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ABSTRACT 
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Taylor dispersion analysis is an increasingly popular characterization method that measures the 

diffusion coefficient, and hence the hydrodynamic radius, of (bio)polymers, nanoparticles or 

even small molecules. In this work, we describe an extension to current data analysis schemes 

that allows size polydispersity to be quantified for an arbitrary sample, thereby significantly 

enhancing the potentiality of Taylor dispersion analysis. The method is based on a cumulant 

development similar to that used for the analysis of dynamic light scattering data. Specific 

challenges posed by the cumulant analysis of Taylor dispersion data are discussed, and practical 

ways to address them are proposed. We successfully test this new method by analyzing both 

simulated and experimental data for solutions of moderately polydisperse polymers and polymer 

mixtures. 
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Introduction 

Taylor dispersion analysis (TDA) is an absolute, straightforward and fast method for determining 

diffusion coefficients D, and hydrodynamic radii Rh. The principle of TDA is based on the 

dispersion of a narrow solute band in an open tube under Poiseuille laminar flow.1-2 Due to the 

parabolic velocity profile, the solutes move with different velocities depending on their position 

in the tube cross section. The Taylor dispersion is due to the combination of the dispersive 

velocity profile with molecular diffusion that redistributes the molecules over the cross section of 

the tube. The most common way to perform TDA relies on recording the solute’s concentration 

profile as a function of time at a given spatial position. The determination of the diffusion 

coefficient is then based on the experimental determination of the temporal variance of the 

elution profile.3-10 TDA was first applied on long open tubes in gaseous phase3, then in liquids.4-6 

More recently, capillary electrophoresis instruments that allow the solute concentration profile to 

be recorded at a given location in a narrow capillary (diameter ~50 µm) were shown to be 

particularly well suited for TDA.11 TDA is applicable to solutes of virtually any size from 

angstroms to sub-micron and of any nature (small molecules, macromolecules, dendrimers, 

nanoparticles, liposomes…).12-16 TDA can also be implemented in non-aqueous phase for the 

characterization of hydrophobic compounds.17 Since it is an absolute method, neither calibration 

nor knowledge of the sample concentration are required. Only a few nL of sample is usually 

injected (~1% of the total capillary volume), which makes this method suitable for the analysis 

of biological and pharmaceutical compounds such as proteins18-20 or drug delivery systems21, 

where sample availability is an important issue. 

In the case of mixtures of solutes, or polydisperse samples, the average diffusion coefficients that 

can be measured by TDA based on the determination of the variance of the sample peak depends 
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on the nature of the detector (mass concentration- or molar concentration sensitive detector).22 In 

a previous work, we demonstrated that, for the commonly used mass concentration sensitive 

detector, TDA leads to a harmonic weight-averaged diffusion coefficient, and therefore to the 

weight-averaged hydrodynamic radius.22  

Beyond the average value of the diffusion coefficient obtained by integration of the taylorgram, 

no general method exists to quantify size dispersion for polydisperse samples. Some attempts 

were proposed for specific cases such as bimodal mixtures.23 The theory dealing with three-

component systems has been proposed by Price24, however it is somehow complex as it involves 

diffusion cross-terms. Boyle et al.25 determined diffusion coefficients of pauci- and polydisperse 

poly(styrene sulfonate) samples by studying the variation of the peak width with the carrier 

velocity, by flow injection analysis. However, since they operated in conditions where the 

injected product is eluted from the tube in a time smaller than the characteristic time of diffusion 

across the tube section, their approach does not rely on Taylor's analysis of dispersion and does 

not correspond to TDA. Mes et al.7 reported a comparison of different methods, including TDA, 

for the determination of diffusion coefficients of polydisperse synthetic copolymers. Fitting the 

taylorgram by a sum of Gaussian functions should, in principle, allow the determination of the 

distribution of the diffusion coefficients of the mixture. This approach has been applied to 

synthetic mixtures of up to six-mers.26 However, it should be emphasized that this method 

requires the knowledge of the exact number of components, and is hardly applicable for too large 

a number of components, since the least-square fit of the taylorgram profile becomes numerically 

ill-conditioned. 

In this work, we present a new data analysis scheme for (moderately) polydisperse samples, 

termed the cumulant method27. This method relies on the analogy with the cumulant analysis 
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widely used in dynamic light scattering (DLS)28, another popular size-characterization method. 

Briefly, the cumulant analysis consists in a change of variables against which the raw data (here 

the temporal taylorgram) are plotted, leading to a linear behavior of the data in the case of a 

monodisperse sample. For polydisperse samples, deviations from linearity are observed, which 

are quantified via a second-order polynomial fit of the curved data. As we will show it in the 

following, the coefficients of the linear and quadratic terms of the polynomial fit are related to 

well-defined moments of the distribution of the diffusion coefficients, D. This allows for a 

quantitative determination of both the average size and the polydispersity of the sample. 

Furthermore, the average size obtained from the cumulant analysis corresponds to a different 

moment of the distribution of D, as compared to the harmonic average usually measured by 

TDA. Based on this observation, we introduce a new quantitative indicator of polydispersity that 

is particularly robust with respect to data noise. 

The paper is organized as follows. In the next section, the theoretical bases of the cumulant 

analysis are presented. The cumulant method is then applied to simulated taylorgrams generated 

from size exclusion chromatography (SEC) distributions, to demonstrate the validity and interest 

of this approach. In this section, we also introduce the new polydispersity index based on the 

ratio between the usual harmonic average and that issued from the cumulant analysis. Finally, the 

cumulant method is applied to experimental taylorgrams obtained for polystyrenesulfonate 

standards of various molecular weights and their mixtures.  

THEORY 

Transformation from molar mass distribution to diffusion coefficient distribution for 

polydisperse polymer samples 

The mass-weighted probability distribution function (PDF) of the molar mass M of a given 

polymer sample is defined as: 
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where ( )MMρ dM is the molar concentration of the species with molar mass between M and 

M+dM. It is convenient to convert ( )MPM  to the mass-weighted PDF of diffusion coefficients, 

because Taylor dispersion data are more naturally expressed as a function of diffusion 

coefficients. The mass-weighted PDF of D is defined by: 
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with M(D) the molar mass of the species with diffusion coefficient D and ( )DDρ  their molar 

concentration distribution function. The molar mass and the diffusion coefficient are related by 
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where kB is the Boltzmann's constant, T the absolute temperature, η the solvent viscosity, NA 

Avogadro's number, and where K and a are the Mark-Houwink parameters relating the intrinsic 

viscosity to M through [η ] = KM
a. The PDF of D is then obtained using eq 3 and the standard 

PDF transformation law:  
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Taylor dispersion analysis: theoretical bases. 

For a sample solution of a single component of molar concentration ρ, the time evolution of 

the signal S measured in a Taylor dispersion experiment is Gaussian: 
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where t0 is the peak time, Rc the radius of the capillary, C an instrumental constant. The molar 

mass M has been introduced in eq. 5 since usually the detector response is proportional to the 

mass concentration. The extension to the case of a molar-concentration sensitive detector may be 

obtained by replacing the molar mass M by unity in eq.5 and in eqs. 6 and 11 below.  Note that 

eq. 5 only holds if 0

2
1 4

C
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.

R
≥  to ensure that the average detection time is larger than the 

characteristic diffusion time of the solutes in the capillary cross section.1, 12  Equation 5 is also 

only valid if the axial diffusion can be neglected compared to the Taylor dispersion contribution. 

This latter condition is fulfilled if 69C
R u

D
≥ , where u is the linear velocity of the mobile phase.1, 

12 Furthermore, corrections due to the finite injection time have been neglected since the injected 

volume for TDA experiments was always lower than ~1% of the capillary volume.10 The 

generalization of eq 5 to a polydisperse sample reads: 
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assuming that the sample is diluted enough for the cross-diffusion between sample components 

to be negligible.26 Using eq 2, the mass-weighted average diffusion coefficient for a polydisperse 

sample is: 
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where here and in the following we denote by an overbar mass-weighted averages obtained from 

the distribution functions. Note that D  is not directly accessible in a Taylor dispersion 
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experiment. However, an average diffusion coefficient may be easily obtained from the temporal 

variance of S(t), by defining: 
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We shall denote 
T

D  as the "Taylor average" of the diffusion coefficient. Experimentally, the 

upper limit of the integrals in eq 8 is replaced by the largest available time (provided that S(t) has 

decayed to 0≈ at the end of the experiment), or by the peak time t0. By replacing S(t) in eq 8 by 

the r.h.s. of eq 6 and using eq 7, one recognizes that the Taylor average is the (mass-weighted) 

harmonic mean of D: 
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The last inequality of eq 9 follows from the general properties of the harmonic mean and shows 

that the Taylor average weighs more the species with a small D (i.e. a large M or Rh), as 

compared to the arithmetic mean. The inequality reduces to equality for a monodisperse sample. 

Note that when considering the hydrodynamic radius (which is inversely proportional to the 

diffusion coefficient), Taylor dispersion analysis leads to the arithmetic weight-average 

hydrodynamic radius, to which all species contribute proportionally to their relative weight.22  

 

Theory of cumulant method 

We introduce here the cumulant method for analyzing Taylor dispersion data. As stated in 

introduction, the aim of the cumulant approach is to linearize the data for a monodisperse 

sample. In the case of a polydisperse sample, the deviation to linearity will give a measure of the 

polydispersity. Note that in a previous work29 a similar linearized representation was used, but no 
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attempts were made to quantify polydispersity by analyzing the deviations from a linear 

behavior.It is convenient to normalize S(t) by its peak value, by defining 
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with 
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For future use, we define the "Gamma average" of an arbitrary quantity A depending on D as 
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In the spirit of a cumulant expansion, we now show that for a moderately polydisperse sample 

s(t) may be written as the taylorgram for monodisperse objects with diffusion coefficient 
Γ

D , 

the Gamma average of D, times a correction term that depends on the width of the size 

distribution. The diffusion coefficient of a particular species in a polydisperse sample may be 

written as 
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where by definition 0=
Γ

Dδ . By inserting eq 13 in eq 10, one obtains: 
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where terms independent of D have been factored in front of the integral. We simplify eq. 14 by 

assuming 
( )

1
12

0
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δ
, corresponding to moderate polydispersity and/or t close to the peak 

time ( 00 →− tt ). Under this assumption, the exponential in the integral of eq 14 may be 

replaced to a good approximation by its Taylor expansion up to the second order. Using the 
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normalization of f(D), eq 11, and the definition of Dδ , eq 13, one finds that terms of order Dδ  

cancel out, leading to: 
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We take the natural logarithm of eq 15 and, in the same spirit of the approximation applied to eq. 

14, we further use ( ) xx ≈+1ln  for 
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Equation 16 is the central theoretical result of this paper: it shows that the logarithm of the 

taylorgram may be expanded in a cumulant series in ( )2

0tt − . The first cumulant, Γ1, is directly 

related to the Gamma average of the diffusion coefficient given by eq 17. Note that 
Γ

D  differs 

from both the weight-averaged arithmetic mean and the Taylor average of D. Using eqs 7, 9 and 

12, one has: 

T
DD
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The equalities hold only for monodisperse samples; for polydisperse samples the Gamma 

average is biased towards the species with large D (i.e. small Rh or M), as compared to both the 
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arithmetic and the Taylor averages. The second cumulant, Γ2, is related to the width of the PDF 

of the diffusion coefficient. A convenient non-dimensional parameter that quantifies the relative 

width of the distribution –and thus the sample polydispersity- is the Gamma-averaged relative 

variance, defined by: 
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EXPERIMENTAL SECTION 

Chemical and polymers 

Borax (disodium tetraborate decahydrate) was purchased from Prolabo (Paris, France). The 

water used to prepare all buffers was further purified with a Milli-Q-system from Millipore 

(Molsheim, France). The borate buffers were directly prepared by dissolving the appropriate 

amount of borax in water. Standards of poly(styrene sulfonate) (PSS, weight average molar 

masses Mw 1.29×103, 5.19×103, 29×103 , 145×103, 333×103 g/mol) were purchased from Polymer 

Standards Service (Mainz, Germany). The polydispersity index of the PSS is below 1.2. The 

degree of sulfonation of the PSS is higher than 90%. All PSS standards were provided with the 

PDF of M (numerical data, derived from SEC data, were obtained from Polymer Standards 

Services on simple request). The Mark-Houwink parameters (K, a) of polystyrenesulfonate are 

determined in 80 mM sodium borate buffer at 25°C as explained in Supporting Information (See 

Figure SI-1). 

Taylor dispersion analysis  

Taylor dispersion analysis (TDA) experiments were performed on a PACE MDQ Beckman 

Coulter (Fullerton, CA) apparatus. Capillaries were prepared from bare silica tubing purchased 
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from Composite Metal Services (Worcester, United Kingdom). Capillary dimensions were 40 cm 

(30 cm to the detector) × 50 µm I.D. New capillaries were conditioned with the following 

flushes: 1 M NaOH for 30 min, 0.1 M NaOH for 30 min and water for 10 min. Before sample 

injection, the capillary was filled with the buffer (80 mM borate buffer, pH 9.2, 8.9 10-4 Pa.s 

viscosity). PSS samples were dissolved in the buffer at 0.5 g/L. Between two TDA analyses, the 

capillary was successively flushed with: (i) water (50 psi, 1 min); (ii) 1M NaOH (50 psi, 2 min) 

and (iii) buffer (50 psi, 3 min). Solutes were monitored by UV absorbance at a wavelength of 

200 nm. Sample injection was performed hydrodynamically on the inlet side of the capillary (0.3 

psi, 9s; ~1% of the capillary volume). Mobilization pressures of 2 psi were applied with buffer 

vials at both ends of the capillary. Pressure ramp time was 15 s. The elution time was 

systematically corrected for the delay in the application of the pressure by substracting 7.5 s 

(half-time of the pressure ramp) to the observed (recorded) elution time.22 The temperature of the 

capillary cartridge was set at 25 °C 

RESULTS AND DISCUSSION 

Cumulant analysis of simulated taylorgrams 

To illustrate the cumulant method, we analyze simulated Taylor dispersion data generated for 

both moderately polydisperse polymers and a mixture of two polymer batches with different 

molar mass. The simulated s(t) is obtained using eqs 10 and 11, where ( ) )(DDM Dρ is calculated 

from the SEC PDF of M via eqs 4 and 2. We use realistic conditions (sampling time 0.25 s, 

770 ≈t s) and we add to the numerical data a random noise drawn from a Gaussian distribution, 

with a standard deviation equal to 0.0001, the noise level being determined by comparison with 

the typical noise level seen in experimental data. The quantities obtained from the data analysis 

are systematically compared to their theoretical values directly computed using the input )(DPD . 
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More specifically, the expected value of 
T

D , 1Γ , 
Γ

D , 2Γ  and 
2

2 1Γ Γ  are computed from 

the PDF of D using eqs 9, 17, 19, 18, and 20, respectively. Table SI-T1 gathers some of these 

parameters. Note that the Mark-Houvink coefficients required in eqs 3 and 4 were obtained as 

shown in Figure SI-1.  

Figure 1a displays )(DPD , obtained from the SEC data, for the PSS 5190 sample. This PDF 

was used to generate the taylorgram shown in Figure 1b. Figure 1c shows the cumulant 

representation of the same data. For the cumulant analysis, we only take into account absorbance 

data collected during the raising slope, since experiments (presented in the next section) show 

that this is typically cleaner, most likely because some polymers eventually stick to the capillary 

walls and pollute the falling slope of the taylorgram. Note that in the cumulant representation, 

Figure 1c, the data deviate slightly from a straight line, thus revealing that the sample is not 

strictly monodisperse. Such deviations would be difficult to be appreciated in the traditional 

representation of Figure 1b. 

When analyzing a taylorgram with the cumulant method, two practical issues need to be 

addressed: first, only data close to the maximum of s(t) should be considered, so that higher-

order terms that were truncated in eq 16 are actually negligible. However, it is clear that reducing 

too much the range of the cumulant fit would lead to large errors, due to data noise. How should 

then the optimum cutoff level be determined ? Second, the peak time t0 needs to be known with 

good precision, since any error in its determination would spuriously modify the values of Γ1 and 

Γ2 issued from a cumulant fit, as we shall show in the following. Note that while the first point is 

also typical of DLS data analysis, the latter is specific to Taylor dispersion data. To address both 

issues, we perform a series of cumulant fits by varying systematically the cutoff level and by 

testing various guess values of t0 in a small interval around the experimental peak time 
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(determined e.g. as the maximum of s(t) or through a parabolic fit around such extremum). We 

then inspect the cutoff-dependence of both cumulants for the chosen guess values of t0 and 

determine accordingly the best cutoff level and peak time. To perform realistic tests of this 

procedure, the software used to generate the numerical taylorgrams adds a small random number 

to the user-input value of t0, so that the actual peak time is not known at the time of data analysis. 

The actual peak time is stored by the software, so that the effectiveness of the procedure can be 

verified a posteriori.  

Typical results of this analysis are presented in Figure 2, for the data shown in Figure 1. The 

top panel shows Γ1 as a function of the cutoff level, for various guess values of the peak time, as 

indicated by the labels. If the guess value is too small, the data sharply increase as the cutoff 

level is raised. The opposite trend occurs when the guess value is too large. Note that large 

deviations are observed even when the guess values depart from the true peak value by just a 

fraction of a second. This demonstrates the importance of determining with good accuracy the 

peak value using this procedure. The best choice, t0 = 76.804 s, is determined such that the first 

cumulant has only a very mild dependence on the cutoff level. We recall that the actual value 

was not known before analyzing the data. The optimum value found here is very close to the 

actual value used to generate the data (t0 = 76.85 s), thus validating the proposed fitting 

procedure. Once the optimum t0 is fixed, the first cumulant is finally determined by extrapolating 

a linear fit to the Γ1 vs cutoff data at the highest cutoff value, i.e. cutoff = 1. Only data for a 

cutoff value 5.0≥ are considered in the fit, and data at very high cutoff levels are excluded if 

significant deviations from the general trend are observed, due to data noise. For the data shown 

here and once the optimum peak time has been fixed, Γ1 depends only very weakly on the cutoff 

level and the contribution of data noise is negligible. Accordingly, the choice of the best cutoff 
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level is not crucial. We find however that this may be important in real data, especially for the 

second cumulant and the relative variance, as we shall show it in the experimental tests section. 

Figures 2b and 2c show the same kind of analysis for Γ2 and for the relative variance. A linear 

fitting procedure similar to that used for Γ1 is applied to the relative variance (solid line in Figure 

2c). Once the relative variance is determined, its value and that of Γ1 are used to determine Γ2, as 

shown by the arrow in Figure 2b. For both the relative variance and Γ2 the general trend as a 

function of the cutoff level and the choice of the peak time is similar to that for the first 

cumulant, Figure 2a. Note however that here the dependence on t0 is even more marked. Indeed, 

a bad choice of the peak time may even lead to a negative second cumulant which, in view of eq 

18, is unphysical. Table SI-T1 given in supporting information compares the theoretical values 

of Γ1 and Γ2 calculated by integration (eqs 17 and 12 for Γ1, and eqs 18 and 12 for Γ2) of the 

PDF of D derived from the SEC distributions to the values obtained by the cumulant approach 

(eq 16) applied to the simulated taylorgrams. For Γ1, the theoretical and simulated values are in 

excellent agreement (average relative difference of 1.4% for all the simulated monomodal 

samples) demonstrating the practical feasibility and usefulness of the cumulant analysis. Relative 

differences are, on average, slightly higher for bimodal polymer mixtures (up to 10%). Similar 

comparisons were also performed on simulated data obtained with a noise level ten time larger 

(i.e. a Gaussian random noise with standard deviation 0.001). Results on Γ1 were not affected by 

these higher levels of noise.  

Concerning the second cumulant Γ2, its relative error (with respect to the theoretical value 

issued from the SEC distributions) is typically 8-9 times larger than that on first cumulant. 

Decreasing the noise level down to 0.0001 does not reduce significantly this error. Therefore, 



SI-16 

 

Figures 2b and 2c and Table SI-T1 in the Supporting Information highlight how delicate it may 

be to extract precise information on the size distribution from Γ2.  

An alternative way of quantifying polydispersity may be obtained by comparing the Gamma 

average <D>Γ , issued from Γ1, to the Taylor average, <D>T. Indeed, eq. 19 shows that the 

Gamma average weighs more the larger species, as compared to the Taylor average. While for a 

strictly monodisperse sample the two averages coincide, for polydisperse samples 
T

DD >
Γ

, 

the difference being larger for a greater polydispersity. Motivated by this observation, we 

introduce a polydispersity index PI based on the ratio between <D>Γ and <D>T. Several 

definitions are a priori possible; we choose in particular a definition based on the notion of an 

"equivalent log-normal" PDF. We introduce a log-normal PDF as: 

( )







 −
−≡=

2

2

2

ln
exp

2

1
)()(

γ

β

πγ

D

D
DPDP LND         (21) 

where the parameters β and γ are chosen in such a way that 
T

D  and 
Γ

D  calculated using the 

log-normal PDF, eq 21, coincide with those obtained for the real sample. Using eqs 8, 19, and 

21, one finds: 

T
DD ln

3

2
ln

3

1
+=

Γ
β          (22) 

T
D

D
Γ= ln

3

2
γ           (23) 

A natural definition of the polydispersity index PI is then  

T
D

D
PI Γ=≡ ln

3

22γ  .        (24) 
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The choice of a log-normal distribution presents several advantages: a log-normal PDF is 

characterized by just two parameters, β and γ ; for such a distribution, 
T

D  and 
Γ

D  can be 

calculated analytically, yielding eqs 22 and 23; a log-normal distribution is often a good 

approximation for the distribution of (monomodal) real samples such as polymers or colloidal 

particles; a log-normal PDF is invariant under a power-law change of variable, so that if any of 

the diffusion coefficient D, the hydrodynamic radius Rh or the molecular weight M are 

distributed log-normally, the same will also apply to the two other quantities. Of course, for an 

arbitrary shape of DP  the equivalent log-normal distribution will in general differ from the true 

PDF of D; nonetheless, the equivalent log-normal PDF allows one to get a sense of the actual 

distribution of the diffusion coefficients simply using the Taylor and Gamma averages issued 

from a straightforward data analysis. 

Figure 3 compares the actual PDF used to generate the data (dotted line, same data as in Figure 

1a) to the equivalent log-normal distribution obtained using eqs 22 and 23 (blue solid line): for 

this monomodal sample, )(DPLN
 captures very well both the position of the peak of DP  and its 

width. We note for completeness that the parameters β and γ may also be deduced from the first 

two cumulants. Using eqs 17, 18 and 21, one finds 

2

02
1 2

1

ln ln 1 ln
12

cR tΓ
β Γ

Γ

 
= − + + 

 
        (25) 

2

2

1

ln 1PI
Γ

γ
Γ

 
= = + 

 
         (26) 

Figure 3 shows the equivalent log-normal distribution obtained from the first two cumulants 

(red dashed line). In view of the sensitivity of 2Γ  to data noise discussed above, however, we 
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generally prefer to determine the equivalent log-normal distribution using the Taylor and Gamma 

averages, rather than 1Γ  and 2Γ . 

In Figure SI-3 of the Supporting Information we show that the principle of the cumulant 

analysis also applies to the case of a bimodal distribution of diffusion coefficients, a situation 

often encountered in experiments, e.g. in the monitoring of polymerization processes.23 Results 

for various bimodal samples are summarized in Table SI-T1 of the Supporting Information, 

where we show that the value of Γ1 expected from the SEC distributions is indeed recovered to 

within 10%. The equivalent log-normal distributions issued from the Taylor and Gamma 

averages of D are compared to the PDF of D used to generate the data in the Supporting 

Information (Figure SI-3c). While by construction the equivalent log-normal PDF cannot capture 

the bimodal nature of the input distribution, we emphasize that PLN still provides useful 

indications on the range of D covered by the actual distribution. 

Cumulant analysis of experimental taylorgrams 

To fully test the cumulant method proposed here, we have analyzed experimental Taylor 

dispersion data obtained for solutions of PSS of various molecular weights, and for a mixture of 

two polymers (as those tested for the simulated data). 

Figure 4a shows the experimental taylorgrams for diluted solutions of PSS5190 and PSS29k, 

as well as for an equimass mixture of the two polymers. As expected, the signal from the 

smallest polymer exhibits the fastest decay, while that for the mixture lays in between those of 

the monomodal samples. Figure 4b shows a cumulant plot of the same signals, obtained from the 

raising slope of s(t). The lines are second order cumulant fits to the data in the range that was 

actually used for the cumulant analysis. As already observed for the simulated data (see Figure 

SI-3), the short time behavior of ln[s] is dictated by both polymer species, while at larger (t – t0)
2  
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the taylorgram for the mixture follows the behavior expected for the largest species, as 

demonstrated by the fact that the slope of the triangles and the circles is essentially identical at 

large values of (t – t0)
2.  

As for the simulated samples, we determine the optimal choices of the peak time and the cutoff 

level by examining plots of 1Γ , 2Γ  and the ratio 2

2 1Γ Γ  as a function of both t0 and the cutoff,  

as exemplified in the Supporting Information for the solution of PSS5190 (Figure SI-5). As a 

general trend, we find that the determination of 1Γ  is as robust as for the simulated data. By 

contrast, the determination of the second cumulant is less straightforward, since 2Γ  varies 

significantly and non-monotonically as the cutoff level tends to one. As a consequence, it is also 

difficult to determine unambiguously the ratio 2

2 1Γ Γ , which is an indicator of the sample 

polydispersity via eq 20. These difficulties stem from the relatively narrow size distribution of 

the monomodal sample, combined with the unavoidable experimental noise. As a consequence, 

the curvature of ln[s] vs ( )2

0tt −  is very modest and the noise significantly affects its 

determination. Under these circumstances, an estimate of the sample polydispersity via the 

polydispersity index introduced in eq 24 and the equivalent log-normal distribution is 

particularly valuable, since the PI is obtained from the two averages 
T

D  and 
Γ

D , which are 

more robust than 2Γ  with respect to data noise. 

Figure 5 shows the equivalent log-normal distributions for the two monomodal samples 

PSS5190 and PSS29k, and for the mixture. For the monomodal samples, the equivalent-log 

normal distributions are in good agreement with PD as estimated from the SEC distributions 

(dotted lines), although they appear to be somehow broader. This difference may stem from the 

different analytical method used in SEC as compared to Taylor dispersion. However, a similar 
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trend was also observed for the simulated data, see Figure 3. It is therefore likely that this 

discrepancy is due to the shape of the actual PDF, which differs from a log-normal distribution. 

Figure 5c shows the PDFs for the bimodal solution. As already observed for the simulated data 

(see Figure SI-3), the log-normal PDF does not capture (by construction) the bidisperse nature of 

the sample, but nonetheless it provides a good estimate of the overall width of the distribution of 

diffusion coefficients and of its position. Interestingly, we find that for the mixture the equivalent 

log-normal distributions calculated using the Gamma and Taylor averages or the two cumulants 

essentially coincide, in contrast to what was observed for the monomodal samples, Figures SI 7a-

c. This trend is also observed for the simulated samples (compare Figure 3 to Figure SI-3c). It is 

most likely due to the fact that for the relatively broad distributions associated with bimodal 

samples the curvature of ln[s] vs ( )2

0tt −  is more pronounced than for the monomodal solutions, 

thereby allowing one to measure the second cumulant in a more reliable way. 

The same approach was used to analyze the experimental taylorgrams obtained with all the 

PSS studied in this work having a weight average molar mass of 1.29k, 5.19k, 29k , 145k, 333k 

and some of their (50/50 w/w) bimodal mixtures. The resulting PD distributions of PSS 

monomodal samples are displayed in Figure SI-6. As expected, the distributions obtained from 

1Γ , 2Γ  (red dashed line) appear to be in general in a less good agreement with the SEC 

distribution (dotted black line) as compared to what was obtained for the simulated data (see 

Figure SI-2). If one considers the 
T

D , 1Γ  approach, the agreement with the SEC distribution is 

much better, as we observed in the case of simulated taylorgrams. The relative difference on 1Γ  

between the experiments and the value expected from the SEC distribution appears to be 

reasonable, with an average relative difference of ~30% as seen in Table SI-T1. It should be 

emphasized that this difference may stem not only from uncertainties in the analysis of the 



SI-21 

 

experimental taylorgrams, but also from similar errors in the determination of the actual size 

distribution by SEC. The log normal distributions represented in SI clearly shows that even when 

the difference between the results obtained for 1Γ , from the taylorgrams and the SEC is as high 

as 50%-60% (corresponding to the largest observed differences, see PSS 1.29k and 145k in 

Table SI-T1), the log-normal distributions obtained from experimental taylorgrams are still very 

informative. In particular, the range of D over which the PD distributions significantly depart 

from zero is captured reasonably well by the equivalent log-normal distribution. This trend is 

also confirmed by the bimodal distributions displayed in Figure SI-7 that may be compared to 

the results for the simulated taylorgrams in Figure SI-4. 

As a final remark, we note that the applicability of the cumulant analysis relies on fulfilling the 

condition 
( )

1
12

0

2

2

0 <<
−

tR

Dtt

C

δ
 (see eqs. 14 and 15), which in turns sets an upper limit  

( )2

0

0

2

12 tt

tR
D C

−
<<δ  on the maximum polydispersity that can be reliably measured. In the case of 

our experiments where the taylorgram is sampled at a rate of 4 Hz, we take ( ) 20 ≥− tt  s in order 

to perform the fit on at least 8 data points, thus finding 510−≈Dδ cm2 s-1, five times larger than 

the largest <D>T. 

 

Conclusion 

In this work, it has been demonstrated that the cumulant approach, which is commonly used in 

dynamic light scattering for polydispersity analysis, can be similarly used for Taylor dispersion 

analysis. This approach was applied to the analysis of moderately polydisperse polymer samples 

and bimodal mixtures of these samples. The cumulant analysis of taylorgrams requires first the 
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accurate determination of the average elution time t0 by a systematic graphical representation 

that can be numerically automated. It has been shown that the polydispersity of the sample is 

more precisely obtained by using the first order cumulant value Γ1 combined with 
T

D  instead 

of using the two cumulant order parameters Γ1 and Γ2. This can be explained by a better 

determination and better precision on 
T

D  that is obtained by direct integration of the 

taylorgram, as compared to the second order Γ2 parameter. Γ1 and T
D  give an estimation of the 

polydispersity of the sample. It has then been proposed to use the log normal distribution having 

the same polydispersity as the real sample distribution as a way to quantify polydispersity. These 

log normal distributions were favorably compared to distributions obtained by SEC. Knowing 

the simplicity of implementation of TDA, and its wide applicability, we believe that this 

approach could be routinely used for the characterization of samples of virtually any size from 

angstrom to sub-micron, and of any nature.  
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Figure 1. a) Probability distribution function of the diffusion coefficient D used as an input in eq 

6 to generate the taylorgram shown in b). c) Symbols: cumulant plot of the raising slope of the 

taylorgram shown in b). The red line is a linear fit to the data in the range s(t) > 0.22. The modest 

deviations with respect to a linear behavior indicate that the sample is only slightly polydisperse.  
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Figure 2. First cumulant (a), second cumulant (b), and relative variance (c) as a function of the 

cutoff level in fitting the data shown in Figure 1c. The curves are labeled by the guess value (in 

s) of the peak time used in the cumulant fit, eq 16. The filled symbols and the bold label refer to 

the chosen peak time, t0 = 76.804 s. The lines in a) and c) are linear fits to the data with the 

optimum t0: their intersection with the line cutoff = 1 yields the desired values of Γ1 and Γ2/Γ1
2. 

The arrow in Figure 2b shows the value retained for Γ2, based on the results of 2a and 2c. 
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Figure 3. Probability distribution function of the mass-averaged diffusion coefficient for a 

mildly polydisperse polymer, PSS 5190. Dotted line: PDF obtained from the SEC data and used 

to simulate the taylorgram data. Blue solid line (resp., red dashed line): equivalent log-normal 

distribution issued from the Taylor and Gamma averages (resp., from the first two cumulants) 

determined by analyzing the simulated taylorgram. 
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Figure 4. Experimental taylorgrams (a) measured for moderately polydisperse PSS 5190k 

(squares) and 29k (circles), and for an equimass mixture of both polymers (triangles). Cumulant 

plots (b) obtained from the raising slope of the data shown in a). The lines are second-order 

cumulant fits to the data, in the optimum range of t determined through the analysis illustrated by 

Figure SI-5.  
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Figure 5. Mass-weighted probability distribution functions of the diffusion coefficient for two 

monomodal samples (PSS5190, (a), and PSS 29k, (b)) and an equimass mixture of both 

polymers (c). In all panels, the dotted curves are PD as estimated by SEC, while the blue solid 

(resp., red dashed) lines are the equivalent log-normal distributions retrieved from the analysis of 

the experimental taylorgrams, using the Taylor and Gamma averages (resp., the first two 

cumulants). 
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Figure SI-1: Experimental Taylor-averaged diffusion coefficient, <D>T, as a function of the 

nominal molar mass, for the five PSS polymers used in this study. The data are very well fitted 

by the power law d

T
cMD = , with c = 8.83 10-5 (c.g.s. units) and d = -0.503. The Mark - 

Howink parameters a and K are obtained from c and d by comparing the power law shown here 

to eq. 3, yielding a = 0.5083, K = 0.11 (c.g.s. units). The values thus obtained are used to convert 

the SEC mass distribution to that of the diffusion coefficient, as explained in the theoretical 

section (see eqs 3 and 4). 
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Figure SI-2: Probability distribution function of the diffusion coefficient D calculated from the 

SEC data (dotted black line) and equivalent log-normal distributions obtained from the simulated 

taylorgrams, using the Taylor-averaged diffusion coefficient and Γ1 (blue solid line), or Γ1 and 

Γ2 (red dashed line). For all simulated taylorgrams shown here, a random noise with a standard 

deviation of 0.0001 was added to the signal. Monomodal samples: a) PSS 1290, b) PSS 5190 

(same as in Figure 3 of the main text), c) PSS 29k, d) PSS 145k, e) PSS 333k.  
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Figure SI-3: Simulated taylorgram for an equimass mixture of PSS 5190 and PSS 29k (a). 

Cumulant plot of the same data (b). Note that the short-time behavior of ln[s] is determined by 

both species, and not only by the contribution associated with the smaller polymer, whose 

taylorgram decays faster. This is shown by the difference between the solid line (first order 

cumulant fit) and the black dashed line (behavior expected if only the smallest species, PSS 

5190, was present). At large t, the slope of ln[s(t)] is close to that expected for the sample PSS 

29k alone (blue dotted line). (c) Mass-weighted PDF of the diffusion coefficient D used as an 

input to generate the taylorgram shown in (a) and (b) (dotted line), together with the equivalent 

log-normal distributions obtained from the Taylor and Gamma averages (blue solid line) and the 

first two cumulants (red dashed line), respectively. 
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Figure SI-4: Probability distribution function of the diffusion coefficient D calculated from the 

SEC data (dotted black line) and equivalent log-normal distributions obtained from the simulated 

taylorgrams, using the Taylor-averaged diffusion coefficient and Γ1 (blue solid line), or Γ1 and 

Γ2 (red dashed line). For all simulated taylorgrams shown here, a random noise with a standard 

deviation of 0.0001 was added to the signal. Equimass mixtures of : a) PSS 1290 and PSS 5190, 

b) PSS 1290 and PSS 29k (same as Figure SI-3c), c) PSS 5190 and PSS 29k.  
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Figure SI-5. First cumulant (a), second cumulant (b), and relative variance (c) as a function of 

the cutoff level in fitting the experimental PSS 5190 data shown in Figure 4b. The curves are 

labeled by the guess value (in s) of the peak time used in the fit. The filled symbols and the bold 

label refer to the chosen peak time. The lines in a) and c) are linear fits to the data with the 

optimum t0: their intersection with the the line cutoff = 1 yields the desired values of Γ1 and 

Γ2/Γ1
2. The arrow in b) shows the value retained for Γ2, based on the results of a) and c).
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Figure SI-6: Probability distribution function of the diffusion coefficient D calculated from the 

SEC data (dotted black line) and equivalent log-normal distributions obtained from the 

experimental taylorgrams, using the Taylor-averaged diffusion coefficient and Γ1 (blue solid 

line), or Γ1 and Γ2 (red dashed line). Monomodal samples: a) PSS 1290, b) PSS 5190 (same as 

Figure 5a of the main text), c) PSS 29k (same as Figure 5b of the main text), d) PSS 145k, e) 

PSS 333k.  
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Figure SI-7: Probability distribution function of the diffusion coefficient D calculated from the 

SEC data (dotted black line) and equivalent log-normal distributions obtained from the 

experimental taylorgrams, using the Taylor-averaged diffusion coefficient and Γ1 (blue solid 

line), or Γ1 and Γ2 (red dashed line). Equimass mixtures of : a) PSS 1290 and PSS 5190, b) PSS 

1290 and PSS 29k, c) PSS 5190 and PSS 29k (same as Figure 5c of the main text). 
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    PSS1290 PSS5190 PSS29000 PSS145000 PSS333000 

PSS1290 + 

PSS5190 

PSS1290 + 

PSS290000 

PSS5190 + 

PSS29000 

  <D>T (cm
2
 s

-1
) 2.34E-06 1.22E-06 5.11E-07 2.29E-07 1.55E-07 1.61E-06 8.39E-07 7.21E-07 

SEC Γ1  (s
-2

) 1.47E-01 3.39E-02 1.36E-02 2.35E-03 4.87E-03 1.03E-01 1.09E-01 2.60E-02 

  Γ2  (s
-4

) 5.84E-02 1.44E-04 1.44E-05 5.07E-07 5.93E-06 3.90E-02 4.53E-02 1.91E-04 

 

<D>T (cm
2
 s

-1
) 2.40E-06 1.23E-06 5.12E-07 2.30E-07 1.56E-07 1.63E-06 8.45E-07 7.24E-07 

Simulated Γ1  (s
-2

) 1.55E-01 3.41E-02 1.37E-02 2.37E-03 4.90E-03 9.26E-02 9.70E-02 2.60E-02 

 

Γ2  (s
-4

) 4.56E-02 1.66E-04 1.63E-05 7.22E-07 6.29E-06 1.37E-02 1.65E-02 1.89E-04 

  <D>T (cm
2
 s

-1
) 2.40E-06 1.19E-06 5.21E-07 2.29E-07 1.43E-07 1.69E-06 9.30E-07 6.89E-07 

Experimental Γ1  (s
-2

) 6.41E-02 3.04E-02 1.47E-02 3.83E-03 6.89E-03 5.88E-02 5.50E-02 2.30E-02 

  Γ2  (s
-4

) 3.74E-04 1.92E-04 1.44E-04 1.89E-05 1.22E-04 1.03E-03 1.48E-03 2.59E-04 

 

Table SI-T1: Values of <D>T, Γ1 and Γ2 as calculated from the SEC distributions, and as obtained from the cumulant analysis of the 

simulated and experimental taylorgrams. Theoretical Γ1 and Γ2 values (three SEC lines) were calculated by integration (eqs. 17 and 12 

for Γ1, and eqs. 18 and 12 for Γ2) of the PDF of D obtained from SEC distributions. Simulated values were obtained by the cumulant 

approach (eq. 16) on the simulated taylorgrams constructed from the SEC distributions. Experimental values were obtained by the 

cumulant approach (eq. 16) on the experimental taylorgrams. Bimodal mixtures were prepared on the basis of a 50/50 w/w mixture.  

   

 


