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Abstract 

This paper investigates the potential of fast flood discharge measurements conducted with 
a mobile LSPIV device. LSPIV discharge measurements were performed during two 
hydrological events on the Arc River, a gravel-bed river in the French Alps: a flood greater 
than the 10 year return period flood in May, 2008, and a reservoir flushing release in June, 
2009. The mobile LSPIV device consists of a telescopic mast with a remotely controlled 
platform equipped with a video camera. The digital video camera acquired sequences of 
images of the surface flow velocities. Ground Reference Points (GRPs) were positioned 
using a total station, for further geometrical correction of the images. During the flood 
peak, surface flow velocities up to 7 m/s and large floating objects prevented any kind of 
intrusive flow measurements. For the computation of discharge, the velocity coefficient 
was derived from available vertical velocity profiles measured by current meter. The 
obtained value range (0.72 – 0.79) is consistent with previous observations at this site and 
smaller than the usual default value (0.85) or values observed for deeper river sections 
(0.90 typically). Practical recommendations are drawn. Estimating stream discharge in 
high flow conditions from LSPIV measurements entails a complex measurement process 
since many parameters (water level, surface velocities, bathymetry, velocity coefficient, 
etc.) are affected by uncertainties and can change during the experiment. Sensitivity tests, 
comparisons and theoretical considerations are reported to assess the dominant sources 
of error in such measurements. The multiplicative error induced by the velocity coefficient 
was confirmed to be a major source of error compared with estimated errors due to water 
level uncertainty, free-surface deformations, number of image pairs, absence or presence 
of artificial tracers, and cross-section bathymetry profiles. All these errors are estimated to 
range from 1%-5% whereas the velocity coefficient variability may be 10%-15% according 
to the site and the flow characteristics. The analysis of 36 LSPIV sequences during both 
events allowed the assessment of the flood discharges with an overall uncertainty less 
than 10%. A simple hydraulic law based on the geometry of the three sills of the 
Pontamafrey gauging station was proposed instead of the existing curve that is fitted on 
available gauging data. The high flow LSPIV discharge measurements indicated that this 
new curve is more accurate for high discharges since they are evenly distributed in a 
±10% interval around it. These results demonstrate the interest of the remote stream 
gauging techniques together with hydraulic analysis for improving stage-discharge 
relationships and reducing uncertainties associated with fast flood discharges. 
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1    Introduction 

All around the world, hydrometry teams face difficulties in measuring flood discharge. 
Conventional methods and instruments for stream gauging measurement involve  
deployment in the river with a boat or sensors. Remote methods are safer and easier 
options for measuring flood discharge. In recent years, radar (Costa et al., 2006) and 
image-based (Fujita et al., 1998, Muste et al., 2009) velocity measurements have been 
used in a range of flow conditions. As one of the remote image-based techniques, the 
Large Scale Particle Image Velocimetry (LSPIV) was tested against two-dimensional 
depth-averaged calculations (Jodeau et al., 2008), flow rate calculated with stage-
discharge curve (Hauet et al., 2008b), or ADCP measurements (Le Coz et al., 2010). 

In this article, the objective is to assess the uncertainty in the measurement of a flood 
discharge conducted with a mobile LSPIV system at a given river site. This kind of device 
documented by Kim et al. (2008) can be used to study ungauged rivers or several points 
throughout a river catchment during a hydrological event. Estimating stream discharge in 
high flow conditions from LSPIV measurements entails a complex measurement process 
since many parameters (water level, surface velocities, bathymetry, velocity coefficient, 
etc.) are affected by uncertainties and can change during the experiment. We explore in 
this study some specific constraints and errors for mobile LSPIV measurements: (i) 
Velocity coefficient; (ii) Water level and orthorectification (iii) Waves and free-surface 
deformation; (iv) Image pair sampling; (iii) Use of artificial tracers; (v) Cross-section 
bathymetry. 

This study investigates two hydrological events on the Arc River, a gravel bed river located 
in the French Alps: (1) a flood greater than a 10-year return period flood in May, 2008, and 
(2) a reservoir flushing release in June, 2009. The May 2008 major flood caused some 
damage and residents had to be evacuated. 

This set of field data improves the knowledge and the uncertainty estimation of flood 
discharge measurement with a mobile LSPIV system. From sensitivity tests and the 
comparison of LSPIV discharges with concurrent discharge measurement, main 
uncertainty sources are evaluated, and practical recommendations are drawn. In 
particular, the potential of the mobile LSPIV stream gauging technique for improving the 
highest or extrapolated part of stage-discharge curves is demonstrated. 

2    Material and methods 

2.1    LSPIV technique applied to discharge measurements 

Since the seminal work of Fujita et al. (1998), the application of the Particle Image 
Velocimetry (PIV) technique (Adrian, 1991) to large-scale parts of the free-surface of flume 
and field open-channel flows has been disseminated widely and successfully in the 
hydraulic research and engineering community (Muste et al. 2010, this issue). The Large-
Scale PIV (LSPIV) entails five steps : illumination, seeding, recording, ortho-rectification 
and processing (cf. e.g. Muste et al. 2009 for a detailed review of the technique). 
 
The discharge through a given bathymetry profile located within a time-averaged LSPIV 
surface velocity field may be computed following the standard velocity-area method for 
surface float measurements (ISO 748, 2007). The bathymetry profile needs to be 
measured using conventional methods before or after the flood. If morphological changes 
are likely to occur, it is better to measure it both before and after the flood, or even during 
the flood. For example, some remote bathymetry measurements using a Ground 
Penetrating Radar were tested by Costa et al. (2006). Depth-averaged velocities at each 
node of the bathymetry transect need to be computed through i) interpolation or 
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extrapolation of the surrounding LSPIV surface velocities and ii) multiplication by a velocity 
coefficient accounting for the vertical velocity distribution (Le Coz et al., 2010). 

2.2    Mobile LSPIV system 

The mobile LSPIV system consists of a digital video camera (Canon MV750i) set either on 
a conventional tripod, or on a mobile telescopic mast (Fireco components) whose height 
can be set from 2 to 10 m. The camera was remotely controlled from the ground, in order 
to adjust view angles. Pictures can be acquired on electromagnetic tape (mini-DV) or 
directly with a laptop connected via an IEEE 1394 interface. Image resolution was 720 x 
576, acquisition time is about 2 minutes per sequence, at a rate of 25 frames per second. 

For each test, several GRPs were positioned along both banks of the river. White and red 
50 cm by 50 cm square targets were used to identify the GRP in the sequences. For the 
cross section topography, the GRP coordinate measurements, and all water level 
measurements, a total station (Leica TC305) and a DGPS system (Leica GPS1200) were 
used following standard protocols. Throughout this study, the elevation is expressed in 
meters above sea level, in the French NGF metric system (Nivellement Général de la 
France). 

The water colour was very dark due to very high concentrations of fine suspended 
sediment, greater than ~10 g/L. White artificial tracers contrasting in colour with the water 
free-surface were used to improve the detection of flow movement. Such tracers were 
Ecofoam chips, a biodegradable, water soluble foam filled material created from wheat. 
The chips create visible patterns on the water surface and can improve the quality of 
calculations by the LSPIV algorithm. 

2.3    Sensitive parameters and associated errors 

Estimating stream discharge in high flow conditions from LSPIV measurements entails a 
complex measurement process. Many measured or estimated parameters are affected by 
uncertainties and may show a significant variability in space and time. The sources of error 
in LSPIV measurements have been described (cf. e.g. Muste et al., 2009, Kim et al., 
2008). Hauet et al. (2008a) also provided a useful sensitivity analysis of LSPIV error 
sources using a numerical simulator. However, further experimental tests are still required 
to assess the quality of LSPIV discharges, and to prepare the building of a complete 
uncertainty analysis methodology. 

The present study case aims at exploring the potential error sources in flood discharge 
measurements using a mobile LSPIV system (Kim et al., 2008). Some of these error 
sources are common to all LSPIV measurements, such as the number of image pairs 
considered to establish the time-averaged velocity field, or the mean value and variability 
of the site-specific velocity coefficient (Jodeau et al., 2008, Le Coz et al., 2010). In a LSPIV 
discharge measurement conducted during a flood at a given site with a mobile system, 
specific error sources arise from technical constraints and the nature of the flow. In 
particular, the choice of the image view point and the topographic measurements of the 
GRP, the water levels and the cross-sectional bathymetry profiles are usually difficult in 
flood conditions. 

During the LSPIV and flow measurement process, if the water level is underestimated, 
horizontal distances are exaggerated (Fig.1), hence velocities will be overestimated. 
However, the wetted area is also affected and the discharge result is reduced. Inversely, 
when the water level is overestimated, velocities decrease and the wetted area increases. 
Due to opposite effects of the water level error on the velocity and wetted area 
computations, the final discharge result could be compensated but false. 
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(cf. Fig.8). The bathymetry was measured in June 2009 because wading across the Arc 
river is rarely possible and using a boat is impossible for safety reasons. The T2 cross 
section was used preferentially for LSPIV discharge computation because it is centred in 
the orthorectified images. A sensivity test with T1 and T3 is reported in section 4.3. 

3.3    Pontamafrey gauging station (EDF) 

The Pontamafrey gauging station (Fig.2b) operated by EDF yields the reference discharge 
measurements in the Lower Arc River. Water level is monitored by a pneumatic pressure 
gauge (Hydrologic). The gauging station is located upstream of a concrete sill which 
provides hydraulic control. Because the crest of the sill was refurbished in 2006, only a 
limited number of discharge measurements (so-called 'gaugings') are available to 
document the stage-discharge relationship (so-called 'rating curve'). 

Gaugings may be conducted either in the vicinity of the gauging station or at the LSPIV 
site located 7 km downstream, as no water input nor output occurs between both sites. To 
compare discharges measured at the LSPIV site with the discharges measured at 
Pontamafrey gauging station, the propagation time is estimated based on the mean 
gauged velocity. Propagation time usually ranges between 30 min and 1 hour. Discharge 
measurements are performed using current meters (electromagnetic Nautilus, Ott) and 
profilers (acoustic Streampro, RD Instruments). Between 10 and 80 m³/s, discharge data 
are missing, since the only available measurements were conducted with a Streampro and 
were discarded due to acoustic problems because of too high sediment concentrations. 

During the 2008 flood rise and peak, intrusive hydrometric techniques were impossible to 
deploy due to high flow velocities and floating debris. During the flood fall, EDF hydrometry 
staff managed to deploy a van-mounted torpedo mechanical current-meter (80 kg, Ott 
C31, plastic propeller) from a bridge located 500 m downstream of the LSPIV site, along a 
wider section of the river, just downstream of the junction of the Arc River and the Glandon 
Torrent (Fig.2b). The contribution of this torrent during the flood was estimated to be less 
than 20 m³/s, roughly. The total gauged discharge, 380 m³/s, was the only gauged 
discharge above 140 m³/s. 

After the refurbishment of the sill in 2006, the cross-section may be represented as three 
sills side by side (Fig.4b). EDF established a rating curve (Fig.4a) by regressing two 
conventional power laws against available gaugings, writing Q=a(H-H0)

b, with Q, the 
discharge; H, the water depth, H0 a reference water depth; and a and b, two calibration 
coefficients; the first power law is a sill formula (b=1.5) for the first sill of length L1; the 
second power law is calibrated against available gaugings. The hydraulic control exerted 
by the sill supports the relevance of such a power law, but for the 2008 flood discharges, a 
system of three sills side by side must be considered. A simple formulation for the rating 
curve then writes: 

Q=C�2g[L1�H− Δz 0�
3/2
+L2�H− Δz 0− Δz 1�

3/2
+L3�H− Δz 0− Δz1− Δz 2�

3/2]   (1) 

with C a discharge coefficient (C=0.5); g, the acceleration of gravity;  L1=12.0 m, L2=21.1 
m, and L3=14.5 m, the lengths of the three sills, ∆z0=-0.12 m, the staff gauge zero value; 
∆z1=0.50 m, the level difference between the first and second sills; and ∆z2=0.50 m, the 
level difference between the second and the third sills. As can be observed in Fig.4a, Eq.1  
yields very similar results to the rating curve established by EDF. Only for high water 
depths (over 2.5m), Eq.1 yields lower discharges compared to the EDF rating curve. The 
limits of Eq.1 are that the flow is not perfectly straight upstream of the sill (curvature of the 
channel at this location), the sills are not exactly horizontal and the third sill is partly 
protected by a spit 30 m ahead of the sill. 
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(a) (b) 
Fig.5 Investigated hydrological events (a, 2008 flood and b, 2009 flush), LSPIV sequence times 
(red stars) and  gauging-van measurement times (gray vertical rectangles). Water level records at
Pontamafrey gauging station and at the LSPIV site are shown. 

4    Results 

4.1    Vertical velocity profiles 

The velocity profiles measured during the flushing event using a torpedo current meter are 
presented in Fig.6. Measurements were performed at z=0.2h, 0.4h, 0.6h, and 0.8h, and for 
nine profiles at z=0.9h (solid circles in Fig.6). It appeared that data points were lacking 
especially close to the bed. Velocity profiles were completed adding virtual points (empty 
circles in Fig.6) at the surface (assuming a velocity at the surface equal to the velocity 
measured at the closest point from the surface) and near the bed (assuming a logarithmic 
profile close to the bed). The depth-averaged velocity um was computed for each profile 
using a linear interpolation of velocities. As observed previously by Jodeau et al. (2008) on 
the same site, the velocity profiles are particularly flat, which yields rather small values for 
the velocity coefficient α. The mean value from the experimental profiles equals 0.76 with a 
standard deviation equal to 0.05. 

Dimensionless theoretical profiles were fitted to the data following Le Coz et al. (2010): a 
logarithmic profile fitted over the water depth h (dashed line) and truncated at 0.7h 
assuming a constant velocity over 0.7h. The best fit was obtained for a very high 
roughness height (ks=1m) as small values were observed for the velocity coefficient α This 
relatively large value for the roughness height may be explained by the contraction of the 
flow because of the bridge and also because of bedload transport (the mean 
dimensionless bed shear stress was estimated as θm=0.2, that is four times its critical 
value for the inception of motion). Camenen et al. (2006) or Recking et al. (2008) showed 
that the roughness height increases very fast as soon as bedload transport occurs. An 
estimation of the velocity coefficient may be obtained from the fitted theoretical profiles: 
using the logarithmic law, α=0.72; using the logarithmic law truncated at z=0.7h, α=0.79. 
These values border the estimation obtained directly from the experimental profiles. For 
the LSPIV calculation, the value α=0.76 �will be used. The error in the discharge 
estimation due to the estimation of the velocity coefficient is thus ~7% The uncertainty in 
the value of α may be larger if the LSPIV discharge computation has to be performed for 
other flow conditions, for instance at other locations in the river reach or for other 
discharge values. 

Impossible d’afficher l’image.

Impossible d’afficher l’image.
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discharge and the sill based curve were calculated. Fig.7 presents examples of time-
averaged LSPIV surface velocity fields obtained with 2 LSPIV sequences. 

The comparison of LSPIV discharge measurements with concurrent van-mounted torpedo 
measurements gives a valuable indication of the LSPIV discharge reliability and accuracy. 
However, LSPIV measurements lasted a few minutes whereas van measurements lasted 
1 hour during the flush event and 2 hours during the flood event, approximately. The times 
indicated in Tab.1 and Tab.2 correspond to the beginning of each van measurement. 
Therefore, the flush LSPIV sequence (with addition of artificial tracers) following each van 
measurement must be considered, assuming that the instantaneous LSPIV discharge is 
representative of the 1-hour time-averaged van discharge. The deviations to van1 to van4 
discharge values are 0%, -16%, +7%, -2%, respectively. It must be considered that the 
van2 discharge was measured during a period of time when the hydrograph was fastly 
falling and rising (cf. Fig.5b), which explains the large deviation. The comparison to the 
van5 discharge measured during the flood is more difficult, because a roughly estimated 
value of 20 m³/s accounting for the Glandon Torrent contribution must be withdrawn from 
the 380 m³/s gauged discharge. This is a minimum estimate of the Glandon discharge, 
which might have been greater in reality. The LSPIV discharge measurements at 8:45 
(flood10) and 11:03 (flood11) are almost constant, with an average value of 330 m³/s. The 
resulting discharge deviation is -8%. From these comparisons, an average ±8% deviation 
between both techniques may be retained. As it is the usually recognized level of 
uncertainty for such velocity-area measurements (cf. ISO 748, 2002), it can be regarded 
as a maximum estimate of the LSPIV discharge uncertainty. 
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Tab.1 LSPIV sequences and gauging van measurements during the flushing event. LSPIV 
sequences with visible artificial tracers are indicated in gray boxes. The discharge deviation (%) is 
computed with the reference discharge yielded by the Pontamafrey gauging station (rating curve). 

Name Time 
(UT+1) 

Water level 
(m NGF) 

Q 
(m³/s) 

Q deviation 
(%) 

from EDF 
curve 

Q deviation 
(%) 

from sill based 
curve 

Mean 
velocity 
(m/s) 

Wetted area
(m²) 

flush1 
2009/06/09 

09:05 446.78 
69 8.1 2.0 1.38 

50 
71 11 1.4 1.43 

van1 
2009/06/09 

09:30 
446.85 87 -12 -17 2.53 36 

flush2 
2009/06/09 

09:55 446.88 
83 21 14 1.54 

54 
87 27 19 1.63 

van2 
2009/06/09 

10:25 
446.79 83 -9.1 -15 2.51 33 

flush3 
2009/06/09 

11:03 446.71 
68 6.6 0.48 1.44 

47 
70 9.7 3.4 1.49 

flush4 
2009/06/09 

12:45 447.03 
111 21 13 1.87 

59 
113 24 15 1.90 

van3 
2009/06/09 

12:50 
447.03 121 3.5 -2.6 2.69 45 

flush5 
2009/06/09 

13:37 447.10 
127 15 7.8 2.05 

62 
129 17 9.5 2.07 

van4 
2009/06/09 

14:00 
447.12 144 15 8.7 3.10 47 

flush6 
2009/06/09 

14:30 447.16 
138 16 9.6 2.14 

65 
141 19 12 2.19 

flush7 
2009/06/09 

15:30 447.06 
117 1.5 -4.6 1.92 

61 
124 7.5 1.1 2.03 

flush8 
2009/06/09 

16:28 446.80 
74 -15 -21 1.47 

51 
76 -13 -19 1.51 

flush9 
2009/06/09 

17:43 446.47 
39 21 16 1.04 

38 
41 27 22 1.08 
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Tab.2 LSPIV sequences and gauging van measurements during the flushing event. LSPIV 
sequences with visible artificial tracers are indicated in gray boxes. The discharge deviation (%) is 
computed with the reference discharge yielded by the Pontamafrey gauging station (rating curve). 

Name Time 
(UT+1) 

Water level 
(m NGF) 

Q LSPIV 
(m³/s) 

Q deviation 
(%) 

from EDF 
curve 

Q deviation 
(%) 

from sill 
based 
curve 

Mean 
velocity 
(m/s) 

Wetted 
area 
(m²) 

flood1 
2008/05/29 

10:02 448.42 
365 -17 -8.5 3.03 

120 
359 -19 -10 2.98 

flood2 
2008/05/29 

10:33 
446.53 379 

-19 -8.9 
3.02 125 

flood3 
2008/05/29 

10:52 
448.46 372 -13 -3.8 3.03 123 

flood4 
2008/05/29 

12:48 
448.83 467 -7.3 5.2 3.34 140 

flood5 
2008/05/29 

12:50 
448.83 461 -17 -3.9 3.31 140 

flood7 
2008/05/29 

14:10 
448.79 463 -9.4 3.1 3.32 140 

flood8 
2008/05/29 

17:36 448.80 
462 -15 2.7 3.34 

138 
462 -15 2.7 3.34 

flood9 
2008/05/29 

18:39 448.60 
410 -22 -11 3.18 

129 
407 -22 -11 3.16 

flood10 
2008/05/30 

08:45 448.13 
337 0.8 5.0 3.14 

107 
333 -0.42 3.8 3.11 

van5 
2008/05/30 

09:00 
448.08 380 17 20 4.00 95 

flood11 
2008/05/30 

11:03 448.05 
322 7.4 9.5 3.11 

104 
327 9.0 11 3.15 

flood12 
2008/05/30 

11:59 
448.05 298 -0.63 1.4 2.87 104 

flood13 
2008/05/30 

12:59 448.01 
296 3.6 5.4 2.91 

102 
292 2.2 4.0 2.87 
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error. 

 

Tab.3 Simulated effect of different water level errors on the discharge, mean velocity and wetted 
area computed with the LSPIV sequence flood3 taken during the flood event (100 images 
processed). The gray box line indicates the reference computation. 

Water level error 
(cm) 

Q LSPIV 
(m³/s) 

Q deviation 
(%) 

Mean velocity 
(m/s) 

Wetted area 
(m²) 

0 376 0 3.07 123 

-10 363 -3.5 3.07 118 

+10 390 +3.7 3.07 127 

-50 308 -18 3.09 100 

+50 445 18 3.05 146 

 

 

Waves and free-surface deformation 

Quite high waves occurred during the 2008 flood, especially in the wake of the bridge pier. 
For some image sequences, this resulted in a marked deformation of the free-surface. The 
orthorectification of the images projected these 3D surface areas onto a horizontal plane. 
As a consequence, distorted velocity fields were obtained (Fig.7b, to be compared with 
Fig.7a, a flushing event sequence with much flatter surface). Typically, in the wave image 
area marked by darker pixels, LSPIV velocities appear deviated to the left. These 
directions are not consistent with visual observations of the flow during the flood. However, 
velocity magnitudes do not appear obviously biased and the cross-sectional velocity profile 
is regular. 

Two main orthorectification errors may be induced by the presence of waves or free-
surface undulations. First, the real water level is locally underestimated, which results in 
exaggerated horizontal distances and velocity magnitudes. However, as observed in the 
water level errors section, the velocity magnitude overestimation remains negligible, even 
for a 50 cm or 1 m high wave. Second, a positive or negative vertical velocity component 
due to the wave effect will be projected as a horizontal velocity component aligned on the 
camera viewpoint axis. In the present case, velocities going down the wave were 
interpreted as velocity components going to the camera, i.e., to the left side of the river. 

The consequences for discharge computation are small because this effect is only local 
and because spanwise velocity components do not contribute to the flux across a 
bathymetry profile normal to the flow direction, which is nearly the case here. The 
dominant problem with 3D deformations of the free-surface is then the accuracy of the 
local velocity coefficient value, since the vertical velocity distribution may be complicated 
and different from the rest of the flow. 

Image pair sampling 

The time-averaged surface velocity field computed by LSPIV from an image sequence is 
affected by the number of image pairs processed, since random errors affecting individual 
velocity fields are reduced in the averaging process. From N consecutive images 
separated by a fixed time interval, N-1 image pairs can be processed. Tab.4 shows the 
LSPIV discharge and cross-section-averaged mean velocity results for the same LSPIV 
sequence flood3 and numbers of processed images varying from 2 (1 pair) to 2,247 (2,246 
pairs). Similar results are observed with other sequences. 
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Few differences are observed when a sufficient number of image pairs are used to 
compute the average. In this case, processing 100 images is enough to reduce discharge 
variability to 1%. Of course, processing only a few images (<10)  does not provide enough 
sampling information and may produce significant errors (-7% for 2 images) and scattered 
velocity fields. In this study, a few minutes of film were available for each sequence,  
usually from 500 to 3000 images were processed to establish the discharge. It 
corresponds to reasonable computation times (a few minutes) and to very short 
measurement durations, which is a decisive advantage of the LSPIV method for 
measuring fast flood events. In contrast, gauging van measurements lasted from 1 to 2 
hours, during which time the river discharge may vary significantly. 

Tab.4 Simulated effect of the number of processed images on the discharge and mean velocity 
computed with the LSPIV sequence flood3 taken during the flood event. The gray box lines 
indicate the reference computations for 100 images (variations less than 1%) and for 2247 images 
(reference results retained in this study). 

Number of images N 
(N-1 image pairs) 

Q LSPIV 
(m³/s) 

Q deviation 
(%) 

Mean velocity 
(m/s) 

2247 372 0 3.03 

1000 373 +0.3 3.05 

500 375 +0.8 3.06 

100 376 +1.1 3.07 

50 380 +2.1 3.10 

20 380 +2.1 3.10 

10 371 -0.3 3.03 

5 358 -3.8 2.92 

2 346 -7.0 2.83 

 

Use of artificial tracers 

In sections located a few hundred meters upstream of the study site, Jodeau et al. (2008) 
observed that surface velocities measured by a similar LSPIV system during a dam 
flushing event were significantly underestimated when artificial tracers were not visible in 
the image sequences. In shadow areas with poor contrast and in areas with specular 
reflections on stationary waves, Jodeau et al. (2008) applied an intensity threshold 
criterion to get accurate velocity measurements. 

From Tab.1 and Tab.2 the LSPIV results with and without injected chips can be compared 
for the nine sequences taken during the flushing event and for six of the sequences taken 
during the flood event. For the flush sequences, results without artificial tracing appear 
slightly though systematically underestimated by -3.3% on average, individual bias ranging 
from -1.6% to -6.0%. For the flood sequences, deviations are smaller and more balanced, 
ranging from -1.5% to +1.6% with an average of +0.6%. Unexpectedly, differences in 
LSPIV results for image sequences with and without visible Ecofoam chips were found to 
be insignificant for the flood event. For the dam flushing event, the underestimation trend 
previously observed by Jodeau et al. (2008) is observed but is on average much smaller 
than the expected uncertainty in the velocity coefficient. 
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Cross-section bathymetry 

Three bathymetry profiles were measured across the camera image after the 2009 
flushing event. From a same time-averaged LSPIV surface velocity field, depth-averaged 
velocities can be computed at the points of the three different bathymetry profiles, T1, T2 
and T3. Fig.8 shows an example of such a test conducted on the LSPIV sequence flush6 
taken during the dam flushing event. Such a test could not be performed on a flood LSPIV 
sequence because bathymetry profiles T1 and T3 fall mainly outside the smaller 
orthorectified images. The middle profile T2 is the one used for all other discharge 
computations for both hydrological events. 

As shown in Fig.3b, the projections of the three bathymetry profiles are similar with slight 
differences in the deepest part of the channel. Whereas T2 falls in the center of the image, 
profiles T1 and T3 sample velocity vectors located at the upstream and downstream ends 
of the LSPIV computational grid (Fig.8). Larger parts of profiles T1 and T3 fall outside the 
orthorectified image, hence the contribution of extrapolated velocities in the computed 
discharge is greater. 

As expected, Tab.5 shows that from T1 to T3, i.e., with increasing angle between the 
bathymetry profile and the normal direction to the main flow, the wetted area increases 
whereas the mean velocity decreases. These opposite variations appear to more or less  
cancel one another out, since the discharge deviations to T2 results are -4.3% and -3.5% 
for T1 and T3, respectively. The underestimation trend might be explained by errors 
induced by the velocity extrapolation method applied (Le Coz et al., 2010). However, these 
deviations are acceptable for flood discharge measurements. Here again, they are smaller 
than the expected uncertainty in the velocity coefficient (~7%). 

 

Tab.5 Results computed with LSPIV sequence flush6 using three different bathymetry profiles, T1, 
T2 and T3. The gray box line indicates the reference computation with the T2 bathymetry profile. 

Cross-section 
bathymetry profile 

Q LSPIV 
(m³/s) 

Q deviation 
(%) 

Wetted area 
(m²) 

Mean velocity 
(m/s) 

T1 135 -4.3 60 2.27 

T2 141 0 65 2.19 

T3 136 -3.5 67 2.02 
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minimal number of 10 images are processed, the effects of image pair sampling is less 
than 1%. 

In our study case, the use of artificial tracers did not significantly improve the velocity 
measurements (mean deviation -3.3% during the flush, +0.6% during the flood). 

Testing two bathymetry profiles in addition to the one that served as reference led to small 
discharge variations (-4%). All three profiles were measured after the dam flushing event. 
However, there is also a significant uncertainty in the exact bathymetry during the LSPIV 
measurements, especially during the flood. During major hydrological events, the bed may 
evolve significantly. One simple solution would be to measure bathymetry profiles before 
and after the event. However, as shown by El Kadi Abderrezzak and Paquier (2009), the 
maximum erosion depth during the peak discharge may be much larger than the depth 
before or after the event. 

5.3    Practical guidelines for the application of mobile LSPIV flood measurements 

Some useful recommendations can be drawn from this case study for the successful 
application of a mobile LSPIV system for flood discharge measurements or tests. They 
were showed in Tab. 6 with an evaluation of the factors influence . 

Tab. 6 Recommendations for the mobile LSPIV measurements 

 Recommendations / Steps Importance 

LSPIV velocity 
measurement 

Straight and uniform reach *** 

Choice of the cross-section (piers...) ** 

The camera viewpoint and site angle ** 

The GRP measurement and distribution **** 

Seeding of artificial tracers * 

Water level measurements ** 

Discharge 
measurements 

using LSPIV 

Water level measurements **** 

Bathymetry before/after the flood ** 

Choice of discharge transects ** 

Concurrent stream gauging *** 

Velocity coefficient ** 

 

6    Conclusions 

A mobile LSPIV system was successfully deployed during two hydrological events on the 
Arc River, a gravel-bed river of the French Alps: a flood greater than the 10-year return 
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period flood in May, 2008, and a reservoir flushing release in June, 2009. 36 image 
sequences with and without injection of artificial tracers were processed. For both events, 
LSPIV discharges fell within 8% of concurrent discharge measurements. During the flood 
peak, the mobile LSPIV system was the only stream gauging system that could be applied 
at this site due to the high surface velocities (up to 7 m/s) and floating debris. 

This set of field data improves the knowledge and the uncertainty estimation of flood 
discharge measurement with a mobile LSPIV system. Sensitivity tests, comparisons and 
theoretical considerations were reported to assess the dominant sources of error in such 
measurements. The multiplicative error induced by the velocity coefficient was confirmed 
to be a major source of error. 

The interest of LSPIV flood discharge measurements to improve the extrapolation of 
existing stage-discharge curves is demonstrated. A simple hydraulic law based on the 
geometry of the three sills of the Pontamafrey gauging station was proposed. The high 
flow LSPIV discharge measurements indicate that this new curve is more accurate for high 
discharges since they are evenly distributed in a ±10% interval around it. Remote stream 
gauging techniques such as LSPIV measurements offer the opportunity to gauge 
unfrequent floods, which are usually missed by conventional techniques. Together with the 
hydraulic analysis or numerical modelling of stage-discharge curves at gauging stations, 
they offer promising perspectives for improving our accurate knowledge of flood 
discharges. 
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