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Abstract

The volatility of stock prices is difficult to explain within the confines of rational pric-

ing models. Changes in prices have become permanent at both the individual and the
aggregate level. Therefore, when keeping the hypothesis of a rational behavior of agents,
we need to give a new explanation to the price settlement of financial assets at any mo-
ment of time.
In a model based on an original mathematical framework, we introduce persistent time-
varying prices resulting from rational strategic interactions of agents. We demonstrate
that in a close to equilibrium market, actual prices give the best approximation of funda-
mental value; We also explain why, in some circumstances, rational behavior may lead to
the development of a bubble or the surge of a financial crisis.

Introduction: The two realms of financial economics

”The special sphere of finance within economics is the study of allocation and deployment of
economic resources, both spatially and across time, in an uncertain environment.”!

More specifically it can be stated that most of modern economics of financial markets covers
two main fields of research 2:

e The first one is dedicated to the modelization of underlying assets markets (stocks,
bonds, commodities);

e The second one is mainly concerned with the pricing of derivative assets (futures, op-
tions).

From a theoretical point of view, the economics of underlying assets markets tries to un-
derstand how equilibrium prices can be settled and, to some extent, how those prices can
evoluate over time; We will call M1 the class of economic models aiming at putting light on
that category of assets.

Aside of models belonging to M1, another realm of financial economics has been studying
the optimal way to estimate the right price of derivative assets. We will call M2 the class of

"Merton R. C., 1998, Applications of Option-Pricing Theory: Twenty-Five Years Later, The American
Economic Review

2See one example among so many of them: Bailey R. E., 2007, The Economics of Financial Markets,
Cambridge University Press
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models dedicated to the valuation of derivative assets. The best known elements of M2 are
the Black & Scholes (B & S) and the Cox Ross Rubinstein (CRR) models of option pricing.
There is absolutely no doubt that both M1 and M2 have known tremendous progress over
the last 50 years but some issues remain to be addressed. We stress them shortly hereafter:

e (Q1: The valuation of stocks in M1, which is based on present value models, does not
appear to be fully compatible with the basic assumptions of B & S or CRR pricing
models. To put it more clearly it can be said that:

- either markets are stable and a price change occurs only when a new information
appears (under the assumption of market efficiency) and modifies the expected value of
the asset;

- or they evolve continuously ? or almost continuously .

Although the two types of assumptions are not mathematically incompatible, from an
economic point of view either one considers that markets tend to be stable or that they
tend to change permanently. An ever changing stable equilibrium would sound as being
a strange concept.

e (J2: If we put attention on the most active markets, such as those of large caps, it may

be considered that the development of high frequency trading has deeply transformed
the way they work as they tend to become really close to theoretical continuous-time
markets, even if actual trades remain discrete.’
As a consequence the hypothesis of markets reaching a stable and persistent equilibrium
becomes more and more questionable. Therefore, the hypothesis of an ever changing
state of the market must be favored and incorporated in the basic assumptions of any
market model.

e (Q3: Most of the time, markets are driven by forces leading them close to equilibrium
prices but, in some special circumstances, markets appear to be dominated by uncon-
ventional forces and thus, they step aside from fixed points.

In this paper our intention is to set up a model of financial markets which is able to answer
to these yet unanswered questions in a unified framework. To put it shortly, we intend:

e first to explain asset price settlement by strategic behavior of agents, which includes
both optimization under constraint and anticipation;

e second to build a causal process relating aggregate outcomes to individual decisions ;

e third to show that most of the time, market dynamics leads to quite ordinary equilib-
rium paths but, sometimes, may diverge from them thus leading to the development of
bubbles or the surge of a crisis.

In section 1 we define the basic lines of our market model; In section 2 we give a set of
mathematical definitions which are necessary to understand the mathematical presentation
of the model in section 3; Sections 4 and 5 illustrate the core properties of the model.

3¢. g. under the assumption of underlying asset prices following a brownian motion

4e. ¢g. under the assumption of underlying asset prices following a recombinant binomial tree

5Just to give an example, on Wednesday July 13 2011, from 9 am to 5 pm, almost 10 thousands transactions
have occurred in Amsterdam for Royal Dutch Shell shares.
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1 Market model: Economic assumptions

The most important building block of our model is the following set of economic assumptions:

e The financial markets are fundamentally driven by what we call a market system (see
below our mathematical definition).

e The market system is a dynamic system; At every moment of time it changes because
of permanent revisions of agents’ behavior.

e Most of the time the market system is itself determined by ordinary economic funda-
mental forces (what we will call objective factors). Thus, most of the time, the market
system follows an equilibrium path. For instance, asset prices tend to be close to the
fundamental value of the asset.

e In some situations such as a crisis, the market system may be driven by some other
forces (what we call subjective factors).

e Because of permanently revised anticipations of interacting agents, the market system
is never stuck in a non evolving equilibrium. Thus, even in situations of stability, the
market never reaches an inert equilibrium. This is why, for example, asset prices are
permanently changing although the market appears to be globally stable.

We now turn to the core economic definition of our model which is the concept of market
system. A mathematical definition of this concept will be given in section 3.

1.1 Market system

A market system is a set of functions which determine the dynamics of the financial market.
These functions depend on parameters which may be objective or subjective (see definitions
below). The core of the model are the agents who make observations, who calculate, anticipate
and who act as buyers or sellers of financial assets. What makes the difference between our
model and usual microeconomic models relates at least to the two following points.

1.1.1 Individual behaviour

Although agents are supposed to be percfectly rational, in some circumstances they cannot
rely on ordinary economic calculus to make their decisions. Therefore they use other criteria
who do not belong to conventional optimisation tools. In other words we consider that
economic decision is not only determined by a kind of mechanical behaviour but also depends
of different other parameters.

As a main consequence, in a stable environment with negligible or low uncertainty, the market
almost works like any equilibrium market of general microeconomics; Thus general results of
microeconomics of financial markets remain valid. But, in a more turbulent environment, we
are able to give an explanation of the market dynamics out of ordinary equilibrium.

1.1.2 Aggregate behaviour

One of the most difficult tasks of social sciences is to relate the global outcomes to the
individual behaviours. A very widespread technique consists in assuming that a representative
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agent can summarize the behaviour of a large number of individual agents.

Although this technique appears to be convenient, it remains unsatisfactory as it leaves aside
the modelisation of aggregate outcome even if the properties of individual agents are precisely
known. In our model we are able to tell at any moment what the outcome of multiple agents
interactions will be.

1.2 Market dynamics and market outcomes

As a result of the dynamics of the underlying market system and at any moment of time we
can make some observations. We will call quantifiable properties the set of measures that we
can make; These quantifiable properties belong to the following (open) list: prices, traded
quantities, elasticities, bid ask spreads, number of orders, minimum and maximum prices,
and so on.

1.2.1 Equilibrium paths

On an equilibrium path, the observed prices of actual trades are close to fundamental values
which are determined by present value models; Thus actual prices gravitate around the true
price of the assets.

One theoretical gain of our model over more standard microeconomic one is the fact that we
are able to explain small variations around equilibrium prices, even if we keep the rational
expectation hypothesis. Small variations can be interpreted as the result of the unavoidable
persistence of subjective factors, even if those factors have normally a very small influence on
the outcome of the market.

1.2.2 Out of equilibrium paths

When uncertainty becomes too high the economic agents become unable to make their deci-
sions on the basis of a simple economic calculus. Therefore prices are no more determined by
the fundamental value of the asset; Different kinds of factors overwhelm objective parameters
of the market.

One theoretical gain of our model is our ability to give a rational explanation to the use of
subjective factors. Thus we can keep the hypothesis that individuals act rationally, even in
situations where the market diverges from equilibrium.

2 Mathematic preliminaries and definitions

This section is exclusively dedicated to a set of mathematical preliminaries and definitions
which have no direct economic meaning but which are necessary to develop some demonstra-
tions in the section 3.

Our main task is to give a mathematical definition of what most of the time precisely means
because we need to define a measure which makes it possible to compare situations in which
the market is driven by objective factors to situations where subjective factors become deter-
minant.



2.1 Definition of a measure u

In the sequel map is equivalent to function.
In our model, we need to use a measure in order to compare different sets or subsets. The
object of this subsection is to give a definition of the measure p that we will use.

Let S be a non-empty subset of the power set of X closed under the union of pairs of sets
and under complementary set with X belonging to S. The couple (X;S) is called a field of
sets or an algebra of sets. In other words (X;S) is an algebra of sets if :

1): X e&;
2): If A€ S then A€ S, where A = X\4;
3): If A, Be S then AuBEeS.

Let X be a set and F < 2%; F is a o-algebra if it verifies:
1): X eF;
2): If A€ F then A e F;
3): If (A;)ier is a countable family of elements of F then [ J; A; € F.
The set (X;F) is called measurable space. It is rather easy to prove the following:

Lemma 1. Let X be a set and let (S); be a countable family of algebras of sets, (resp. a
countable family of o-algebras) on X, then n;S; is an algebra of sets (resp. is a o-algebra).

Let X be a set and F < 2%; the algebra of sets generated, (vesp. the o-algebra generated) by
F is the intersection of all algebras of sets, (resp. of all o-algebras) containing F.

Let F be an algebra of sets (a o-algebra) over a set X. A function p from F to [0; +0]
is called a measure if it satisfies the following properties:

a): Null empty set: p(2) = 0;

b): Countable additivity (or o-additivity): For all countable collections {A4;};c; of pairwise
disjoint sets in F , we have N(Uie[ AZ-> = e B(Aq).

A measurable space (X; F) with a measure p is called a measure space; We denote it by:
(X5 F; ).
Let (X;F; ) be a measure space, a subset Y of X is negligible if there is a A € F such that
Y € A and u(A) = 0.
For Ae X If u(A) < 400 we say that A has a finite measure.

Let (X;F;pu) be a measure space, then the measure pu is called finite if pu(X) is a finite
real number; The measure p is called o-finite if X can be decomposed into a countable union
of measurable sets of finite measure.



2.2 Properties true almost everywhere

Let (X;F;u) be a measure space. For all z € X, let P(z) be a property of (X;F;u); this
property is true almost everywhere if the set {x € X} where this property is not true is neg-
ligible.

Let
t —  o(t)

be two functions.

The function f is neglible before the function g at a € I if there is a neighborhood W of

a and a function
e: W — V

t - €t)

such that for all t € W, f(t) = €(t).g(t), lim;—,q €(t) = 0 and lim;__,, g(t) # 0. We will denote
this by f = o(g).

We say that the function f is neglible before the function g almost everywhere on I < [0;1]
if there is a sequence (a), ay € I and a sequence of neighborhood (W, ) with I < (J,, Wq,
where f is negligible for all a; € I except on a set Y < I where there exists a measure p such
that Y is negligible for u. We denote this by f = 04.¢.(9).

A function f is equivalent to a function g, denoted by f ~ g at a € I if there is a neighbor-
hood W of a and a function e defined as above such that for all t e W, f(t) = (1 + €(t)).g(t),
limy_,, €(t) = 0. This relation is an equivalent relation. It is easy to see that (f ~ g) <=
(f—g=o0(9) < (g— f = o(f)). In the same way as above we say that a function f is
equivalent to a function g almost everywhere on I < [0;1]; we will denote this relation as
follows: f ~qe. g.

Naturally we can extend these definitions to vector functions defined in a same basis; It is
enough to check the conditions for all coordinates (f1(t), fa(t),... fx(t)), where k is the di-
mension of the vector space.

More generally let H be a space of vectors with 2 basis (e1, e2,...e,) and (a1, a9, ... ay);
Two vectors depending of a variable ¢, (for example the time) are equivalent at ¢t : v(t) ~
w(t) < Z;”:l piej ~ Z?:1 aja; if and only if 5; ~ «; and e; ~ aj, (we drop the variable ¢
to avoid burdening the notations).

2.3 Piecewise effective functions

An algorithm is a finite sequence of finite instructions.

A real number is called effectif, if there exists an algorithm which can produce its decimal
expansion. By extension a complex number is effectif if there exists an algorithm which can
produce the decimal expansion of both the real part and the imaginary part. We can also
extend these defintions to a vector function.



Let f : X — Y be a function such that X is a set of effective elements (real, complex,
vectors, ...). This function f is effective if Vz € X, f(z) is effective i. e. the ordered pair
(z; f(2)) is an ordered pair of effective numbers for all z of the domain of f. Notice that we
can combine this definition with the definition of almost everywhere to get effective function
almost everywhere.

Addition, multiplication and composition of effective functions are effective functions. Morevover
addition, multiplication, ... of effective reals, complexes, vectors are effective reals, complexes,
vectors. So the set of real numbers, (complex numbers) forms a field denoted by R.y, (Cey).
The zero function will be denoted by O : for all = of the domain of O, O(z) = 0.

A function f is piecewise effective on [a,b] if there exists a subdivision (a;) of [a,b] such
that the restriction of f to each ]a;,a;+1[ can be prolonged by a function effective on the
corresponding closed set [a;, a;11]

3 Single Market Model: Axiomatic and First Results

From an economic point of view, one of our basic assumptions is that the market is driven by
fundamental forces. We call market system the set of factors who determine the dynamics of
the market.

In the case of financial markets it appears that the model must be built in three steps:

e We consider first a single market system which will be defined as the market for a
singular bond, a singular share or any other financial security listed on a market;

e Second, a financial market compartiment will be defined as the union of several single
markets who share something in common,;

e Ultimately, The financial market may be considered as the union of all single markets.

In the following part of the paper we concentrate exclusively on the definition of a single
market system, although we give some short views on the possibilities of generalizing the
model.

A single market system-SMS- is an element of the global financial markets that we modelize
independently of the other elements. For instance, we will limit our analysis to the market of
one share traded on an Exchange. Thus me make the assumption that, in a first approach,
this single market may be studied independently of the market of other shares traded on the
same Exchange or on another Exchange.

This means that every single market is homogeneous. We assume that every market system
is a fully determined system, although we are not able to access to a perfect knowledge about
it.

The fundamental single market system is defined as follows: At any time ¢ and for any single
market system there exists a set of intrinsic characteristics which determine this single market
system. From this fundamental market system we can deduce for instance the fundamental
value of one share.

We will see more details about these values later. We now turn economic assumptions into
mathematical axioms.

Axiom 1. The fundamental single market system exists.



It means that some underlying fundamental forces determine the market system dynamics;
It does not mean however that the market spontaneously reaches a stable equilibrium or a
stable state.

Axiom 2. A single market system is completely defined at the time t by a (state) unitary
vector ms(t) or ms belonging to a Hilbert space on C. This space will be denoted by H.

We need to make calculations: analyticals, algebraics, vectors, .... So we need an un-
derlying space which allows us to make these calculations. An Hilbert space appears to be a
good candidate for this purpose.

Axiom 3. To each quantifiable property of a market system (price, quantities,....) M cor-
responds a linear operator M which acts on H; The only possible outcomes of measurement
(evaluation, reading) of the quantifiable property M are eigenvalues of M.

Remark 1. The system of vectors ms(t), with t € [0;1] (ms for short) represents a function
called single market system function.

Whithout losing generality we can suppose that any measurement of a quantifiable property is
a positive real number, consequently the eigenvalues 0f]\7 exist and must be real and positive.
Hence M is a definite positive hermitian operator.

Consequently, the measurement (evaluation or reading) of the quantifiable property M is in-
ternal to the market theory.

Axiom 3 implies that there is a fundamental determination of the evolution of the market.
However, the observation of the system reveals just a part of the dynamics of the market
system.

Let M be a quantifiable property of a market system and M be the linear operator asso-
ciated with it. The Eigenvectors of M: (e€;)ie(1,2,..n} are an orthonormal basis of H.
Thus, ms = Y, fie;.

Axiom 4. Let a market system be described as follows : ms = Y, B;e;.
Then, the probability that the result of the measurement of the size M at the time t be \; is

k.
Ziiﬁ |B:|2, where ky, is the number of eigenvectors, (linearly independant) associated with the
k.
eigenvalue \;. In other words, Pr (Measurement of M = )\;) = 3.2 |Bi|?.

A parameter of the single market system denoted by p is a function capable of changing
a single market system.
An objective parameter (resp. subjective parameter) is a parameter of a SMS independent of
any human activity (resp. dependent of the human activities).
We will represent these parameters by the following functions:

o: Ic[01] — V
t —  o(t)



the function o is an effective function and it belongs to the piecewise class C!

s: Ic[0;1] — V
t —  s(t)

the function s is not an effective function and it is piecewise continuous.
The set V is a linear space with a finite dimension, and [ is the union of disjoint segments.

Theorem 1. The set of parameters of the single market system, objective parameters and sub-
jective parameters equipped with zero function form linear spaces on Cey denoted by P(I; V),
O(I;V) and S(I; V). Moreover :

e P(L;V)=0(LV)®S(I;V).

Proof. The sum and the product by an effective complex number of objective parameters
(effective functions) is an objective parameter (effective function) and the sum and the prod-
uct by a complex number of subjective parameters (not effective functions) is a subjective
parameter (not effective function) ; The sum and the product by an effective complex number
of functions in piecewise class C! belong to piecewise class C'. So these sets form linear
spaces, idem for piecewise continuous function.

Moreover we have: O(I;V); S(I;V) < P(I; V). Since an objective parameter is not subjec-
tive and subjective parameter is not objective we have: O(I; V) n S(I; V) = {O}.

Let p € P(I;V), p has an objective component (effective component) and a subjective com-
ponent (either non effective component or @), consequently p = o + s where o € O(I; V) and
seS(I; V). O

Let (t)kefo,1,2,...})= kN be a strictly monotone countable sequence of elements of [0; 1] such
that tg = 0. Let I = (J;epcxlt21;t2041]. Define on I an algebra of sets S in the following
way:

e JJeS§;

e For all [ € L, all t1;tg € [tay;ta41] then [t15t2] € S;

o if [tl;tg] € S then [tl;tz] € S;
(] if[l,IQ € S then Il U IQ eS.

Denote by F = o(S) the o-algebra generated by S.
Let

be a monotone map, (I. e. t; <t = F(t;) < F(t2)). Define a map u: S — [0;+00] in
the following way:

a): For (Ij)jeJ = ([tj§tj+1])je.] with [tj;tj—&-l] € S such that for all jl,jg € J, Ijl N Ijg = @
then

p(Jltsst41]) = X, Ftin) — F(t); (1)

jedJ jedJ



b):
() = 0. (2)

Lemma 2. The map p defines a positive o-finite measure on (I;S).

Proof. We have to show that pu([t;;t;41]) exists.
Let t1,ty € [tor;itorsa]. Hence [toyitarsr] = [torita] v [fiita] U [fa;top4a]. So [t1ita] =
[tarsta] U [t2stovs1] U (Uiepier[teistaisa].  Consequently: p([tistivi]) = p([tarita])

,u([tg;tQ_lq_l]) + ZleL,l;él’ M([t2.l;t2.l+1]). Remark that if [tl;tg], [tg;t4] € S with [tl;tg]
[tg;t4] = @ then [tl;tg] = [tg;t4] and [tg;t4] = [tl;tQ], SO [tl;tQ] ) [tg;t4] = I and [tl;tg]
[t3;ta] = . Consequently: p([t1;t2] v [ts3ta]) = p([t1s t2]) + p([ts; ta]).

Moreover F' being monotone we have: F(t;y1) — F(t;) = 0. This measure is o-finite since
I = Ujercxlt2;t2.041] which is a countable union and p([t2,;t241]) < +00. forallle L O

> D> +

Proposition 1. Let S be an algebra of sets defined on I and p be the measure on S defined
above. There is a unique measure p' on o(S) = F which is a unique extension of u on S, (i.

e. g = H).

Proof. From lemma 2, the measure u is positive; moreover it is o-finite, by applying HAHN
extension theorem, ([13]) we have the result. O

In the sequel without losing generality we denote ' by .

Axiom 5. For all parameters of the single market system p; = o; + s;, we have s; = 04.¢.(0;)
for the measure defined above.

We consider that, most of the time, the market system is mainly or even fully determined
by the objective parameters ; But, in some circumstances such as financial crisis, subjective
parameters may take precedence over objective ones.

3.1 Market system representation

Let (pi)ief1,2,..k}, be a family of parameters and (0;)ie(1,2,..k) (tesp. (Si)icf1,2,..k)) be a family
of objective parameters (resp. subjective parameters). We can redefine a market system as a
function f in the following way:

o: [0;1] — V* — H
t = p=(pi),...,ox(t)) —  f((pr(D),....pk(t)) = f(P;?)

The value of f((01(t),...,0r(t)) = f(o;t) is the objective fundamental market system and
the value f(s1(t),...,s1(t)) = f(s;t) is the subjective fundamental market system.

An important remark: When speaking of a subjective fundamental market system, we do not
refer to any form of irrationality. It only means that in the case of an objective value, an
optimisation calculus can be operated; In the case of a subjective fundamental market system
the imperfectness of information makes it impossible to execute such a calculus; Then the
agents must rely on other criteria to make their decisions.

Remark 2. To each time t fixved, when there is no ambiguity we can write ms = f(p), (idem
for ms, = f(0) and mss = f(s)), hence we can see a single market system as a vector or
a function. Since these vectors are unitary, a single market system is described on a sphere
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called market sphere.
Let M be a quantifiable property at the timet € I. We can associate 3 linear operators: My,
Mps, and My, .

Proposition 2. By using above notations we have: f(p;t) ~q.e. f(0;t).

Proof. Let a € I such that s; = 0(0;) in a neighborhood of a for all ¢ € {1,2,...k} and
fo(t) = f(p1(t), ..., pi(t)). We have:

: ) FE1 et 1o Fo1() 481 (Damon () (D) _
lim—q ;(( o h(r?t*(c)l Tloi. ,o(ﬁgt»()—)hm;?a() f((o)1)<t),...,oi<t>> =

. t)+e1(t)o ,-0k () +€1(t)og (T o1(a),...,ox(a

lim¢q e ey Y = ey = L= () ~ f(o).

Let b € I such that for all neighborhood W of b, f(p;t) # f(o;t) for t € W. It is equivalent

to limy_,p % # 1. Hence there is i € {1,2,3,...k} such that there is no ¢;, with

si(t) = €i(t)oi(t) and lim;_,p €;(t) = 0. Consequently, from axiom 5 we have: be Y € A c ]
such that p(A4) = 0.
So we can conclude that: f(p;t) ~q.. f(0;t). O

Theorem 2 and Corollary 1 will give some important illustrations of Proposition 2.

Axiom 6. If the reading of a quantifiable M gives the eignenvalue \; 0f]\7 then the state of
the single market system instantly after the observation of M is

fau(p) = < 3)
WP R um 2 o

Idem for subjective, (resp. objective) single market system.

Remark 3. This axiom says that if the reading of a quantifiable is the eigenvalue \; then
instantly the market system is in the vector space spanned the eigenvectors associated to A;.
It is a projection on this vector space.

This axiom means that, on the one hand, the economic agents behavior deter-
mines the market outcomes and that, on the other hand, the state of the market
system has an influence on the agents’ decisions.

In standard microeconomic models, demand is a monotonous decreasing function of prices
(without asymptote) and offer is a monotonous growing function of prices (without asymp-
tote). The equilibrium price is the intersection between the two functions. ¢ Thus the price
is mechanically determined, it is not the result of a strategic behavior.

In our model, the settlement of prices in time ¢ depends of anticipations in time t — 1.
More precisely the N agents e; (i = 1...n) make anticipations denoted \; which are the
eigenvalues of the linear operator associated to a quantifiable (for instance the asset price).
In time ¢ one of the anticipations becomes true; Then the market system curve adjusts almost
instantly to this outcome. From a mathematical point of view, this value is a projection on
the space of \;.

Then, once the new state of the market in ¢ is known, the new set of information makes it
possible for agents to develop new anticipations for time ¢t + 1.

SMoreover, the market is supposed to be cleared only when the equilibrium price has been settled
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Remark: At the limit, in a situation of absolutely perfect information and under the
assumption of perfect rationality of agents, all the \; may be identical.

This axiom is not artificial: for example suppose you're a bookmaker, you know that a
great champion runs in the next race, your prognostic is that it will win the race with a
probability of 90%. A few minutes before departure you learn that this great champion just
made a slight sprain, then your probability that this champion wins the race passes instantly
from 90% to nearly 0%.

Theorem 2. Let J = [t1;t2] I such that p(]t1;te]) # 0. Let M be a quantifiable property
at the time t €]t1;ta], let My,s, My, be the linear operators associate with M. If that the
etgenvalues of My,s are Ay > Ao = A3 = ... \p_1 > A\, and the eigenvalues of M,,, are

H1 > p2 = p3 = ... fin—1 > U then there is a “small” € such that |\, — ui| < € for all
i€ {l,2,3,...,n}.

Proof. Let (ei)ie(1,2,..ny and (@;)ie(1,2,..n} be the basis of orthonormal eigenvectors associated
to (Nji)ie(1,2,..ny and (Kji)ie(1 2, .n} Tespectively.

By applying axiom 5 and proposition 2 we have f(p;t’) ~ f(o;t') for all ¢/ € J, since
p([tiit2]) # 0. For t €]tistz[ we have: f(p) ~ f(o) < X Bje; ~ X1 aja; —
ms ~ mo ~ ZZ 1 Biei.

If Mms = Mmo, it is over.

Assume that Mms # Mmo

ms(k) = (M s)fims = e 1)\kﬁz€z = )\k[51€1 + D gﬁz[ )re;] = [5161 + 0([r]k)]

A1
mo(k) = (Mmo)*mo = 31y i Bie; = pf[Brer + 7 Qﬁl[&]k il = pf[Brer + O([u*]k)]
Let’s ms(k) = —Mme)*ms 4 o) = _(Mmo)*mo_
et's ms(k) = [T peyime] ’?O() (3 Tomo)Fmoll
— Ne[Bre1+O([£E]F
We have: ms(k) = et ser Ghen +00; we have also : mo(k) ~ 5L

INBre+O ([0~ 121l

when k — +00. Consequently when k& — +00 we have: T/n—Jl?) ~ Tm, hence Mms)kms &~
|(Myns)*ms||.(Mimo)*mo
[[(Mmo)kmol|

since Ay, p1,t > 1 and % —> 1 when k —> +00 we have:

e

: it is equivalent, when k — +00 to AfBre; ~ t.u¥Bre; So A\¥ ~ t.u¥. So

From remark 1: Mms, Mmo are invertible and when ¢ — ¢: e; = q; for all i € {1, 2 ks
moreover if e; are eigenvectors of Mms and Mmo then e; are also eigenvectors of M, and
ML,

Choose a € R such that a < A\, @ < ptn, 0 < Ay —a < \; —aand 0 < p, — @ < p; — « for
allie{1,2,...,n—1}.

Let’s Mms —a.l, Mmo — a.; these two matrices have as eigenvalues A\; — o, p; — o and the
eigenvectors associates with them are e;, i € {1,2,...,n}. These two matrices are invertible.
From this: (A;—a)™L, (ui—a)~!, i€ {1,2,...,n} are eigenvalues of M} and M} associated
to the eigenvectors e;. By applying the same argumentation as above we have: ()\ —a)l~
(pr, — @)1, Consequently:

An = fln |

Let us (M ) = Mms — Mmo; since these two matrices are hermitian and Mms # Mmo then
0 (M ) is hermitian; hence §(M ) is diagonalizable and its eigenvalues are real.
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From inequality of WEYL [4] we have:

~ ~ ~ ~ ~

1i(Mmo) 4+ Amin(6(M)) < Xi(Mins) < p1i(Mimo) + Amax(6(M)) (4)

We have also: A\ ~ p; and A, ~ i, s0 Amin(é(ﬂ)) ~ 0 and Amax(é(ﬂ)) ~ 0. From this we
can conclude that: For all i € {1,2,3,...,n}:

)
and there is €, € "small” such that : |A\; — p;| < eforall i e {1,2,3,...,n}. O

We now give an important result:

Corollary 1. The market is almost everywhere a ”good” approximation of the fundamental
value.

For instance the market price of a share is almost everywhere a good approximation of the
true value of this share.

Proof. Directly from Theorem above. O

4 Bubbles and crisis

A single system market bubble is a period market time B < I such that for all t € B s; # 0(0;)
for some i € {1,2,3,...k}.

A single system market crisis is a period market time C' < I such that for all ¢t € C
0; = o(s;) for all i € {1,2,3,...k}.

Remark 4. These definitions are not in contradiction with the axiom 5, they cause just that
the periods of time B and C are negligible.

Proposition 3. Let C be a period of market time crisis, then f(p;t) ~ f(s;t).

Proof. The proof is similar than proposition 2. ]

5 Example

Let ms be a market system, and let {e;,i € {1,2,...n}} be a set of expert agents who have
an expertise on ms. We will suppose that:

e any e; has the same valuation domain
This means that every agent has the same access to the same information available
about the market

e all agents are pairwise independent

13



The set of expert agents {e;,7 € {1,2,...n}} will be represented by a set of vectors with the
same name. Since all e; have the same valuation domaine (i. e. the same information about
the market) these vectors are unitary; since all agents are pairwise independent these vectors
are orthogonal. So these vectors stand as an orthonormal basis B. Consequently

ms = Y Bie;
5

Their estimation of a quantifiable property M of the market system are eigenvalues. Conse-
quently B is a basis of eigenvectors. Hence let e; be an observer and let A; be its estimation
of a quantifiable property M of the market system; Then the probability that the result of
the measurement of the quantifiable property M at the time ¢ will be X; is Y1 |32

6 Conclusion

The evolution of financial markets is a challenge for mathematical economics. The multi-
plication of trades, the very quick evolution of prices, the individual know-how of rational
economic agents acting in situation of more or less perfect knowledge, the permanent flow of
financial and economic information must be at the heart of economic models. It appears that
widespread microeconomic models of financial markets and usual asset pricing models are
not fully able to give an accurate representation of financial reality. This is why we propose
a mathematical framework which is able to integrate all those dimensions of reality stated
above.

The next step will be to simulate numerically the working of a market system such as it is
introduced for example in section 5. We do believe that it may be fitted so as to be close to
actual financial markets.
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