorphic

functions of ρ, with static dependence. They can be chosen

for example as linearly independent functions. The associated

model parameters θ are stacked columnwise:

θ = [a0,0 · · · ant,nx−1 b0,0 · · · bmt,mx
]
T
∈ R

nθ (6)

where

ait,ix =
[
a0it,ix a1it,ix · · · anα

it,ix

]
∈ R

nα+1 (7)

bjt,jx =
[
b0jt,jx b1jt,jx · · · b

mβ

jt,jx

]
∈ R

mβ+1 (8)

and nθ = ((nt + 1)(nx + 1) − 1)(nα + 1) + (mt + 1)(mx +

1)(mβ + 1).

C. Noisy model

In this paper, stochastic PDE class is considered. These

systems are a generalization of PDE taking into account a

random noise term. Thus due to measurement inaccuracies,

the measure χ̊(t, x) is not available but a disturbed version

of it is obtained.

Moreover, in practical situations, such as those encoun-

tered in environmental science, the measured data are not

continuous in time and in space. Given the sampled nature

of the data, an obvious assumption is that the sampled output

is contaminated by a discrete time-space noise.

The data-generating system takes the following Output-

Error structure:







A(∂, ρ, θ)χ̊(t, x) = B(∂, ρ, θ)u(t, x) on Ω×]0, T ]

χ̊(0, x) = φ(x) on Ω

y(tk, xℓ) = χ̊(tk, xℓ) + e(tk, xℓ)

(9)

where the observed noisy output y(tk, xℓ) and χ̊(tk, xℓ) are

the sampled signals at the time tk and the observation point

xℓ for k ∈ {1, · · · , N} and ℓ ∈ {1, · · · , L}. e(tk, xℓ) is a

white noise, i.e. a zero mean, random spatial array, with no

temporal or spatial correlation.

D. Objective

Finally, the objective is to estimate the parameter vec-

tor (6) of the model (9) based on the measured sam-

pled input, output data and the scheduling variables Z =
{u(tk, xℓ), y(tk, xℓ), ρ(tk, xℓ)}

L,N
ℓ=1,k=1.

III. THE LPV-PDE REFORMULATION

A. Reformulation

The LPV-PDE model identification problem cannot be

formulated directly as a prediction error minimisation be-

cause of the non-commutativity of the LPV polynomials.

This problem is well-known when dealing with LPV models.

In [7] (for ODE models) and [13] (for PDE models), the

proposed solution is to rewrite the LPV model as a MISO

LTI model for which the PEM can be formulated. The idea

here is to follow the same concept and to reformulate the

LPV model in order to express it as a linear regression form:

y(nt,nx)(tk, xℓ) = ϕ(tk, xℓ)θ + F (∂, θ)e(tk, xℓ) (10)



Such a reformulation can be expressed as:

χ̊(nt,nx)(tk, xℓ) +

nt,nx
(it,ix) 6=(nt,nx)

∑

it,ix=0

a0it,ix χ̊
(it,ix)(tk, xℓ)

︸ ︷︷ ︸

F (∂,θ)χ̊(tk,xℓ)

+

nt,nx
(it,ix) 6=(nt,nx)

∑

it,ix=0

nα∑

l=1

alit,ix fl(ρ)χ̊
(it,ix)(tk, xℓ)

︸ ︷︷ ︸

χ̊
(it,ix)
l

(tk,xℓ)

=

mt,mx∑

jt,jx=0

mβ∑

l=0

bljt,jx gl(ρ)u
(jt,jx)(tk, xℓ)

︸ ︷︷ ︸

u
(jt,jx)
l

(tk,xℓ)

(11)

where g0(ρ) = 1 and the superscript (jt, jx) for a signal,

like u(jt,jx), denotes the jtht partial derivative in time and

the jthx partial derivative in space and

F (∂, θ) = ∂nt,nx +

nt,nx
(it,ix) 6=(nt,nx)

∑

it,ix=0

a0it,ix∂
it,ix (12)

Note that in this way, the main advantage is to transpose the

time-space variation of the coefficients onto the signals now

expressed as






χ̊
(it,ix)
l (tk, xℓ) = fl(ρ)χ̊

(it,ix)(tk, xℓ) (13a)

{it, ix, l} ∈ {0 · · ·nt, 0 · · ·nx, 1 · · ·nα}

u
(jt,jx)
l (tk, xℓ) = gl(ρ)u

(jt,jx)(tk, xℓ) (13b)

{jt, jx, l} ∈ {0 · · ·mt, 0 · · ·mx, 0 · · ·mβ}

Therefore, the process part of the LPV model is rewritten

as a MISO system with ((nt + 1)(nx + 1) − 1)nα +
(mt +1)(mx +1)(mβ +1) inputs {χl

it,ix
}nt,nx,nα

it=0,ix=0,l=1 and

{ul
jt,jx

}
mt,mx,mβ

jt=0,jx=0,l=0. By using (11), (9) can be rewritten in

terms of the output signal y(tk, xℓ) as






F (∂, θ)y(tk, xℓ) = −

nt,nx
(it,ix) 6=(nt,nx)

∑

it,ix=0

nα∑

l=1

alit,ix χ̊
(it,ix)
l (tk, xℓ)

+

mt,mx∑

jt,jx=0

mβ∑

l=0

bljt,jxu
(jt,jx)
l (tk, xℓ) + F (∂, θ)e(tk, xℓ).

(14)

which can be written under the regression form of (10) where

ϕ(tk, xℓ) =
[
−y(0,0)(tk, xℓ) · · · − y(nt,nx−1)(tk, xℓ)

−χ̊
(0,0)
1 (tk, xℓ) · · · − χ̊

(nt,nx−1)
nα (tk, xℓ)

u
(0,0)
0 (tk, xℓ) · · ·u

(mt,mx)
mβ (tk, xℓ) ]

T
.

(15)

The regressor is made up with the input u(tk, xℓ), the noisy

output y(tk, xℓ) and noise-free output χ̊(tk, xℓ).

B. Linear regression form

In the given context, contrary to the LPV formulation

where the LPV dependency appears into the signal defi-

nitions, the filter F (∂, θ) commutes so that (10) can be

rewritten as

y
(nt,nx)
f (tk, xℓ) = ϕT

f (tk, xℓ)θ + e(tk, xℓ) (16)

where yf(tk, xℓ), χ̊
(it,ix)
l,f (tk, xℓ) and u

(jt,jx)
l,f (tk, xℓ) repre-

sent the outputs of a filtering operation.

yf(tk, xℓ) =
1

F (∂, θ)
y(tk, xℓ) (17)

and

ϕf(tk, xℓ) =
[

−y
(0,0)
f (tk, xℓ) · · · − y

(nt,nx−1)
f (tk, xℓ)

−χ̊
(0,0)
1,f (tk, xℓ) · · · − χ̊

(nt,nx−1)
nα,f (tk, xℓ)

u
(0,0)
0,f (tk, xℓ) · · ·u

(mt,mx)
mβ ,f

(tk, xℓ) ]
T

(18)

Moreover, the proposed filter does not depend on the deter-

ministic scheduling variable ρ but only on the LTI part of

the PDE. However, since the inverse of ∂ is not defined in

the partial derivative context, the digital implementation of

the filtering operation is discussed in the next Section.

IV. THE DIFFERENTIAL OPERATOR DISCRETIZATION

In contrary to ODE model which can be expressed by

a transfer function model between the excitation signal

and output signal, it is more complicated to write PDE

under this form. However, for specific linear PDE systems,

several approaches are possible. As an example, a method

developed in [5] consists in using the Laplace transforms

with respect to the time variable t and then to apply it on the

system and the boundary conditions. PDE are then written

as irrational transfer functions which can be expanded into

infinite dimensional rational transfer functions. A different

solution is to use fractional models to describe the PDE

system (see e.g. [9]). Another method consists in taking the

Fourier transforms with respect to the space variable x. This

method is used when the space domain is assumed to be

infinite and permits to obtain an analytic solution of the PDE.

The method used here, to tackle the irrational function

problem, is to consider a discretization along the dimension

axis, leading to a so-called parameter distributed system.

This approach consists in reducing the infinite dimensional

system described by PDE to a finite dimensional model,

using the input and output observations to construct an

approximation of the solution. The continuous filter F (∂, θ)
is then transformed into a discrete filter F (ð, θ), where ∂ is

approximated by a discretized operator ð = (ðt, ðx):

{
∂t = ðt +O(Te)
∂x = ðx +O(h)

(19)

where Ts and h are the sampling periods in time and space

and O(.) is the truncation error.

This discrete filter can be expressed as a convolution product

[F (ð, θ)χ̊](tk, xℓ) = (f ∗ χ̊)(tk, xℓ). (20)

Using the simplest partial derivatives approximations made

by finite difference method in equation (20), the filter can be

realized as a finite-dimensional rational transfer function.



Example:

Consider the heat equation

∂1,0χ̊(t, x)− ∂0,2χ̊(t, x) = u(t, x) (21)

∂1,0χ̊(t, x) can be computed by the following Euler forward

difference approximation:

[ð1,0χ̊](tk, xℓ) =
q+1
t − 1

Ts

χ̊(tk, xℓ) (22)

where qt is the shift operator. In the same way, ∂0,2χ̊(t, x)
can be approximated by the central difference approximation:

[ð0,2χ̊](tk, xℓ) =
q+1
x − 2 + q−1

x

h2
χ̊(tk, xℓ). (23)

where qx is the shift operator.

Equation (21) can then be expressed into the following

discrete form

(ð1,0 − ð
0,2)χ̊(tk, xℓ) = u(tk, xℓ), (24)

which can be written under the following transfer function:







G(qt, qx) =
Ts

q+1
t q0x + Ts

h2 q
0
t q

+1
x + (1− 2Ts

h2 )q0t q
0
x + Ts

h2 q
0
t q

−1
x

χ̊(tk, xℓ) = G(qt, qx)u(tk, xℓ)
(25)

The stability of this transfer function can be proven by the

classical methods used for studying the convergence of the

numerical scheme [10]. Here the transfer function G(qt, qx)
is stable when

−1 +
2Ts

h2
≤ 0. (26)

V. ESTIMATION

Under the assumption of a priori known F (ð, θ) and χ̊,

the optimal estimator in the prediction error minimization

sense is the least-squares (LS) estimator:

θ̂LS =





N,L
∑

k,ℓ=1

ϕf(tk, xℓ)ϕ
T
f (tk, xℓ)





−1

·





N,L
∑

k,ℓ=1

ϕf(tk, xℓ)y
(nt,nx)
f (tk, xℓ)





(27)

In practice, the filters F (ð, θ) and the signals χ̊(it,ix) are

unknown and therefore an iterative procedure is proposed

in order to cope with this issue, similarly as it is achieved

in the approaches developed for the ODE case in [8] and

[13] for the PDE case. However, the LS method delivers

biased estimates in the general practical situation where the

noise structure is not known. It is then necessary to develop

estimators which give unbiased estimates whatever the noise.

In this paper, the proposed estimator is based on the IV

method which is known to provide efficient estimates.

A. Basic IV estimator

The main idea behind the IV method is to modify the

normal equations (27) so that they yield consistent estimates

for arbitrary additive noise. This involves the introduction of

an IV vector ζf(xℓ, tk) whose elements are correlated with

the noise-free regression vector ϕ̊f(xℓ, tk), where

ϕ̊f(tk, xℓ) = F (ð, θ)ϕ̊(tk, xℓ) (28)

with

ϕ̊(tk, xℓ) =
[
−χ̊(0,0)(tk, xℓ) · · · − χ̊(nt,nx−1)(tk, xℓ)

−χ̊
(0,0)
1 (tk, xℓ) · · · − χ̊

(nt,nx−1)
nα (tk, xℓ)

u
(0,0)
0 (tk, xℓ) · · ·u

(mt,mx)
mβ (tk, xℓ) ]

T
,

(29)

but uncorrelated with the additive noise. The basic IV pa-

rameter estimates are then given by the following IV normal

equations:

θ̂IV =





N,L
∑

k,ℓ=1

ζf(tk, xℓ)ϕ
T
f (tk, xℓ)





−1

·





N,L
∑

k,ℓ=1

ζf(tk, xℓ)y
(nt,nx)
f (tk, xℓ)





(30)

provided that the matrix-inverse exists.

B. Consistency properties

By introducing (16) into (30) it comes:

θ̂IV = θ +





N,L
∑

k,ℓ=1

ζf(xℓ, tk)ϕ
T
f (xℓ, tk)





−1

·





N,L
∑

k,ℓ=1

ζf(xℓ, tk)ef(tk, xℓ)





(31)

It can be deduced from (31) that θ̂IV is a consistent estimate

of θ if
{

E[ζf(tk, xℓ)ϕ
T
f (tk, xℓ)] is not singular (32a)

E[ζf(tk, xℓ)ef(tk, xℓ)] = 0 (32b)

where E(.) denotes the mathematical expectation.

C. Refined Instrumental Variable algorithm

Theoretically, the IV method corrects the statistical in-

consistency of the least squares solution but its practical

implementation requires some method for generating an

instrument that satisfies the conditions given by (32a) and

(32b). Several different procedures for the ODE models have

been suggested in the system and control literature. The

most successful of these is the statistically optimal SRIVC

algorithm which involves an iterative procedure where at

each iteration, the auxiliary model used to generate the IV,

as well as the associated filters are updated based on the

parameter estimates at the previous iteration.

The proposed LPV-SRIVC-PDE model identification algo-

rithm can be summarized as shown below. The algorithm

consists of three first steps for the initialization and the



last five iterative steps are used to estimate the filter, the

derivatives and finally the model parameters.

• Step 1 Initialization of θ0 for l = 0 only:

θ̂0 =
[

â00,0 · · · â
0
nt,nx−10 · · · 0b̂

0
0,0 · · · b̂

0
mt,mx

0 · · · 0
]T

using for instance the LS-PDE method proposed in [12].

In this first step the system is considered as a LTSI

system.

• Step 2 Compute a first estimated filter on the basis of

the estimates obtained in Step 1

Q(ð, θ̂0) =
1

F (ð, θ̂0)

where F (ð, θ̂0) is given as (12).

Use the filter in order to generate the estimated deriva-

tives

{u
(jt,jx)
l,f }

mt,mx,mβ

jt=0,jx=0,l=0 = Qc(ð, θ̂
0){u

(jt,jx)
l }

mt,mx,mβ

jt=0,jx=0,l=0

{y
(it,ix)
f }nt,nx

it=0,ix=0 = Qc(ð, θ̂
0){y(it,ix)}nt,nx

it=0,ix=0

and the regressor ϕf(tk, xℓ) built up from the filtered

noisy output only and the input for this initialization

step

ϕf(tk, xℓ) =
[

−yf(tk, xℓ) · · · − y
(nt,nx−1)
f (tk, xℓ)

−y
(0,0)
1,f (tk, xℓ) · · · − y

(nt,nx−1)
nα,f (tk, xℓ)

u
(0,0)
0,f (tk, xℓ) · · ·u

(mt,mx)
mβ ,f

(tk, xℓ) ]
T

• step 3 Compute an estimate θ̂1:

θ̂
1 =





N,L
∑

k,ℓ=1

ϕf(tk, xℓ)ϕ
T
f (tk, xℓ)





−1

·





N,L
∑

k,ℓ=1

ϕf(tk, xℓ)y
(nt,nx)
f (tk, xℓ)





Set τ = 1. [End of initialization part.]

• Step 4 At any iteration τ+1, compute an estimate of the

noise-free output ˆ̊χ(tk, xℓ) via numerical approximation

of

A(ð, ρ, θ̂τ )ˆ̊χ(t, x) = B(ð, ρ, θ̂τ )u(t, x)

based on the estimates θ̂τ at the previous iteration.

• Step 5 Compute the estimated filters

Q(ð, θ̂τ ) =
1

F (ð, θ̂τ )

and use the filters as well as ˆ̊χ(tk, xℓ) in order to

generate the estimates of the derivatives:

{ˆ̊χ
(it,ix)

l,f } = Q(ð, θ̂τ ){ˆ̊χ
(it,ix)

l }

for it = 0, · · · , nt; ix = 0, · · · , nx and l = 1, · · · , nα

{u
(jt,jx)
l,f } = Q(ð, θ̂τ ){u

(jt,jx)
l }

for jt = 0, · · · ,mt; jx = 0, · · · ,mx and l =
1, · · · ,mβ

{y
(it,ix)
f } = Q(ð, θ̂τ ){y(it,ix)}

for it = 0, · · · , nt and ix = 0, · · · , nx.

• Step 6 Build the estimated filtered regressor ϕ̂f(tk, xℓ)
as:

ϕ̂f(tk, xℓ) =
[

−y
(0,0)
f (tk, xℓ) · · · − y

(nt,nx−1)
f (tk, xℓ)

−ˆ̊χ
(0,0)

1,f (tk, xℓ) · · · − ˆ̊χ
(nt,nx−1)

nα,f (tk, xℓ)

u
(0,0)
0,f (tk, xℓ) · · ·u

(mt,mx)
mβ ,f

(tk, xℓ) ]
T

ϕ̂f(tk, xℓ) is composed of the filtered noisy output, the

filtered noise-free estimated output and the input.

And build the filtered estimated IV ζ̂f(tk, xℓ) as:

ζ̂f(tk, xℓ) =
[

−ˆ̊χ
(0,0)

f (tk, xℓ) · · · − ˆ̊χ
(nt,nx−1)

f (tk, xℓ)

−ˆ̊χ
(0,0)

1,f (tk, xℓ) · · · − ˆ̊χ
(nt,nx−1)

nα,f (tk, xℓ)

u
(0,0)
0,f (tk, xℓ) · · ·u

(mt,mx)
mβ ,f

(tk, xℓ) ]
T

ζ̂f(tk, xℓ) vector is composed of the filtered noise-

free estimated output and the input and represents the

instruments.
• Step 7 Compute the LPV-SRIVC-PDE estimate θ̂τ+1

at the (τ + 1)th iteration:

θ̂
τ+1 =





N,L
∑

k,ℓ=1

ζ̂f(tk, xℓ)ϕ̂
T
f (tk, xℓ)





−1

·





N,L
∑

k,ℓ=1

ζ̂f(tk, xℓ)y
(nt,nx)
f (tk, xℓ)





• Step 8 If θ̂τ+1 has converged or the maximum number

of iterations is reached, then stop, else increase τ by 1

and go to Step 4.

VI. NUMERICAL EXAMPLE

The performance of the described algorithm is evaluated

in the case of the advection-diffusion equation (ADE). This

equation is often used in the water resource quality analysis

to describe the transport and dispersion of a solute into a

river channel [15], [3]. The ADE takes the following form:






∂χ̊(t, x)

∂t
= a02(ρ(t))

∂2χ̊(t, x)

∂x2
− a01(ρ(t))

∂χ̊(t, x)

∂x
+b00(ρ(t))u(t, x)

χ̊(t = 0, x) = 0

y(tk, xℓ) = χ̊(tk, xℓ) + e(tk, xℓ)
(33)

The noise-free signal χ̊(xℓ, tk) (Fig. 1) represents the

solute propagation in the river and is obtained by discretiza-

tion of the partial differential equation by a finite difference

method (see e.g. [10]).

The temporal sampling is Ts = 10s and N = 8640 tem-

poral points are measured. The spatial sampling is h = 10m

for L = 61 space points. These 61 points can represent 61

sensors distributed in the river. u(t, x) describes the source
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Fig. 1. River flow ρ(t) and noise-free output χ̊(t, x)

of the pollutant, and is represented by a PRBS signal at the

space point x = 20m. In realistic conditions of simulation the

a02(ρ(t)) diffusion and the a01(ρ(t)) advection coefficients

are dependent of the river flow Q(t) (Fig. 1). The scheduling

variable ρ is then taken as ρ(t) = Q(t) and the coefficients

a02(ρ(t)), a01(ρ(t)) and b00(ρ(t)) are given by






å02(ρ(t)) = 532 + 7.3ρ(t) (34a)

å01(ρ(t)) = 52 + 0.72ρ(t) (34b)

b̊00(ρ(t)) = 1 (34c)

For model identification purposes, the output signal is sup-

posed to be corrupted by a two dimensional, zero-mean

and normally distributed, discrete-time noise signal, with a

Signal-to-Noise Ratio (SNR) defined as

SNR = 10log10

(
Pχ̊

Pe

)

(35)

where Pe and Pχ̊ are the average power of the noise and

deterministic output.

To provide representative results, Monte Carlo simulation

analysis for 50 runs are used to illustrate the performance of

the approach. Table I and II display the estimated parameters

when the additive noise is white and colored respectively. In

the colored case, the additive colored noise v(tk, xℓ) is done

by:

v(tk, xℓ) =
1

1− 1.2q−1
t + 0.4q−2

t

e(tk, xℓ). (36)

The parameters are estimated by the proposed approach

denoted as SRIVC and the LPV-SILS-PDE developed in [13]

and denoted as SILS (for simplified iterative least squares).

From both Tables, it can be noted that the estimates of the

proposed SRIVC method are unbiased with relatively small

standard deviations. As expected, the estimates delivered

by the SILS method are unbiased only when the output is

corrupted by a white noise.

VII. CONCLUSION

A refined instrumental variable algorithm has been pre-

sented to estimate linear parameter-varying partial derivative

equations. The implied continuous filtering operations are

rewritten under a discrete transfer function form. Based on a

numerical example, the proposed method delivered unbiased

estimated parameters whatever the noise structure while the

TABLE I

MC SIMULATION RESULTS, WHITE NOISE, SNR = 25dB

â002 â102 â001 â101 b̂000
method True value 532 7.3 52 0.72 1

SILS mean 534.2 7.263 51.85 0.7263 1.001
iter= 7 std 1.2 0.042 0.08 0.0035 0.001

SRIVC mean 533.4 7.321 51.98 0.7207 1.001
iter= 8 std 1.2 0.0419 0.08 0.0035 0.001

TABLE II

MC SIMULATION RESULTS, COLORED NOISE, SNR = 25dB

â002 â102 â001 â101 b̂000
method True value 532 7.3 52 0.72 1

SILS mean 392.6 9.7476 58.68 0.4313 0.937
iter= 7 std 4.9 0.1729 0.34 0.0148 0.003

SRIVC mean 530.8 7.2991 52.02 0.7184 0.999
iter= 8 std 5.3 0.1811 0.35 0.0154 0.004

iterative least squares method gave biased estimates when the

additive noise was colored. Future research investigates the

case where few sensors are available for the reconstruction

of the noise-free output.
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