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Abstract

We show that if two Hopf algebras are monoidally equivalent, then their categories of bicovari-

ant differential calculi are equivalent. We then classify, for q ∈ C∗ not a root of unity, the finite

dimensional bicovariant differential calculi over the Hopf algebra Oq(SL2). Using a monoidal

equivalence between free orthogonal Hopf algebras and Oq(SL2) for a given q, this leads us to

the classification of finite dimensional bicovariant differential calculi over free orthogonal Hopf

algebras.

Introduction

The notion of differential calculus over a Hopf algebra has been introduced by Woronowicz in [Wor89],

with the purpose of giving a natural adaptation of differential geometry over groups, in the con-

text of quantum groups. An important question in this topic, is the classification of bicovariant

differential calculi over a given Hopf algebra, see for example [BS98], [Maj98] or [HS98].

The aim of the present paper is to classify the finite dimensional (first order) bicovariant differ-

ential calculi over an important class of Hopf algebras, namely the free orthogonal Hopf algebras,

also called Hopf algebras associated to non-degenerate bilinear forms [DVL90]. Given an invertible

matrix E ∈ GLn(C) with n > 2, the free orthogonal Hopf algebra B(E) associated with E is the

universal Hopf algebra generated by a family of elements (aij)16i,j6n submitted to the relations:

E−1atEa = In = aE−1atE,

where a is the matrix (aij)16i,j6n. Its coproduct, counit and antipode are defined by:

∆(aij) =
n
∑

k=1

aik ⊗ akj, ε(a) = In, S(a) = E−1atE.
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The Hopf algebra B(E) can also be obtained as an appropriate quotient of the FRT bialgebra

associated to Yang-Baxter operators constructed by Gurevich [Gur91].

If EE = λIn, with λ ∈ R
∗, there exists an involution ∗ on B(E) defined by a∗

ij =
(

E−1atE
)

ji
,

endowing B(E) with a Hopf ∗-algebra structure. This Hopf ∗-algebra corresponds to a free or-

thogonal compact quantum group as defined in [VDW96] or [Ban96], and is generally denoted by

Ao((Et)−1). This justifies the term “free orthogonal Hopf algebra” for B(E).

The starting point of our classification is a result of [Bic03], which states that if q ∈ C
∗ satisfies

q2 + tr(E−1Et)q + 1 = 0, then the Hopf algebras B(E) and Oq(SL2) are monoidally equivalent,

i.e. their categories of comodules are monoidally equivalent. The proof of [Bic03], is based on a

deep result of Schauenburg [Sch96], and gives an explicit description of the correspondence between

B(E)-comodules and Oq(SL2)-comodules. We use here similar arguments to show that if two

Hopf algebras are monoidally equivalent, then their categories of bicovariant differential calculi are

equivalent (Theorem 2.6). This theorem generalizes a result of [MO99], where the two monoidally

equivalent Hopf algebras are assumed to be related by a cocycle twist. Applying Theorem 2.6 to

the Hopf algebras B(E) and Oq(SL2), the study of bicovariant differential calculi over the Hopf

algebra B(E) is simplified, and therefore reduces to the study of bicovariant differential calculi over

Oq(SL2).

This classification has been made over Oq(SL2) in [HS98] for transcendental values of q (which

is not the case here since q has to satisfy q2 +tr(E−1Et)q+1 = 0). Our classification uses a different

approach than in [HS98], and is based on the classification of the finite dimensional Oq(SL2)-Yetter-

Drinfeld modules made in [Tak92].

The paper is organized as follows. We gather in the first section some known results about

bicovariant differential calculi over Hopf algebras, and their formulation in terms of Yetter-Drinfeld

modules. Furthermore, we show that if the category of Yetter-Drinfeld modules over a Hopf algebra

H is semisimple, then the bicovariant differential calculi over H are inner. In Section 2, using

the language of cogroupoids [Bic], we prove that two monoidally equivalent Hopf algebras have

equivalent categories of bicovariant differential calculi. We finally classify in Section 3 the finite

dimensional bicovariant differential calculi over the Hopf algebra Oq(SL2) for q ∈ C
∗ not a root of

unity, using the fact that by [Tak92] the category of finite dimensional Yetter-Drinfeld modules over

Oq(SL2) is semisimple. This allows to classify the finite dimensional bicovariant differential calculi

over B(E), provided that the solutions of the equation q2 + tr(E−1Et)q + 1 = 0 are not roots of

unity.

Notations and Conventions

Let H be a Hopf algebra. Its comultiplication, antipode and counit will respectively be denoted by

∆, S and ε. A coaction of a left (respectively right) H-comodule will generally be denoted by λ

(respectively ρ).

We will use Sweedler’s notations: ∆(x) =
∑

x(1) ⊗ x(2) for x ∈ H, and ρ(v) =
∑

v(0) ⊗ v(1) for

v in a right comodule V .
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1. Bicovariant differential calculi

We start this section by recalling the definition of a bicovariant differential calculus, and of the

equivalent notion, expressed in terms of Yetter-Drinfeld modules (called reduced differential calculus

in this paper). We then prove some basic lemmas which will be useful in the sequel. The main

result of this section states that if the category of (finite dimensional) Yetter-Drinfeld modules over

a Hopf algebra H is semisimple, then the (finite dimensional) bicovariant differential calculi over H

are inner.

We refer to [KS97] for background material on Hopf algebras and comodules.

Definition 1.1. Let H be a Hopf algebra. A Hopf bimodule M over H is an H-bimodule together

with a left comodule structure λ : M → H ⊗ M and a right comodule structure ρ : M → M ⊗ H

such that:

• ∀x, y ∈ H, ∀v ∈ M , λ(x.v.y) = ∆(x).λ(v).∆(y),

• ∀x, y ∈ H, ∀v ∈ M , ρ(x.v.y) = ∆(x).ρ(v).∆(y),

• (idH ⊗ ρ) ◦ λ = (λ ⊗ idH) ◦ ρ.

The category of Hopf bimodules over H, whose morphisms are the maps which are right and left

linear and colinear over H, is denoted by H
HMH

H .

Definition 1.2. Let H be a Hopf algebra. A (right) Yetter-Drinfeld module over H is a right

H-module and a right H-comodule V such that:

∀x ∈ H, ∀v ∈ V,
∑

(v.x)(0) ⊗ (v.x)(1) =
∑

v(0).x(2) ⊗ S(x(1))v(1)x(3).

The category of Yetter-Drinfeld modules over H, whose morphisms are the maps which are both

linear and colinear over H, is denoted by YD(H). The category of finite dimensional Yetter-Drinfeld

modules over H is denoted by YDf (H).

Example 1.3. Let H be a Hopf algebra. We denote by Cε the Yetter-Drinfeld module whose

base-space is C, with right coaction λ 7→ λ ⊗ 1 and right module structure defined by λ ⊳ x = λε(x)

for λ ∈ Cε and x ∈ H.

We recall from [Sch94] the correspondence between Yetter-Drinfeld modules and Hopf bimodules.

Theorem 1.4 ([Sch94, Theorem 5.7]) − Let H be a Hopf algebra. The categories H
HMH

H and YD(H)

are equivalent.

We describe for convenience the equivalence of categories involved in the previous theorem.

Let M be a Hopf bimodule over H, with right coaction ρ and left coaction λ. The space
invM = {v ∈ M ; λ(v) = 1 ⊗ v} of left-coinvariant elements of M has a Yetter-Drinfeld module

structure defined as follows. We have ρ(invM) ⊂ invM ⊗ H, and the right coaction of invM is just

the restriction of ρ to invM . The right module structure is defined by w ⊳ x =
∑

S(x(1)).w.x(2).

3



Conversely, given a Yetter-Drinfeld module V , then the space H ⊗ V can be equipped with a

Hopf bimodule structure, with left and right actions given by:

x.(y ⊗ v).z =
∑

xyz(1) ⊗ v ⊳ z(2),

and the right (ρ) and left (λ) coactions given by:

ρ(x ⊗ v) =
∑

x(1) ⊗ v(0) ⊗ x(2)v(1),

λ(x ⊗ v) =
∑

x(1) ⊗ x(2) ⊗ v.

We then have for M ∈ H
HMH

H , M ∼= H ⊗ invM and for V ∈ YD(H), V ∼= inv(H ⊗ V ). The

equivalence of categories between H
HMH

H and YD(H) is then:

F : H
HMH

H → YD(H)

M 7→ invM,

with quasi-inverse G : YD(H) → H
HMH

H

V 7→ H ⊗ V.

A morphism f : M → N in H
HMH

H automatically satisfies f(invM) ⊂ invN , and F(f) : invM →
invN is just the restriction of f . Conversely, if f : V → W is a morphism of Yetter-Drinfeld modules,

then G(f) = idH ⊗ f .

Definition 1.5. Let H be a Hopf algebra. A (first order) bicovariant differential calculus (M, d)

over H is a Hopf bimodule M together with a left and right comodule morphism d : H → M such

that ∀x, y ∈ H, d(xy) = x.d(y) + d(x).y and such that M = span{x.d(y) ; x, y ∈ H}.

A bicovariant differential calculus (M, d) is said inner if there exists a bi-coinvariant element

θ ∈ M (i.e. satisfying ρ(θ) = θ ⊗ 1 and λ(θ) = 1 ⊗ θ) such that ∀x ∈ H, d(x) = θ.x − x.θ.

The dimension of a bicovariant differential calculus (M, d) is the dimension of the vector space
invM .

A morphism of bicovariant differential calculi f : (M, dM ) → (N, dN ) is a morphism of Hopf

bimodules such that f ◦ dM = dN .

We denote by DC(H) the category of bicovariant differential calculi over H.

Bicovariant differential calculi were introduced by Woronowicz in [Wor89]. An overview is given

in [KS97, Part IV.]. The notion of bicovariant differential calculus has the following interpretation

in terms of Yetter-Drinfeld modules.

Definition 1.6. Let H be a Hopf algebra. A reduced differential calculus over H is a Yetter-Drinfeld

module V together with a surjective map ω : H → V satisfying:

∀x, y ∈ H, ω(xy) = ω(x).y + ε(x)ω(y) and
∑

ω(x)(0) ⊗ ω(x)(1) =
∑

ω(x(2)) ⊗ S(x(1))x(3).

A morphism of reduced differential calculi f : (V, ωV ) → (W, ωW ) is a morphism of Yetter-

Drinfeld modules such that f ◦ ωV = ωW .

We denote by RDC(H) the category of reduced differential calculi over H.
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Lemma 1.7 − The equivalence of categories of Theorem 1.4 induces an equivalence between the

categories DC(H) and RDC(H):

F : DC(H) → RDC(H)

(M, d) 7→ (invM, ωd)

with quasi-inverse G : RDC(H) → DC(H)

(V, ω) 7→ (H ⊗ V, dω)

where for x ∈ H, ωd(x) =
∑

S(x(1))d(x(2)) and dω(x) =
∑

x(1) ⊗ ω(x(2)).

Proof. The one-to-one correspondence between bicovariant differential calculi and reduced differ-

ential calculi is described in [KS97, Section 14]. We may now focus on the functoriality of this

correspondence.

If f : (M, dM ) → (N, dN ) is a morphism of bicovariant differential calculi, then the restriction

of f , F(f) : invM → invN satisfies for all x ∈ H,

F(f) ◦ ωdM
(x) =

∑

f
(

S(x(1))dM (x(2))
)

=
∑

S(x(1))f(dM (x(2))) =
∑

S(x(1))dN (x(2)) = ωdN
(x).

Hence F(f) is a morphism of reduced differential calculi.

Conversely, if f : (V, ωV ) → (W, ωW ) is a morphism of reduced differential calculi, then

(idH ⊗ f) ◦ dωV
(x) =

∑

x(1) ⊗ f(ωV (x(2))) =
∑

x(1) ⊗ ωW (x(2)) = dωW
(x).

Thus G(f) = idH ⊗ f is a morphism of bicovariant differential calculi.

Since F and G are quasi-inverse to each other between the categories YD(H) and H
HMH

H , it only

remains to check that the natural transformation providing the equivalence F ◦G ∼= id (respectively

G ◦ F ∼= id) consists of morphisms of reduced (respectively bicovariant) differential calculi. Let

(V, ω) be a reduced differential calculus over H. The isomorphism of Yetter-Drinfeld modules

θ : F ◦ G(V ) = inv(H ⊗ V ) → V

x ⊗ v 7→ ε(x)v

satisfies for x ∈ H,

θ ◦ ωdω
(x) = θ

(

∑

S(x(1))dω(x(2))
)

= θ
(

∑

S(x(1))x(2) ⊗ ω(x(3))
)

= θ(1 ⊗ ω(x)) = ω(x).

Thus θ is an isomorphism of reduced differential calculi.

Conversely, let (M, d) be a bicovariant differential calculus over H. The isomorphism of Hopf

bimodules

γ : G ◦ F(M) = H ⊗ invM → M

x ⊗ v 7→ x.v

satisfies for x ∈ H,

γ ◦ dωd
(x) = γ

(

∑

x(1) ⊗ ωd(x(2))
)

= γ
(

∑

x(1) ⊗ S(x(2))d(x(3))
)

=
∑

ε(x(1))d(x(2)) = d(x).

Hence γ is a morphism of bicovariant differential calculi, which ends the proof.
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Remark 1.8. Let V be a Yetter-Drinfeld module, and let ω : H → V be a map satisfying all the

axioms of a reduced differential calculus, except the surjectivity condition. Then Im(ω) is a Yetter-

Drinfeld submodule of V . Indeed, we have ω(x).y = ω(xy) − ε(x)ω(y) = ω(xy − ε(x)y) ∈ Im(ω) for

all x, y ∈ H, thus Im(ω) is a submodule of V , and
∑

ω(x)(0) ⊗ ω(x)(1) =
∑

ω(x(2)) ⊗ S(x(1))x(3) ∈

Im(ω) ⊗ H, thus Im(ω) is a subcomodule of V .

Definition 1.9. A reduced differential calculus (V, ω) is said inner if there exists a coinvariant

element θ ∈ V (i.e. satisfying ρ(θ) = θ ⊗ 1) such that ∀x ∈ H, ω(x) = θ.x − ε(x)θ.

A reduced differential calculus ω : H → V is said simple if V is a simple Yetter-Drinfeld

module. That is to say, if there is no non-trivial subspace W ⊂ V , which is both a submodule and

a subcomodule of V .

Let (V, ω), (W1, ω1), (W2, ω2) be reduced differential calculi. We say that (V, ω) is the direct

sum of (W1, ω1) and (W2, ω2) and we write (V, ω) = (W1, ω1) ⊕ (W2, ω2), if V = W1 ⊕ W2 and if for

all x ∈ H, ω(x) = (ω1(x), ω2(x)).

Note that the direct sum of reduced differential calculi is not always well defined. The problem

is that if (V, ωV ) and (W, ωW ) are reduced differential calculi over a Hopf algebra H, then the map

ω : H → V ⊕ W

x 7→ (ωV (x), ωW (x))

can fail to be surjective. We give in the next lemma a necessary and a sufficient condition for the

existence of the direct sum of simple reduced differential calculi.

Lemma 1.10 − Let (V1, ω1), . . . , (Vn, ωn) be simple reduced differential calculi over a Hopf algebra

H. We set

ω : H → V =
n
⊕

i=1
Vi

x 7→ (w1(x), . . . , wn(x))

.

If the Vi’s are two-by-two non isomorphic as Yetter-Drinfeld modules, then (V, ω) is a reduced

differential calculus.

Conversely, if (V, ω) is a reduced differential calculus, then the reduced differential calculi (Vi, ωi)

are two-by-two non-isomorphic.

Proof. The map ω clearly satisfies all the axioms of a reduced differential calculus, except the

surjectivity condition. In order to prove the lemma, we thus have to examine under which conditions

ω is onto. Assume that the Vi’s are two-by-two non-isomorphic (as Yetter-Drinfeld modules).

According to Remark 1.8, the image of ω is a Yetter-Drinfeld submodule of V . There is therefore a

subset I ⊂ {1, . . . , n} such that there exists an isomorphism of Yetter-Drinfeld modules f : Im(ω) →
⊕

i∈I

Vi. For k ∈ {1, . . . , n}, we denote by πk : V → Vk the canonical projection. The map πk ◦ω = ωk

is onto, thus the restriction of πk to Im(ω) is also onto. This means that πk induces a non-zero

morphism of Yetter-Drinfeld modules
⊕

i∈I

Vi → Vk, hence an isomorphism of Yetter-Drinfeld modules
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Vl
∼= Vk, with l ∈ I. Since by hypothesis the Vi’s are two-by-two non-isomorphic, we have k = l,

hence k ∈ I. Thus I = {1, . . . , n}, Im(ω) = V , and we conclude that ω : H → V is a reduced

differential calculus.

Assume now that there is an isomorphism f : (Vj , ωj) → (Vi, ωi) with i 6= j. We denote by

η : H → Vi ⊕ Vi the map defined by the composition

H
ω // V

πi⊕πj // Vi ⊕ Vj
id⊕f // Vi ⊕ Vi.

The map η is clearly not surjective, since η(x) = (ωi(x), f ◦ ωj(x)) = (ωi(x), ωi(x)). This implies

that ω is not surjective, since πi ⊕ πj and id ⊕ f are both surjective.

Lemma 1.11 − Let V be a simple Yetter-Drinfeld module over a Hopf algebra H, admitting a

non-zero right-coinvariant element θ ∈ V . If V is not isomorphic to the Yetter-Drinfeld module Cε

(of Example 1.3), then the map

ωθ : H → V

x 7→ θ.x − ε(x)θ

defines a reduced differential calculus over H.

Proof. We have for x ∈ H,

ωθ(x).y + ε(x)ωθ(y) = (θ.x − ε(x)θ).y + ε(x)(θ.y − ε(y)θ)

= (θ.x).y − ε(x)ε(y)θ = ωθ(xy)

and

ρ ◦ ωθ(x) = ρ(θ.x) − ε(x)θ ⊗ 1

=
∑

θ.x(2) ⊗ S(x(1)).1.x(3) − ε(x)θ ⊗ 1

=
∑

θ.x(2) ⊗ S(x(1))x(3) −
∑

ε(x(2))θ ⊗ S(x(1))x(3)

=
∑

ωθ(x(2)) ⊗ S(x(1))x(3).

By Remark 1.8, the image of ωθ is thus a Yetter-Drinfeld submodule of V . Since V is simple, the

image of ωθ is either V , in which case ωθ is indeed a reduced differential calculus, or Im(ωθ) = (0). In

that case, since θ is coinvariant and θ.x = ε(x)θ for all x ∈ H, the map µ : Cε → V given by µ(λ) =

λθ is a non-zero morphism between simple Yetter-Drinfeld modules, hence an isomorphism.

The end of this section is devoted to the proof of the following lemma.

Lemma 1.12 − Let H be a Hopf algebra such that the category YDf (H) is semisimple (i.e. each

finite dimensional Yetter-Drinfeld module over H can be decomposed into a direct sum of simple

Yetter-Drinfeld modules). Then each finite dimensional reduced differential calculus over H is inner.
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Definition 1.13. Let (V, ω) be a reduced differential calculus. We denote by Vω the Yetter-Drinfeld

module over H defined as follows. As a right comodule, Vω = V ⊕C (where the H-comodule structure

on C is the canonical one: λ → λ ⊗ 1). Its right module structure is defined for v ∈ V , λ ∈ C and

x ∈ H by: (v, λ).x = (v.x + λω(x), λε(x)). Let us check that this formula defines an H-module

structure on V ⊕ C. We have

((v, λ).x).y = (v.x + λω(x), λε(x)).y = ((v.x + λω(x)).y + λε(x)ω(y), λε(x)ε(y))

= (v.(xy) + λω(xy), λε(xy)) = (v, λ).(xy),

and the other axioms of a right module are clearly satisfied. Before checking that the Yetter-Drinfeld

condition is satisfied on Vω, let us note that, denoting by j : V → V ⊕C the canonical injection, and

by p : V ⊕ C → Cε the canonical projection, then clearly j and p are both module and comodule

maps, and the short sequence:

0 // V
j // Vω

p // Cε
// 0

is exact. Since V is a Yetter-Drinfeld module and j : V → Vω is a module and comodule morphism,

the Yetter-Drinfeld condition:

∀x ∈ H, ρ(w.x) =
∑

w(0).x(2) ⊗ S(x(1))w(1)x(3)

is automatically satisfied for w ∈ j(V ). Hence it only remains to check that the Yetter-Drinfeld

condition is also satisfied on C, that is, that for all x in H, ρ((0, 1).x) =
∑

(0, 1).x(2) ⊗ S(x(1))x(3).

We have for x ∈ H

∑

(0, 1).x(2) ⊗ S(x(1))x(3) =
∑

(ω(x(2)), ε(x(2))) ⊗ S(x(1))x(3)

= (j ⊗ id)
(

∑

ω(x(2)) ⊗ S(x(1))x(3)

)

+ (0, 1) ⊗ ε(x)

= (j ⊗ id) ◦ ρ(ω(x)) + (0, 1) ⊗ ε(x)

= ρ(j(ω(x))) + ρ(0, ε(x)) = ρ(ω(x), ε(x)) = ρ((0, 1).x),

hence Vω is indeed a Yetter-Drinfeld module, and

0 // V
j // Vω

p // Cε
// 0

is a short exact sequence of Yetter-Drinfeld modules.

Lemma 1.14 − A reduced differential calculus (V, ω) is inner if and only if the short exact sequence

of Yetter-Drinfeld modules

0 // V
j // Vω

p // Cε
// 0

splits.
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Proof. Assume first that (V, ω) is inner. Let θ ∈ V be a right-coinvariant element such that

ω = x 7→ θ.x − ε(x)θ. We set

r : Vω → V

(v, λ) 7→ v + λθ.

It is a comodule morphism since for v ∈ V , λ ∈ C,

(r ⊗ id) ◦ ρ(v, λ) = (r ⊗ id) ◦ ρ ◦ j(v) + (r ⊗ id)((0, λ) ⊗ 1) = ((r ◦ j) ⊗ id) ◦ ρ(v) + λθ ⊗ 1

= ρ(v) + λρ(θ) = ρ ◦ r(v, λ).

And we have for v ∈ V , λ ∈ C and x ∈ H,

r((v, λ).x) = r(v.x + λω(x), λε(x)) = v.x + λθ.x − λε(x)θ + λε(x)θ = (v + λθ).x = r(v, λ).x.

Hence r is a Yetter-Drinfeld module morphism satisfying r ◦ j = idV , so that the above sequence

splits.

Assume conversely that the short exact sequence of Yetter-Drinfeld modules associated to (V, ω)

splits:

0 // V
j // Vω = V ⊕ C

r

ee
p // Cε

// 0.

We set θ = r(0, 1). Then ρ(θ) = ρ ◦ r(0, 1) = (r ⊗ id) ◦ ρ(0, 1) = θ ⊗ 1 and for x ∈ H,

θ.x − ε(x)θ = r((0, 1).x) − r(0, ε(x)) = r ((ω(x), ε(x)) − (0, ε(x))) = r(j(ω(x))) = ω(x).

Hence the result.

Lemma 1.12 follows immediately.

2. Monoidal equivalence

We show in this section that if two Hopf algebras are monoidally equivalent, then their categories

of bicovariant differential calculi are also equivalent. In order to describe the equivalence between

the categories DC(H) and DC(L), when H and L are monoidally equivalent Hopf algebras, we will

need some definitions and results about cogroupoids, which we recall here. We refer to [Bic] for a

survey on the subject.

Definition 2.1. A cocategory C consists of:

• a set of objects ob(C),

• for all X, Y ∈ ob(C), an algebra C(X, Y ),
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• for all X, Y, Z ∈ ob(C), algebra morphisms ∆Z
X,Y : C(X, Y ) → C(X, Z) ⊗ C(Z, Y ) and εX :

C(X, X) → C such that for all X, Y, Z, T ∈ ob(C), the following diagrams commute:

C(X, Y )
∆Z

X,Y //

∆T
X,Y

��

C(X, Z) ⊗ C(Z, Y )

id⊗∆T
Z,Y

��
C(X, T ) ⊗ C(T, Y )

∆Z
X,T

⊗id

// C(X, Z) ⊗ C(Z, T ) ⊗ C(T, Y )

C(X, Y )

◗

◗

◗

◗

◗

◗

◗

◗

◗

◗

◗

◗

◗

◗

◗

◗

◗

◗

◗

◗

◗

◗

◗

◗

◗

◗

∆X
X,Y // C(X, X) ⊗ C(X, Y )

εX⊗id

��
C(X, Y )

C(X, Y )

◗

◗

◗

◗

◗

◗

◗

◗

◗

◗

◗

◗

◗

◗

◗

◗

◗

◗

◗

◗

◗

◗

◗

◗

∆Y
X,Y // C(X, Y ) ⊗ C(Y, Y )

id⊗εY

��
C(X, Y )

A cocategory is said to be connected if for all X, Y ∈ ob(C), C(X, Y ) is a non-zero algebra.

Definition 2.2. A cogroupoid C is a cocategory equipped with linear maps SX,Y : C(X, Y ) →

C(Y, X) such that for all X, Y ∈ ob(C), the following diagrams commute:

C(X, X)
εX //

∆Y
X,X

��

C
u // C(Y, X)

C(X, Y ) ⊗ C(Y, X)
SX,Y ⊗id

// C(Y, X) ⊗ C(Y, X)

m

OO

C(X, X)
εX //

∆Y
X,X

��

C
u // C(X, Y )

C(X, Y ) ⊗ C(Y, X)
id⊗SY,X

// C(X, Y ) ⊗ C(X, Y )

m

OO

where m denotes the multiplication and u the unit.

We will use Sweedler notations for cogroupoids:

for aX,Y ∈ C(X, Y ), ∆Z
X,Y (aX,Y ) =

∑

a
X,Z

(1) ⊗ a
Z,Y

(2) .

Theorem 2.3 ([Bic, Proposition 1.16 and Theorem 6.1]) − Let H and L be two Hopf algebras

such that there exists a linear monoidal equivalence between their categories of right comodules MH

and ML. Then there exists a linear monoidal equivalence between YD(H) and YD(L), inducing

an equivalence between the categories of finite dimensional Yetter-Drinfeld modules YDf (H) and

YDf (L).

Let us recall the construction of this equivalence. As a consequence of [Sch96], restated in the

context of cogroupoids, the existence of a linear monoidal equivalence between the categories MH

and ML is equivalent to the existence of a connected cogroupoid C and two objects X, Y ∈ ob(C)
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such that H ∼= C(X, X) and L ∼= C(Y, Y ) (see [Bic, Theorem 2.10]). Then the equivalence between

the categories YD(H) and YD(L) is given by the functor:

FY
X : YD(C(X, X)) → YD(C(Y, Y ))

V 7→ V �
C(X,X)

C(X, Y ),

where

V �
C(X,X)

C(X, Y ) =

{

∑

i

vi ⊗ a
X,Y
i ∈ V ⊗ C(X, Y ) ;

∑

vi(0) ⊗ v
X,X

i(1) ⊗ a
X,Y
i =

∑

vi ⊗ a
X,X

i(1) ⊗ a
X,Y

i(2)

}

.

The right L ∼= C(Y, Y )-module structure of V �
C(X,X)

C(X, Y ) is given by:

(

∑

i

vi ⊗ a
X,Y
i

)

⊳ bY,Y =
∑

i

vi.b
X,X

(2) ⊗ SY,X(bY,X

(1) )aib
X,Y

(3)

and its right comodule structure is given by the map idV ⊗ ∆Y
X,Y . The quasi-inverse of FY

X is

the functor FX
Y . By [Bic, Proposition 1.16], the functor FY

X induces an equivalence between the

categories of finite dimensional Yetter-Drinfeld modules YDf (H) and YDf (L).

Lemma 2.4 − Let C be a cogroupoid and let X, Y be in ob(C) such that C(Y, X) 6= (0). Let

ω : C(X, X) → V be a reduced differential calculus over C(X, X). The map

ω : C(Y, Y ) → V �
C(X,X)

C(X, Y )

aY,Y 7→
∑

ω(aX,X

(2) ) ⊗ SY,X(aY,X

(1) )aX,Y

(3)

is a reduced differential calculus over C(Y, Y ).

Proof. We already know, by the previous theorem, that V �
C(X,X)

C(X, Y ) is a Yetter-Drinfeld

module over C(Y, Y ). We firstly have to check that the map ω is well defined, which is to say, we

have to check that

∑

ω(aX,X

(2) )(0) ⊗ ω(aX,X

(2) )(1) ⊗ SY,X(aY,X

(1) )aX,Y

(3) =
∑

ω(aX,X

(2) ) ⊗ ∆X
X,Y

(

SY,X(aY,X

(1) )aX,Y

(3)

)

.

On the one hand, we have:

∑

ω(aX,X

(2) )(0) ⊗ ω(aX,X

(2) )(1) ⊗ SY,X(aY,X

(1) )aX,Y

(3) =
∑

ω(aX,X

(3) ) ⊗ SX,X(aX,X

(2) )aX,X

(4) ⊗ SY,X(aY,X

(1) )aX,Y

(5) .

And on the other hand,

∆X
X,Y

(

SY,X(aY,X)bX,Y
)

= ∆X
X,Y (SY,X(aY,X))∆X

X,Y (bX,Y )

=
∑

(

SX,X(aX,X

(2) ) ⊗ SY,X(aY,X

(1) )
) (

b
X,X

(1) ⊗ b
X,Y

(2)

)

=
∑

SX,X(aX,X

(2) )bX,X

(1) ⊗ SY,X(aY,X

(1) )bX,Y

(2)

11



so that

∑

ω(aX,X

(2) ) ⊗ ∆X
X,Y

(

SY,X(aY,X

(1) )aX,Y

(3)

)

=
∑

ω(aX,X

(3) ) ⊗ SX,X(aX,X

(2) )aX,X

(4) ⊗ SY,X(aY,X

(1) )aX,Y

(5)

which shows that ω : C(Y, Y ) → V �
C(X,X)

C(X, Y ) is well defined.

We have

ω(aY,Y ) ⊳ bY,Y =
∑

(

ω(aX,X

(2) ) ⊗ SY,X(aY,X

(1) )aX,Y

(3)

)

⊳ bY,Y

=
∑

ω(aX,X

(2) ).bX,X

(2) ⊗ SY,X(bY,X

(1) )SY,X(aY,X

(1) )aX,Y

(3) b
X,Y

(3) .

Consequently, we have

ω(aY,Y bY,Y ) =
∑

ω(aX,X

(2) b
X,X

(2) ) ⊗ SY,X(aY,X

(1) b
Y,X

(1) )aX,Y

(3) b
X,Y

(3)

=
∑

ω(aX,X

(2) ).bX,X

(2) ⊗ SY,X(aY,X

(1) b
Y,X

(1) )aX,Y

(3) b
X,Y

(3)

+
∑

εX(aX,X

(2) )ω(bX,X

(2) ) ⊗ SY,X(aY,X

(1) b
Y,X

(1) )aX,Y

(3) b
X,Y

(3)

= ω(aY,Y ) ⊳ bY,Y +
∑

ω(bX,X

(2) ) ⊗ SY,X(bY,X

(1) )SY,X(aY,X

(1) )aX,Y

(2) b
X,Y

(3)

= ω(aY,Y ) ⊳ bY,Y + εY (aY,Y )ω(bY,Y ).

Denoting ρ = idV ⊗ ∆Y
X,Y the C(Y, Y )-comodule structure of V �

C(X,X)
C(X, Y ), we have for all

aY,Y ∈ C(Y, Y ),

ρ ◦ ω(aY,Y ) =
∑

ω(aX,X

(2) ) ⊗ ∆Y
X,Y

(

SY,X(aY,X

(1) )aX,Y

(3)

)

=
∑

ω(aX,X

(3) ) ⊗ SY,X(aY,X

(2) )aX,Y

(4) ⊗ SY,Y (aY,Y

(1) )aY,Y

(5)

=
∑

ω(aY,Y

(2) ) ⊗ SY,Y (aY,Y

(1) )aY,Y

(3) .

Now, in order to prove the lemma, it only remains to check that ω is onto. Let
∑

i

vi ⊗ a
X,Y
i be

in V �
C(X,X)

C(X, Y ) and let ϕ : C(Y, X) → C be a linear map satisfying ϕ(1) = 1. We have

∑

i

vi(0) ⊗ v
X,X

i(1) ⊗ a
X,Y
i =

∑

i

vi ⊗ a
X,X

i(1) ⊗ a
X,Y

i(2)

since
∑

i

vi ⊗ a
X,Y
i is in V �

C(X,X)
C(X, Y ). Applying idV ⊗ ∆Y

X,X ⊗ idC(X,Y ) on both sides, we find

∑

i

vi(0) ⊗ v
X,Y

i(1) ⊗ v
Y,X

i(2) ⊗ a
X,Y
i =

∑

i

vi ⊗ a
X,Y

i(1) ⊗ a
Y,X

i(2) ⊗ a
X,Y

i(3) .

This shows that

∑

i

ϕ
(

v
Y,X

i(2) SX,Y (aX,Y
i )

)

vi(0) ⊗ v
X,Y

i(1) =
∑

i

ϕ
(

a
Y,X

i(2) SX,Y (aX,Y

i(3) )
)

vi ⊗ a
X,Y

i(1)

=
∑

i

εY (aY,Y

i(2) )vi ⊗ a
X,Y

i(1) =
∑

i

vi ⊗ a
X,Y
i .
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Since ω : C(X, X) → V is onto, there exists b
X,X
i ∈ C(X, X) such that ω(bX,X

i ) = vi.

We have then

∑

vi(0) ⊗ v
X,X

i(1) =
∑

ω(bX,X
i )(0) ⊗ ω(bX,X

i )(1) =
∑

ω(bX,X

i(2) ) ⊗ SX,X(bX,X

i(1) )bX,X

i(3) ,

so that

∑

vi(0) ⊗ v
X,Y

i(1) ⊗ v
Y,X

i(2) =
∑

ω(bX,X

i(3) ) ⊗ SY,X(bY,X

i(2) )bX,Y

i(4) ⊗ SX,Y (bX,Y

i(1) )bY,X

i(5) .

We have therefore

∑

i

vi ⊗ a
X,Y
i =

∑

i

ϕ
(

v
Y,X

i(2) SX,Y (aX,Y
i )

)

vi(0) ⊗ v
X,Y

i(1)

=
∑

i

ϕ
(

SX,Y (bX,Y

i(1) )bY,X

i(5) SX,Y (aX,Y
i )

)

ω(bX,X

i(3) ) ⊗ SY,X(bY,X

i(2) )bX,Y

i(4)

=
∑

i

ϕ
(

SX,Y (bX,Y

i(1) )bY,X

i(3) SX,Y (aX,Y
i )

)

ω(bY,Y

i(2) )

which allows to conclude that ω is onto.

Remark 2.5. If ω : C(X, X) → V is an inner reduced differential calculus, let θ ∈ V be a right-

coinvariant element such that ∀aX,X ∈ C(X, X), ω(aX,X) = θ.aX,X − εX(aX,X)θ. We then have

∀aY,Y ∈ C(Y, Y ), ω(aY,Y ) =
∑

ω(aX,X

(2) ) ⊗ SY,X(aY,X

(1) )aX,Y

(3)

=
∑

(θ.a
X,X

(2) − εX(aX,X

(2) )θ) ⊗ SY,X(aY,X

(1) )aX,Y

(3)

=
∑

θ.a
X,X

(2) ⊗ SY,X(aY,X

(1) )aX,Y

(3) − θ ⊗ εY (aY,Y )

= (θ ⊗ 1) ⊳ aY,Y − εY (aY,Y )(θ ⊗ 1).

Consequently, ω is an inner reduced differential calculus, whose corresponding right-coinvariant

element is θ ⊗ 1.

Combining the previous lemma with Theorem 2.3, we obtain the main result of this section. It

generalizes a result of [MO99], where the two monoidally equivalent Hopf algebras are assumed to

be related by a cocycle twist.

Theorem 2.6 − Let H and L be two Hopf algebras such that there exists a linear monoidal equiv-

alence between their categories of right comodules MH and ML. Then there exists an equivalence

between the categories:

• of bicovariant differential calculi DC(H) and DC(L),

• of finite dimensional bicovariant differential calculi DCf (H) and DCf (L).
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Proof. Let C be a connected cogroupoid such that there exist X, Y ∈ ob(C) satisfying C(X, X) ∼= H

and C(Y, Y ) ∼= L. We consider the functor induced by Theorem 2.3 and the previous lemma:

FY
X : RDC(H) → RDC(L)

(V, ω) 7→ (V �
H

C(X, Y ), ω)

which sends a morphism f : V → W in RDC(H), to FY
X (f) = f ⊗ id : V �

H
C(X, Y ) → W �

H
C(X, Y ).

It is known to be a morphism of Yetter-Drinfeld modules, and one easily checks that it is a morphism

of reduced differential calculi.

Since FY
X is an equivalence between the categories of Yetter-Drinfeld modules over H and L, with

quasi-inverse FX
Y , we only have to check that the natural transformation providing the equivalence

FY
X ◦ FX

Y
∼= id consists of morphisms of reduced differential calculi. In other words, we have to

check that, for all (V, ω) ∈ RDC(H), the morphism of Yetter-Drinfeld modules:

θV : V → (V �
H

C(X, Y ))�
L

C(Y, X)

v 7→
∑

v(0) ⊗ v
X,Y

(1) ⊗ v
Y,X

(2)

is a morphism of reduced differential calculi. We have for aX,X ∈ H ∼= C(X, X),

θV ◦ ω(aX,X) =
∑

(id ⊗ ∆Y
X,X)

(

ω(aX,X

(2) ) ⊗ SX,X(aX,X

(1) )aX,X

(3)

)

=
∑

ω(aX,X

(3) ) ⊗ SY,X(aY,X

(2) )aX,Y

(4) ⊗ SX,Y (aX,Y

(1) )aY,X

(5)

=
∑

ω(aY,Y

(2) ) ⊗ SX,Y (aX,Y

(1) )aY,X

(3) = ω(aX,X).

Thus θV is a morphism of reduced differential calculi, and FY
X is an equivalence of categories.

Gathering this with Lemma 1.7, we obtain an equivalence DC(H) ∼= RDC(H) ∼= RDC(L) ∼= DC(L),

inducing an equivalence DCf (H) ∼= RDCf (H) ∼= RDCf (L) ∼= DCf (L).

3. Classification of bicovariant differential calculi over free

orthogonal Hopf algebras

In this section, we gather the results of the previous sections in order to classify the finite dimensional

reduced differential calculi over the free orthogonal Hopf algebras. To this end, we start by classifying

the finite dimensional reduced differential calculi over the Hopf algebra Oq(SL2), when q ∈ C
∗ is

not a root of unity. This classification is based on the classification of finite dimensional Oq(SL2)-

Yetter-Drinfeld modules made in [Tak92], and Lemma 1.12..

Definition 3.1. Let q ∈ C
∗ be not a root of unity. Oq(SL2) is the Hopf algebra generated by four

elements a, b, c, d subject to the relations:

{

ba = qab , ca = qac , db = qbd , dc = qcd , bc = cb ,

ad − q−1bc = da − qbc = 1.
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Its comultiplication, counit and antipode are defined by:

∆(a) = a ⊗ a + b ⊗ c, ∆(b) = a ⊗ b + b ⊗ d, ∆(c) = c ⊗ a + d ⊗ c, ∆(d) = c ⊗ b + d ⊗ d,

ε(a) = ε(d) = 1, ε(b) = ε(c) = 0,

S(a) = d, S(b) = −qb, S(c) = −q−1c, S(d) = a.

Definition 3.2. Let n be in N. We denote by Vn the simple right Oq(SL2)-comodule with basis

(v
(n)
i )06i6n, and coaction ρn defined by:

ρn(v
(n)
i ) =

n
∑

k=0

v
(n)
k ⊗













∑

r+s=k
06r6i

06s6n−i

(

i

r

)

q2

(

n − i

s

)

q2

q(i−r)sarbsci−rdn−i−s













where

(

n

k

)

q2

denotes the q2-binomial coefficient. That is to say:

(

n

k

)

q2

= qk(n−k) [n]q!

[n − k]q![k]q !
with [k]q =

qk − q−k

q − q−1
and [k]q! = [1]q.[2]q . . . [k]q .

Definition 3.3. Let n, m be in N and let ǫ ∈ {−1, 1}. We denote by V ǫ
n,m the Oq(SL2)-Yetter-

Drinfeld module Vn⊗Vm equipped with its canonical right coaction, and with right module structure

defined by:

(v
(n)
i ⊗ v

(m)
j ).a = ǫq

m−n
2

+i−jv
(n)
i ⊗ v

(m)
j ,

(v
(n)
i ⊗ v

(m)
j ).b = −ǫq−

n+m
2

+i+j+1(1 − q−2)[j]qv
(n)
i ⊗ v

(m)
j−1,

(v
(n)
i ⊗ v

(m)
j ).c = ǫq

m+n
2

−i−j(1 − q−2)[n − i]qv
(n)
i+1 ⊗ v

(m)
j ,

(v
(n)
i ⊗ v

(m)
j ).d = ǫq

n−m
2

+j−i(v
(n)
i ⊗ v

(m)
j − q(1 − q−2)2[j]q [n − i]qv

(n)
i+1 ⊗ v

(m)
j−1).

V ǫ
n,n will also be denoted by V ǫ

n .

Remark 3.4. By [Tak92], every simple finite dimensional Oq(SL2)-Yetter-Drinfeld module is of

the form V ǫ
n,m, and each finite dimensional Oq(SL2)-Yetter-Drinfeld module can be decomposed

into a direct sum of simple Yetter-Drinfeld modules. To see that our description of V ǫ
n,m coincides

with the one given in [Tak92, (6.4)], just consider the basis (vi,j) 06i6n
06j6m

given by

vi,j =
1

[n − i]q![m − j]q!
v

(n)
n−i ⊗ v

(m)
j .

One can check that the vi,j’s satisfy [Tak92, (6.4)] and that the map

vi,j 7→
1

[n − i]q![m − j]q!
v

(n)
n−i ⊗ v

(m)
j

is an isomorphism of Yetter-Drinfeld modules.
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Remark 3.5. Let n, m be in N and ǫ be in {−1, 1}. The Clebsch-Gordan formula for the decom-

position of Vn ⊗ Vm into simple comodules ensures that the space of right-coinvariant elements of

V ǫ
n,m is one-dimensional if n = m, and zero-dimensional otherwise. Hence if n 6= m, there is no

inner reduced differential calculus of the form ω : Oq(SL2) → V ǫ
n,m, and there is at most one (up to

isomorphism) inner reduced differential calculus of the form ω : Oq(SL2) → V ǫ
n . If (n, ǫ) 6= (0, 1),

then V ǫ
n is not isomorphic to the Yetter-Drinfeld module Cε, and by Lemma 1.11, there indeed

exists such an inner reduced differential calculus, which we denote by ωǫ
n : Oq(SL2) → V ǫ

n .

As a direct consequence of Lemma 1.12, and the fact that by [Tak92], the category YDf (Oq(SL2))

is semisimple, we have the following result.

Proposition 3.6 − Each finite dimensional bicovariant differential calculus over Oq(SL2) is inner.

This allows to deduce the classification of finite dimensional reduced differential calculi over

Oq(SL2).

Theorem 3.7 − Every simple finite dimensional reduced differential calculus over Oq(SL2) is of

the form (V ǫ
n , ωǫ

n), with n ∈ N, ǫ ∈ {−1, 1} and (n, ǫ) 6= (0, 1).

Furthermore, each finite dimensional reduced differential calculus (V, ω) over Oq(SL2) can be

decomposed into a direct sum:

(V, ω) ∼=
d
⊕

i=1

(V ǫi
ni

, ωǫi
ni

),

where (n1, . . . nd) ∈ N
d, (ǫ1, . . . , ǫd) ∈ {−1, 1}d satisfies (ni, ǫi) 6= (0, 1) for all i in {1, . . . , d} and

(ni, ǫi) 6= (nj, ǫj) for all i 6= j.

Proof. Since each finite dimensional reduced differential calculus over Oq(SL2) is inner, and each

simple finite dimensional Yetter-Drinfeld module over Oq(SL2) is of the form V ǫ
n,m, we conclude

by Remark 3.5 that the simple finite dimensional reduced differential calculi over Oq(SL2) are the

(V ǫ
n , ωǫ

n) with (n, ǫ) 6= (0, 1). Now if (V, ω) is a finite dimensional reduced differential calculus over

Oq(SL2), by [Tak92], we have an isomorphism of Yetter-Drinfeld modules V ∼=
d
⊕

i=1
Vi where each

Vi is a simple Yetter-Drinfeld module. One then easily checks that for i ∈ {1, . . . , d}, ωi = πi ◦ ω :

Oq(SL2) → Vi (where πi : V → Vi is the canonical projection) is a reduced differential calculus.

We thus have (Vi, ωi) ∼= (V ǫi
ni

, ωǫi
ni

) for some (ni, ǫi) 6= (0, 1). Then (V, ω) ∼=
d
⊕

i=1
(V ǫi

ni
, ωǫi

ni
), and by

Lemma 1.10, we have (ni, ǫi) 6= (nj, ǫj) when i 6= j.

In order to give the classification of finite dimensional reduced differential calculi over free

orthogonal Hopf algebras, we need the definition of the bilinear cogroupoid B. It will provide an

explicit description of the equivalence between the categories of reduced differential calculi over a

free orthogonal Hopf algebra B(E) and Oq(SL2), for a well chosen q.

Definition 3.8. The bilinear cogroupoid B is defined as follows:

• ob(B) = {E ∈ GLn(C) ; n > 1},

16



• For E, F ∈ ob(B), and m, n > 1 such that E ∈ GLm(C) and F ∈ GLn(C), B(E, F ) is the

universal algebra generated by elements (aij)16i6m
16j6n

submitted to the relations:

F −1atEa = In and aF −1atE = Im,

where a = (aij)16i6m
16j6n

.

• For E, F, G ∈ ob(B), ∆G
E,F : B(E, F ) → B(E, G) ⊗ B(G, F ), εE : B(E, E) → C and SE,F :

B(E, F ) → B(F, E) are characterized by:

∆G
E,F (aij) =

n
∑

k=1

aik ⊗ akj, where n > 1 is such that G ∈ GLn(C),

εE(aij) = δij ,

SE,F (aij) = (E−1atF )ij .

For E ∈ GLn(C), B(E, E) is a Hopf algebra, which will also be denoted by B(E), and called the

free orthogonal Hopf algebra associated with E.

Remark 3.9. One easily checks that Oq(SL2) = B(Eq), where

Eq =

(

0 1

−q−1 0

)

.

By [Bic, Corollary 3.5], for λ ∈ C, the subcogroupoid Bλ of B defined by

Bλ = {E ∈ GLm(C) ; n > 2, tr(E−1Et) = λ}

is connected (here “tr” denotes the usual trace).

In the following, E ∈ GLm(C) with m > 2, denotes a matrix such that any solution of the

equation q2 + tr(E−1Et)q + 1 = 0 is not a root of unity.

If q is a solution of this equation, we have tr(E−1
q Et

q) = −q − q−1 = tr(E−1Et), thus E and Eq

are in the connected cogroupoid Bλ, where λ = −q − q−1. The Hopf algebras B(Eq) = Oq(SL2)

and B(E) are thus monoidally equivalent, and by Theorem 2.6, we have an equivalence between the

categories of reduced differential calculi RDC(Oq(SL2)) and RDC(B(E)) given by:

FE
Eq

: RDC(Oq(SL2)) → RDC(B(E))

(V, ω) 7→ (V �
Oq(SL2)

B(Eq, E), ω).

Definition 3.10. For n in N and ǫ ∈ {−1, 1} such that (n, ǫ) 6= (0, 1), we denote by W ǫ
n the

B(E)-Yetter-Drinfeld module V ǫ
n �

Oq(SL2)
B(Eq, E). We fix a non-zero right-coinvariant element θn ∈

Vn ⊗ Vn and we denote by ηǫ
n : B(E) → W ǫ

n the inner reduced differential calculus defined by

ηǫ
n(x) = (θn ⊗ 1) ⊳ x − ε(x)(θn ⊗ 1).
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By Remark 2.5, FE
Eq

(V ǫ
n , ωǫ

n) is isomorphic to (W ǫ
n, ηǫ

n) for all n ∈ N and all ǫ ∈ {−1, 1} such

that (n, ǫ) 6= (0, 1). According to Theorems 2.6 and 3.7, we obtain the following classification of

finite dimensional reduced differential calculi over B(E).

Proposition 3.11 − Each finite dimensional bicovariant differential calculus over B(E) is inner.

Theorem 3.12 − Every simple finite dimensional reduced differential calculus over B(E) is of the

form (W ǫ
n, ηǫ

n), with n ∈ N, ǫ ∈ {−1, 1} and (n, ǫ) 6= (0, 1).

Furthermore, each finite dimensional reduced differential calculus (W, η) over B(E) can be de-

composed into a direct sum:

(W, η) ∼=
d
⊕

i=1

(W ǫi
ni

, ηǫi
ni

),

where (n1, . . . nd) ∈ N
d, (ǫ1, . . . , ǫd) ∈ {−1, 1}d satisfies (ni, ǫi) 6= (0, 1) for all i in {1, . . . , d} and

(ni, ǫi) 6= (nj, ǫj) for all i 6= j.
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