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Using a cut-off free formulation of the coherent transport theory, we show that the interference
terms at the origin of localization strongly affect the transport anisotropy. In contrast to the common
hypothesis, we then find that the anisotropies of incoherent and coherent diffusion are significantly
different, in particular at criticality. There, we show that the coherent transport anisotropy is
mainly determined by the properties of the disorder-averaged effective scattering medium while the
incoherent transport contributions become irrelevant.

PACS numbers: 03.75.-b, 05.60.Gg

I. INTRODUCTION

The propagation of a coherent wave in a disordered
medium is strongly affected by interference of the various
multiple-scattering paths, which may suppress or even
cancel diffusion. This phenomenon, known as Anderson
localization (AL), is a widely studied problem at the fron-
tier of condensed-matter and wave physics. Anderson lo-
calization has now been observed in a variety of systems
with electromagnetic waves [1–3], acoustic waves [4], and
ultracold matterwaves [5–11]. Basic knowledge of AL
relies on the discrete Anderson model [12–14] and the
one-parameter scaling theory [15], which in particular
predicts a universal localization transition in dimension
d > 2. Recent progress on control of disordered sys-
tems [16–20] triggered a renewed interest for a refined,
microscopic understanding of AL, which cannot be de-
scribed in the framework of the universal scaling theory.
An example where a microscopic theory is vital is that

of localization in anisotropic media, which are relevant to
MOSFETs [21], liquid crystals [22, 23], phosphides [24],
or ultracold atoms [8–11, 25–27], for instance. These
systems may be cast in two classes of anisotropy, ei-
ther resulting from isotropic scatterers embedded in an
anisotropic underlying medium (mass anisotropy) [28]
or resulting from anisotropic disorder in an isotropic
medium (disorder anisotropy). For these systems, ba-
sic knowledge presently relies on the extension of the on-
shell self-consistent theory to anisotropic media [29]. The
latter predicts that the interference terms have the same
anisotropy as the incoherent propagation terms, so that
the anisotropies of localization and classical diffusion are
equal. However, this prediction relies on the introduc-
tion of an elliptic cut-off whose anisotropy is arbitrarily
chosen as the inverse of the incoherent transport mean
free path.
In this paper, using a cut-off free formulation of the

coherent transport theory, we show that interference
terms at the origin of AL strongly affect the trans-
port anisotropy. The solution of the transport equa-

tions shows that the anisotropies of incoherent and co-
herent diffusion are significantly different, especially near
the mobility edge (ME). This invalidates the use of the
elliptic cut-off used so far. Our work indicates that
the anisotropy in coherent diffusion is mainly deter-
mined by the properties of the average effective medium.
Hence, contrary to the usual hypothesis, the interference
terms significantly compensate for the large anisotropy
predicted by incoherent Boltzmann transport theory.
Our results provide insight into the theory of AL in
anisotropic disorder and should significantly affect the
interpretation of experimental data.

II. QUANTUM TRANSPORT

A. Formalism

The coherent transport equations for a wave in an
anisotropic disordered medium are obtained from the ex-
act Bethe-Salpeter equation [30] by generalizing the ap-
proach of Ref. [31] to the anisotropic case. Briefly speak-
ing (see Appendix A for details), the density propaga-
tion of a matterwave of energy E and wavevector k in
a disordered medium is described in the long time and
large distance limit by the static current vertex function
j(E,k), which obeys the closed equation

j(E,k) = j0(E,k) + |G(E,k)|2
∫

dk′

(2π)d
j(E,k′)Uk,k′(E)

(1)

where j0(E,k) = [k+∇kReΣ(E,k)]
[

ImG(E,k)
]2

−
1
2ReG(E,k)ImG(E,k)∇kImΣ(E,k), G(E,k) is the dis-
order average of the single-particle Green function,
Σ(E,k) is the associated self-energy, and Uk,k′(E) =
Uk,k′(E,ω = 0,q = 0) is the static irreducible vertex
function (ω and q are the conjugate variables of time
and space, respectively). The components of the diffu-



2

sion tensor D(E) are then given by the Kubo formula

Duv(E) =
~

m

1

πN(E)

∫

dk

(2π)d
kujv(E,k), (2)

with N(E) =
∫

dk
(2π)d

−ImG(E,k)
π

the density of states per

unit volume.

B. Interference term

In the weak localization regime, we retain the following
form for the irreducible vertex function

Uk,k′(E) = UB

k,k′ + UMC

k,k′(E), (3)

where UB

k,k′ = C̃(k − k′) is the vertex associated with

incoherent (Boltzmann) transport, with C̃(k) the power
spectrum (fluctuations in the potential energy) [32], and
UMC

k,k′ is the leading interference contribution expressed

by the maximally-crossed diagrams [31],

UMC

k,k′(E) =
2

πN(E)

[

ImΣ(E, k−k′

2 )
]2

(k+ k′) ·D(E) · (k+ k′)
. (4)

Note that the diffusion tensor D(E) is included self-
consistently in Eqs. (1) and (2), an approximation which
gives quantitative estimates in good agreement with nu-
merical calculations [33]. In standard (on-shell) self-
consistent theory, the pole of Eq. (4) necessitates the
introduction of an ultraviolet cut-off in the integral in
the right-hand side of Eq. (1). Here, by keeping the full
k dependence of the vertex function j(E,k), this artificial
divergence does not appear [31].

C. Disorder correlation function

For simplicity, we assume that the disorder V (r)
is Gaussian-distributed. Its statistical properties are
fully characterized by the two-point correlation function
C(r) = V (0)V (r), where we have set the zero of ener-
gies such that V = 0. In order to carry out a number of
integrations analytically, it is convenient to use a corre-
lation function with uniaxial symmetry around, say, axis
z, and to adopt C(r) = V 2

R
exp{−(x2 + y2 + z2/ξ2)/σ2

R
},

where VR is the amplitude of the disorder, σR its typical
correlation length, and ξ its anisotropy. It is the sim-
plest model of anisotropic disorder and it is relevant to
ultracold-atom experiments, see e.g. Refs. [8, 10] where ξ
varies from 6 to 20. When ξ > 1, this correlation function
corresponds to a correlated disorder made of ’grains’, of
typical transverse size σR and elongated in the z direc-
tion.

III. LOCALIZATION REGIME

A. Exact numerical computation

The first step in the calculation consists in determining
the average Green function, which enters into Eq. (1). It
reads G(E,k) = [E − ~

2k2/2m−Σ(E,k)]−1, where Σ is
given by the solution of the Dyson equation. In order to
study the fundamental effects due to disorder anisotropy
we compute Σ in the self-consistent Born approximation
(SCBA), which reads

Σ(E,k) =

∫

dk′

(2π)d
C̃(k− k′)

E − ~2k′2/2m− Σ(E,k′)
. (5)

This approximation reproduces qualitatively single-
particle features such as the density of states for Gaussian
disorder. It is therefore well suited for understanding ba-
sic effects of geometrical disorder anisotropy as long as
the disorder is not too large [34]. The major benefit of
the SCBA method compared to the on-shell first-order
perturbation theory is that it properly accounts for the
momentum decay of the self-energy Σ(E,k).

We now numerically solve Eq. (1) for the current ver-
tex function j by iteration (see Appendix B for details)
and insert the result into Eq. (2) to determine the dif-
fusion tensor. Due to parity and uniaxial symmetries,
the diffusion tensor admits x, y, and z as eigendirec-
tions and is isotropic in the (x, y) plane. We call D⊥

the corresponding diffusion coefficient and Dz the coeffi-
cient along the z direction. In Fig. 1(a) we show the re-
sults for the diffusion coefficients (black points) for ξ = 3
and VR = 0.5Eσ with Eσ = ~

2/mσ2
R
and in Fig. 1(b)

the anisotropy Dz/D⊥. For comparison, the correspond-
ing values obtained in the Boltzmann approximation, i.e.
if only UB is retained in Eq. (3), are also shown (blue
points). We find that, as expected, both diffusion ten-
sors are anisotropic with larger values in the z direction,
and that both decrease with decreasing energy. The
Boltzmann diffusion tensor DB(E) ”trivially” vanishes
at the point where the density of states vanishes (here-
after called band edge), Ebe ≃ −0.35Eσ. As expected
in the framework of AL, the quantum diffusion tensor
D(E) vanishes well before DB(E). The energy depen-
dence of D(E) (black points) points toward a vanishing
point at Ec > Ebe, for both D⊥ and Dz. It corresponds
to the ME, the states with energy Ebe < E < Ec be-
ing localized. The iterative calculation suffers from the
usual critical slowing down phenomenon, which prevents
us from performing exact calculations very close to the
ME. In order to find the ME, we use the extrapolat-
ing functions Dz(E) ∝ (E − Ec)[1 + Az(E − Ec)

2] and
D⊥(E) ∝ (E − Ec), which fit the data properly. This
extrapolation is represented by the solid black line in
Fig. 1(a), and gives Ec ≃ −0.1Eσ.
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Figure 1. (Color online) Quantum coherent diffusion versus Boltzmann diffusion. (a) Diffusion coefficients in the transverse
plane ⊥= {x, y} and in the longitudinal direction z computed from the numerical solution of Eq. (1) for our model of disorder
with ξ = 3 and VR = 0.5Eσ. Shown are the results for the incoherent Boltzmann approximation (U ≃ UB, blue points), the
quantum diffusion (U = UB + UMC, black points), and the approximation underlying Eq. (6) [red points]. The black solid
line shows the extrapolation D⊥(E) ∝ (E − Ec) and Dz(E) ∝ (E − Ec)[1 + Az(E − Ec)

2], which gives Ec = −0.102Eσ .
(b) Anisotropy of the quantum and Boltzmann diffusion tensors, Dz(E)/D⊥(E).

B. Approximation

In order to avoid the critical slowing down in solving
Eq. (1), it is worth simplifying the problem. It is vital
to avoid any on-shell description since they would intro-
duce artificial divergencies at short length scales. To do
so, we assume here that the k-dependence of j(E,k) is
equal to the one of j

0
(E,k), which amounts to assuming

that the momentum distribution of the atoms at fixed
energy does not change when interference terms are in-
cluded. We have checked that this is indeed a fairly good
approximation, as for isotropic models of disorder [31].
Then, assuming j(E,k) = D(E)D−1

0
(E) j

0
(E,k) and

j
B
(E,k) = DB(E)D−1

0
(E) j

0
(E,k), we get the following

closed equation for the diffusion tensor

Du(E) ≃ Du
B
(E)

{

1 +
2~2Du(E)

m2π2N(E)2Du
0
(E)2

(6)

×

∫

dk

(2π)d
dk′

(2π)d
ku|G(E,k)|2 ju,0(E,k′)

[

ImΣ(E, k−k′

2 )
]2

(k+ k
′) ·D(E) · (k+ k

′)

}

,

where u ∈ {x, y, z} are the three directions. Notice
that there is a great gain in computational time as
we have simplified an iterative problem for a vector
of three-dimensional functions j(E,k) (respectively two-
dimensional in the uniaxial case we consider here) to an
iterative problem for a tensor with only three (respec-
tively two) parameters. This allows us to compute the
diffusion tensor for energies down to the mobility edge
Ec.
The results of this approximation are shown in Fig. 1.

We find that the eigenvalues of the full diffusion tensor

[Fig. 1(a)] and the anisotropy [Fig. 1(b)] are fairly well
reproduced within the approximation. In particular, we
recover that the eigenvalues of the diffusion tensor all
vanish at the same critical point. This may be under-
stood by a dimensionality reduction argument. Should
localization occur in one or two directions only, the re-
maining (transverse) dynamics would be reduced to a di-
mension lower than three. It would then systematically
lead to localization also in the transverse directions. The
same conclusion can also be found from Eq. (6). Assume
that the diffusion coefficient vanishes in the eigendirec-
tion u, but not in the others. Then the integral in Eq. (6)
would be finite, so that Du(E) = Du

B
(E). This would be

clearly inconsistent since Du(E) = 0 by hypothesis while
Du

B
(E) 6= 0. Using the approximation, we locate the ME

at Ec = −0.09Eσ for VR = 0.5Eσ and ξ = 3, which is in
good agreement with the value we found by extrapolating
the exact numerical results, down to 10%.

C. Mobility edge

The ME, measured with respect to the band edge,
Ec − Ebe, is shown in Fig. 2(a) versus the disorder am-
plitude VR, for various geometrical anisotropies. For low
values of VR, the ME is very close to, but above, the
band edge, well below the average value of the disorder,
V = 0. When VR increases, the ME moves away from the
band edge. Moreover, increasing the disorder anisotropy
increases the ME at fixed VR and therefore tends to fa-
vor localization. This is intuitive since a strongly elon-
gated disorder (ξ ≫ 1) tends to reduce the relative im-
portance of the z direction. We also define the param-
eter kl(E) ≡ mTr [D0(E)] /~, which coincides with the
Ioffe-Regel parameter in the case of isotropic short-range
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Figure 2. (Color online) (a) Position of the mobility edge with respect to the band edge Ec−Ebe as a function of the amplitude
of the disorder in approximation (6), for geometrical anisotropies ξ = 1, 2 and 3 (black, red and blue data points respectively).
(b) Anisotropy of the diffusion tensor at the mobility edge found within the approximation for ξ = 2 and 3 (red and blue data
points respectively), compared with the anisotropy of D0 and DB at the same energy (see legend).

disorder [35], since l(E) is then the scattering mean-free
path. When computed at the ME, we find that kl is of
order unity, it weakly depends on the disorder anisotropy,
and it shows a slight increase with the disorder amplitude
similar to that found for isotropic disorder [31]. It thus
provides a generalization of the Ioffe-Regel criterion to
the anisotropic case.

D. Transport anisotropies

We now discuss the transport anisotropies, Dz
B
/D⊥

B

and Dz/D⊥, which are shown in Fig. 1(b) versus the
matterwave energy E. We find that both decrease
with energy, similarly as found in the on-shell approx-
imation [25]. The Boltzmann diffusion tensor becomes
isotropic only at very low energy when it approaches
the band edge. This is consistent with the fact that our
model has a nondiverging infrared limit, limk→0 C̃(k) =
const. Then, for low energy, all integrals are dominated
by small wavevectors k . σ−1

R
, which are almost insen-

sitive to the details of the correlation function, in par-
ticular to its anisotropy. Most important, we find that
the anisotropy of the quantum diffusion tensor D(E) is
significantly smaller than that of the Boltzmann diffu-
sion tensor DB(E). It shows that the localization cor-
rections strongly affect the transport anisotropy, leading
to a significant reduction for our model of disorder. For
instance in Fig. 1(b), when E → Ec, the coherent trans-
port anisotropy Dz/D⊥ strongly decreases and becomes
of the order of 1, while the anisotropy of the incoherent
transportDz

B
/D⊥

B
is of the order of 1.75. This effect is the

main outcome of our approach, which is free of any cut-
off of arbitrary anisotropy, unlike previous work [25, 29].
Figure 2(b) shows the anisotropies of the diffusion

tensors at the ME, where the deviations are more pro-
nounced. Isotropic diffusion tensors are found only in the

white-noise limit VR ≪ EσR
[36]. Conversely, for larger

values of VR, finite k components of the disorder con-
tribute. Then, we find that the self-energy Σ becomes
only slightly anisotropic and thus, that the anisotropy of
D0 is weakly affected. In contrast, the anisotropy of DB

is significantly affected. This is due to the second term
in Eq. (1), which couples j(E,k) to the disorder power

spectrum C̃(k) in the Boltzmann approximation. Most
importantly, we find that the anisotropy of the quantum
diffusion tensor D is significantly smaller than that of
DB. It confirms the strong renormalization of the trans-
port anisotropy by localization corrections. To under-
stand this behavior, let us rely on Eq. (6), which relates
D to DB and properties of the disorder-average effective
scattering medium. Conversely, away from the ME, the
localization corrections [second term in the bracket of
Eq. (6)] vanish and D ≃ DB. When approaching the ME
localization corrections increase, which tend to lower the
anisotropy of D. More precisely, at criticality, D ≃ 0
while DB 6= 0. Hence, D is solely determined by the
cancellation of the term inside the brackets in Eq. (6)
and DB becomes irrelevant. We can roughly estimate
the anisotropy at criticality by neglecting the width of
the pole in Eq. (6) and estimating all integrals in the
range where their integrands are maximal. This yields
Dz(Ec)/D

⊥(Ec) ∼ Dz
0(Ec)/D

⊥
0 (Ec) for short-range cor-

relations, which is consistent with the weak anisotropy of
the quantum diffusion tensor at criticality found numer-
ically in Fig. 2(c).

IV. CONCLUSION

In summary, we have shown that localization signif-
icantly affects transport anisotropy, especially near the
ME. Our results show that the anisotropy of the coherent
diffusion tensor is mainly determined by the properties of
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the disorder-averaged effective scattering medium while
the incoherent transport contributions are significantly
compensated by interference when approaching the ME.
More precisely, we find a small but finite anisotropy of
transport near the ME. Those results are obtained in the
framework of the approximation leading to Eq. (6), which
is satisfactory for the parameters used in this work. How-
ever, it slightly underestimates the anisotropy. Relaxing
this condition may slightly affect the coherent transport
anisotropy. Our results indicate that a significant devia-
tion from isotropy could be found in the case of strongly
anisotropic scattering properties, a case that should prob-
ably be investigated by going beyond the SCBA for com-
puting properties of the scattering medium. Our re-
sults provide insights into the theory of Anderson lo-
calization in anisotropic media and are directly relevant
to experiments on ultracold atoms in three-dimensional
anisotropic disorder [8–11]. In the future, it would be
interesting to compare our predictions to direct numer-
ical calculations using for instance an extension of the
method used in Ref. [34] to anisotropic disorder.
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Appendix A: Quantum transport formalism

The two-particle Green function Φk,k′(q, ω, E) de-
scribes the density propagation of a wave in a dis-
ordered medium. It is defined as Φk,k′(q, ω, E) ≡

〈k+|G(E+)|k
′
+〉〈k

′
−|G

†(E−)|k−〉 with G the retarded

Green operator, k± ≡ k ± q/2 and k′
± ≡ k′ ± q/2,

E± ≡ E ± ~ω/2, and (q, ω) the Fourier conjugates of
the space and time variables [37].

It is governed by the Bethe-Salpeter equation, which
can be formally written as [30]

Φ = G⊗G† +G⊗G†UΦ . (A1)

The first term in Eq. (A1) describes uncorrelated prop-
agation of the field and its conjugate in the disordered
medium. The second term involves the vertex function
U, which includes all irreducible scattering diagrams, and
accounts for all correlations in the density propagation.

The associated quantum kinetic equation reads [30, 38]

[ω − q ·∇kǫ0(k)] Φk,k′(q, ω, E) = (A2)

− (2π)dδ(k− k′)∆Gk(E,ω,q)

+

∫

dk′′

(2π)d
Uk′′,k(E,q, ω)

[

∆Gk′′(E,ω,q)Φk,k′(q, ω, E)

−∆Gk(E,ω,q)Φk′′,k′(q, ω, E)
]

,

where ǫ0(k) is the free dispersion relation (ǫ0(k) =
~
2k2/2m in our case, for particles in free space) and

∆Gk(E,ω,q) = G(E+,k+) − G†(E−,k−). The conser-
vation of the total quantum probability gives the Ward
identity which relates the vertex function to the single-
particle self-energy Σ associated to the average Green
function G:

∆Σk(E,ω,q) =

∫

dk′

(2π)d
Uk,k′(E,q, ω)∆Gk′(E,ω,q).

(A3)
The conservation of quantum probability, through the

Ward identity, guarantees a diffusion pole. In the long
time (ω → 0) and large distance (q → 0) limit, one can
therefore write Φ as [30, 39]:

Φk,k′(E,ω,q) =
−2

∫

dk
(2π)d

ImG(E,k)

φ(E,k,q)φ(E,k′,q)

−iω + q ·D(E) · q

(A4)
where D(E) is the diffusion tensor, and φ(E,k,q) is the
eigenfunction of the Bethe-Salpeter equation associated
with the hydrodynamic diffusion [which corresponds to
eigenvalue 0 as (q, ω → 0)]. The linearization of φ at
small q gives φ(E,k,q) = −ImG(E,k)− iq · j(E,k) [31],
where j is the static current vertex function [29, 40].
Fick’s law, which relates the diffusive flux to the con-

centration gradient in the diffusive regime (ω,q → 0)
reads J (E,ω,k,q) = −iD(E)qP(E,ω,k,q) in Fourier
space. The current density reads J (E,ω,k,q) =
∫

dk′

(2π)d
k′Φk,k′(E,ω,q), and the probability density

P(E,ω,k,q) =
∫

dk′

(2π)d
Φk,k′(E,ω,q). It gives the Kubo

formula for the diffusion tensor

Duv(E) =
~

m

1

πN(E)

∫

dk

(2π)d
kujv(E,k). (A5)

Expanding the quantum kinetic equation (A2) into
terms linear in q gives

j(E,k) =
k

2
|G(E,k)|2 −

1

2
∇kReG(E,k) (A6)

+|G(E,k)|2
∫

dk′

(2π)d
j(E,k′)Uk,k′(E,0)

+
1

2
|G(E,k)|2

∫

dk′

(2π)d
∇kReG(E,k′)Uk,k′(E,q).

Developing also the Ward identity (A3) permits us to
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find

j(E,k) =
k

2
|G(E,k)|2 −

1

2
∇kReG(E,k) (A7)

+
1

2
|G(E,k)|2 ∇kReΣ(E,k)

+|G(E,k)|2
∫

dk′

(2π)d
j(E,k′)Uk,k′(E,0)

−i|G(E,k)|2
∫

dk′

(2π)d
ImG(E,k′)∇qUk,k′(E,q)|q=0 .

Finally, we find the following expression:

j(E,k) = j0(E,k) (A8)

+ |G(E,k)|2
∫

dk′

(2π)d
j(E,k′)Uk,k′(E,0)

−i|G(E,k)|2
∫

dk′

(2π)d
ImG(E,k′)∇qUk,k′(E,q)|q=0 .

with j0(E,k) = [k+∇kReΣ(E,k)]
[

ImG(E,k′)
]2

−
1
2ReG(E,k)ImG(E,k)∇kImΣ(E,k). In this paper, we
have neglected the last term in Eq. (A8) as∇qUk,k′(E,q)
vanishes in the Boltzmann approximation, and is less di-
vergent than Uk,k′(E,q) itself for the maximally-crossed
diagrams.

Appendix B: Numerical method

When solving Eq. (1) for the current vertex function
j(E,k), we proceed by iterations. At stage n ≥ 1 we com-

pute j(n)(E,k) from j(n−1)(E,k) and the corresponding
D(n−1)(E) according to

j(n)(E,k) = j0(E,k) + |G(E,k)|2
∫

dk′

(2π)d
j(n−1)(E,k′)

×
[

UB

k,k′ + UMC

k,k′(D(n−1), E)
]

(B1)

and compute D(n)(E) from Eq. (2) We first solve the
Boltzmann case (U = UB), which we initialize with

j
(n=0) = j0. In the full calculation, we then use j

(n=0) =
jB, which improves the convergence. The procedure is
iterated until convergence of the norm of j.
The functions j(E,k) are represented in cylindrical co-

ordinates, which are adapted to the symmetry of our
problem. We discretize the integrals on a grid in spherical
coordinates, with up to 500 points in the radial direction
and 128 points for the angular coordinates. The different
functions appearing in the integral are interpolated us-
ing spline interpolation. We have checked that increasing
the grid generates negligible changes in the final results
and that our procedure gives consistent results in the
isotropic case.
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[25] M. Piraud, L. Pezzé, and L. Sanchez-Palencia, Europhys.

Lett. 99, 50003 (2012); New J. Phys. 15, 075007 (2013).
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