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en interesting property for urve length digitl estimtors is the onvergene towrd the ontinuous length nd the ssoite onvergene speed when the grid sping tends to zeroF yn the one hndD h sed estimtors hve een proved to onverge ut only under some onvexity nd smoothness or polygonl ssumptionsF yn the other hndD we hve introdued in previous pper the sprse estimtors nd we proved their onvergene for vipshitz funtions withE out onvexity ssumptionF rereD we introdue wider lss of estimtorsD the non-local estimatorsD tht intends to gther sprse estimtors nd h sed estimtorsF e prove their onvergene nd give n error upper ound for lrge lss of funtionsF

Introduction

e fous in this pper on one lssil digitl prolemX the length estimE tionF he prolem is to estimte the length of ontinuous urve S knowing digitiztion of SF es informtion is lost during the digitiztion stepD there is no relile estimtion without a priori knowledgeF prom theoretil point of viewD lssil riterion to evlute the qulity of geometri feture estiE mtor is the possessionD or notD of the (multigrid) convergence propertyD tht is the estimtion onvergene towrd the ontinuous urve feture when the grid sping tends to zeroF he lol estimtors sed on segmenttion of the digitl urve in ptterns whose size is onstnt tht does not depends upon the grid sping do not stisfy the onvergene property even for stright line segments ISF he dptive estimtors sed on segmenttion in wximl higitl tright egments @whA or sed on winimum vength olygon @wvA stisfy the onvergene property for smoothD or polygonlD losed simple urves under ssumption of onvexity SF he semiElol estimtors UD nd the sprse estimtors IVD oth sed on segmenttion of the urve in ptE terns whose size only depends upon the grid spingD veri(es the onvergene property2 without onvexity hypothesisD for smooth funtionl urves of lss C 2 with the former nd for vipshitz urves with the ltterF e present here new lss of length estimtorsD the non-local estimatorsD tht ims to enompss the sprse estimtors nd the wh sed estimtorsF he pper is orgnized s followsF sn etion PD some neessry nottions nd onventions re relledD then the existing estimtors nd their onvergene properties re detiledF sn etion QD the nonElol estimtors re de(ned nd the multigrid onvergene property is proved for vipshitz funtions under some ssumptions stis(ed y sprse estimtors nd wh sed estimtorsF purE thermoreD n upper ound on the error of the estimtor is exhiited for wide sulss of the vipshitz funtionsF etion R provides some illustrtions out the onvergene speed nd omprison of the estimtions for di'erent kind of nonElol estimtorsF etion S onludes the rtile nd gives diretions for future worksF 2. Background 2.1. Discretization models sn this workD we hve restrited ourselves to the digitiztion of funtion grphsF oD let us onsider ontinuous funtion g : [a, b] → R @a < bAD its grph C(g) = {(x, g(x)) | x ∈ [a, b]} nd positive rel numer hD the grid spacingF e ssume to hve n orthogonl grid in the iuliden spe R 2 whose set of grid points is hZ 2 F he ommon methods to model the digitiztion of the grph C(g) with grid sping h re losely relted to eh othersF sn this pperD we ssume n object boundary quantization @yfAF his method ssoites to the grph C(g)

the h-digitization set D(g, h) = {(kh, g(kh) h h) | k ∈ Z nd kh ∈ [a, b]}
where • denotes the )oor funtionF he set D(g, h) ontins the uppermost grid points whih lie in the hypogrph of gD hene it n e understood s prt of the oundry of solid ojetF rovided the slope of g is limited y I in modulusD D(g, h) is n VEonneted digitl urveF yserve tht if g is funtion of lss g 1 suh tht the set {x ∈ 

(x i -x i-1 ) 2 + (f (x i ) -f (x i-1 )) 2
where the supremum is tken over ll possile prtitions of [a, b] nd n is unoundedF 2.2. Local estimators vol length estimtors @see IP for short reviewA re sed on prllel omputtions of the length of (xed size segments of digitl urveF por instneD n VEonneted urve n e split into IEstep segmentsF por eh segmentD the omputtion returns I whenever the segment is prllel to the xes nd √ 2 when the segment is digonlF hen ll the results re dded to give the urve length estimtionF his kind of lol omputtion is the oldest wy to estimte the length of urve nd hs een widely used in imge nlysisF xeverthelessD it hs not the onvergene propertyF sn ISD uulkrni et al. introdue generl de(nition of lol length estimtion with sliding segments nd prove tht suh omputtions nnot give onvergent estimtor for stright lines whose slope is smll @less thn the inverse of the size of the sliding segmentAF sn PPD similr de(nition of lol length estimtion is given with disjoint segmentsF eginD it is shown tht the estimtor filed to onverge for stright lines @with irrtionl slopesAF his ehvior is experimentlly on(rmed in S on test set of (ve losed urvesF woreoverD the nonEonvergene is estlished in TD PQ for lmost ll prolsF 2.3. Adaptative estimators: DSS and MLP edptive length estimtors gther estimtors relying on segmenttion of the disrete urve tht depends on eh point of the urveX move on point n hnge the whole segmenttionF nlike lol estimtorsD it is possile to prove the onvergene property of dptive length estimtors under some ssumptionsF edptive length estimtors inlude two fmilies of length estimtorsD nmely the wximl higitl tright egment @whA sed length estimtors nd the winiml vength olygon @wvA sed length estimtorsF he(nition nd properties of wh n e found in IRD WD SF i0ient lgorithms hve een developed for segmenting urves or funtion grphs into wh nd to ompute their hrteristis in liner time IRD IHD WF he deomposition in wh is not unique nd depends on the strtEpoint of the segmenttion nd on the urve trvel diretionF he onvergene property of wh estimtors hs een proved for onvex polygons whose wh polygonl Q pproximtion 3 is lso onvex IID hF IQ nd the proof 4 X given onvex polygon C nd grid sping h @elow some thresholdAD the error etween the estimted length L est (C, h) nd the true length of the polygon L(C) is suh tht

|L(C) -L est (C, h)| ≤ (2 + √ 2)πh. @IA
st must e notied tht there exists wrong version of the ove eqution in the literture 5 F impiril wh multigrid onvergene hs lso een tested in SD V on smooth nononvex plnr urvesF he otined onvergene hs order I s in the onvex polygonl seF xevertheless wh multigrid onverE gene hs not een proved under these ssumptionsF enother wy to otin n estimtion of the length of urve using wh is to tke the slopes of the whs to estimte the tngent diretions nd then to ompute the length y numeril integrtion RD SD ITF he estimtion is unique nd hs een proved to e multigrid onvergent for smooth urves @of lss C 3 with stritly posiE tive urvture in ITD ompt oundries with positive reh in IUD AF he onvergene order is O(h 1 3 ) in IT nd thusD worse thn @IAF vet C e simple losed urve lying inEetween two polygonl urves γ 1 nd γ 2 F henD there is unique polygonD the wvD whose length is miniml etween γ 1 nd γ 2 F he length of the wv n e used to estimte the length of the urve CF et lest two wv sed length estimtors hve een desried nd proved to e multigrid onvergent for onvexD smooth or polygonlD simple losed urvesD the gridEontinu wv lgorithm @qgEwvA proposed in PH nd the epproximtion ussge wv @eEwvA introdued in PF por oth of themD nd for given grid sping hD the error etween the estimted length L est (C, h) nd the true length of the urve

L(C) is O(h)X |L(C) -L est (C, h)| ≤ Ah
where A = 8 for qgEwv nd A ≈ 5.844 for eEwvF yn the one hndD s estimtors desried in this setion re dptiveD the onvergene theorems rely on strong hypothesesD the proofs re di0ult to esE tlish nd often inompleteF yn the other hndD the study of the wh in V shows tht the wh size tends to H nd their disrete length tends towrd 3 Though the digitization of a convex set is digitally convex, it does not mean that a polygonal curve related to a convex polygonal curve via a MDSS segmentation process is also convex. 4 The hypothesis on the convexity of the MDSS polygon is not assumed in the statement of the theorem but it appears in the proof. 5 The formulation of the right hand side of (1) in the literature is (2ε DSS + √ 2)πh where ε DSS is a bound for the Hausdor distance between a real straight segment and its discretization, expressed in the unit given by the grid-spacing and it is related to the chord property of the straight lines established by Rosenfeld [19]. Accordingly,in [11], it is said that "the 'classical' value of ε DSS is 1". A few month later, in [13], the authors chose to express the same constant ε DSS in absolute length unit, so they claim that "its 'classical' value is 1/r" but they forgot to update the right hand side of the majorization. Afterward, the mistake propagated to [5] and led to an erroneous conclusion. R in(nity s the grid sping tends to zeroF hereyD one ould sk whether omE ining lol estimtion with n inresing window size s the grid sping dereses would give onvergent estimtor under more generl ssumptions ndGor with simpler proofs of onvergeneF he following setions explore this questionF 2.4. Semi-local length estimators he notion of semiElol estimtor ppers in UF et given grid sping D semiElol estimtor resemles lol estimtorX it n e implemented vi prllel omputtionD eh proessor hndling (xed size segment of the urveF xeverthelessD in the frmework of semiElol estimtionD the proessors must e wre of the grid sping on whih the size of the segments dependsF qiven grid sping hD semiElol estimtor segments disrete urve in 4ptterns4 of equl disrete size H(h) ndD possilyD rest whose size is less thn H(h)F fy patternD we men (nite sequene of disrete points with onseutive sisseF he funtion H whih ontrols the disrete size of the ptternsD tht is the numer of pixels in eh ptternD is lled pattern functionF he ptterns of semiElol length estimtor hve E disrete size H(h) tht tends to in(nity s the grid sping dereses towrd zero @roperty ∞ A while E their true size hH(h) tends to zero @roperty 0 AF st is proved in U tht the semiElol length estimtors re multigrid onvergent for funtions of lss C 2 with n error in O(h 1 2 ) for the est pttern size hoie

H(h) = Θ(h -1
2 )F por v estimtorD pttern length should e lose to the iuliden distne etween its extremitiesF his hs led us to de(ne sufmily of the semiElol length estimtors tht we present in the next setionF 2.5. Sparse length estimators he notion of sprse estimtor is introdued in IVF hey re sulss of the semiElol estimtors for whih the estimtion of pttern length is extly its dimeterF reneD the informtion given y the points inside ptternD ut its extremitiesD is disrdedF his justi(es the nme given to this lss of estimtorsF nder the hypothesis tht the pttern funtion H hs the properties ∞ nd 0 D it is proved in IV tht sprse length estimtors re multigrid onvergent for vipshitz funtionsF purthermoreD for funtion of lss C 2 D the error rte is the sme s for v estimtorsF sfD esidesD the funtion is of lss C 2 nd onveD then the error is in O(h) for the est pttern size hoie H(h) = Θ(h -1 2 )F yn the one hndD with semiElol nd sprse estimtorsD the pttern size is onstnt for given grid spingF his is importnt for n lgorithmi point of viewF xeverthelessD it does not relly mtter to prove the onvergene nd the properties ∞ nd 0 ould e expressed in terms of mensF yn the other hndD it hs een proved in VD under some hypothesesD tht the verge size S of the mximl digitl stright segments of ontour veri(es the properties ∞ nd 0 F his led us to de(ne new fmily of length estimtors tht is presented in the next setionF 3. Non-local estimators e introdue new lss of length estimtors tht ims to gther sprse estimtors nd dptive estimtorsF o do soD we need to relx the hypothesis on the length of the ptterns y llowing vrile lengthsF e need lso to llow very lrge ptterns when the urve is lose to stright segmentsF 3.1. Denition he de(nition of nonElol estimtors involves some generlized mensF e rell tht for ny nonEzero rel numer αD the generlized men of prmeter αD or αEmenD of (nite sequene of positive numers

(x i ) n i=0 is de(ned y M α ((x i ) n i=0 ) = 1 n n i=0 x i α 1 α . purthermoreD M +∞ ((x i ) n i=0 ) = max((x i ) n i=0 ) nd M -∞ ((x i ) n i=0 ) = min((x i ) n i=0 )F por ny α, β ∈ RD one hs 6 α < β =⇒ M α ((x i ) n i=0 ) ≤ M β ((x i ) n i=0 ).
hen σ is prtition of some intervl ID we write M α (σ) for the αEmen of the σ suintervl length sequeneF e lso write C(σ) for the oe0ient of vrition of the σ suintervl length sequeneF ell tht the oe0ient of vrition is the rtio of the stndrd devition to the rithmeti men nd tht where g is reti(le urveD iqution @PA mens tht the pttern size in pixels tends in αEmen towrd in(nity s h tends towrd HF iqution @QA mens tht the solute pttern size tends in βEmen towrd H s h tends towrd HF por instneD looking t the ontinuous urve depited in pigure ID we ould mke the following thought experimentF e zoom in the (gure to see the ptterns evolve s the grid sping h tends towrd HF e n imgine two wys to do soF pirstlyD the size of the windows remins onstnt while the grid sping deresesF henD from iqution @PA we should see smller nd smller ptternsF eondlyD the grid remins unhnged while the window size inresesF henD from iqution @QA we should see lrger nd lrger ptternsF pigure I @!dA shows two snpshots of this experiment @t h = 0.2 nd h = 0.1 for two (1, 1)Epttern funtionsD one with @lmostA regulr prtition of the domin nd one with somewht dptive prtition @smller urvtureD lrger ptternsAF e non-local multigrid length estimator is the hoie of n αEpttern funE tion for some α ∈ RF henD furthermoreD we use n (α, β)Epttern funtion to onstrut our estimtorD we sy tht we hve n M-sparse multigrid length estimator @the 9w9 in wEsprse stnds for menAF he α prmeter ensures tht we do not pik too muh points while the β prmeter ensures tht we pik enough points on the disrete urve to get the onvergeneF st is worthy to note tht in the ontrry of the onventionl frmework of ontinuous urves reti(tion from smplesD reti(tion from disretized urves enjoins to use only few points mong the ville ones s shown the nonEonvergene of the lol estimtorsF sn the sequelD given reti(le funtion g nd grid sping hD we denote y L NL (A, g, h) the length of D(g, h) returned y the nonElol estimtor relted to the pttern funtion AF fy use of nottionD we lso write A(g, h) insted of A(D(g, h), h)F rere we detil the inlusion reltions etween the nonElol estimtors nd the estimtors desried in etion PF Local estimators. he ptterns ssoited to lol estimtor hve onstnt size tht does not depend on the grid spingF hereyD the lol estimtors re not nonElol estimtors @this justi(es the nme given to the lss of estimtors introdued in this pperAF

1 + C(σ) 2 = M 2 (σ)/M 1 (σ) 2 F vet Γ e disretiztion
U (a) h = 0.2 (b) h = 0.1 (c) h = 0.2 (d) h = 0.1
pigure IX wo exmples of (1, 1)Epttern funtionsF @!dA flue pointsX the disE rete urve whih is the disretiztion of x → √ 1 + x 2 -1 on the intervl [0, 2.1]F ed pointsX extremities of the suintervls provided y the pttern funtion for the onsidered grid spingsF @!A tterns with onstnt size @ut the lstA proportionl to h -1 2 F @!dA tterns with inresing sizes 1, 2, 3, . . . @positive integersAF Semi-local and sparse estimators. he suintervlElength sequene for sprse estimtors is (H(h), . . . , H(h), rem) where rem ≤ H(h)D H(h) tends to in(nity nd hH(h) tends to 0 s the grid sping h tends to HF husD it is plin tht they re wEsprse length estimtors relted to (1, 1)Epttern funtionsF es mtter of ftD wEsprse estimtors re derived from sprse estimtors y repling the (xed size ptterns nd their limit properties y vrile ones with in men limit propertiesF sn the se of semiElol estimtorsD it is lso true tht the disrete size of eh pttern tends to in(nity nd tht their solute size tends to HF xeverthelessD the semiElol length estimtors s de(ned in U do not extly omply to the de(nition of nonElol estimtors for two resonsF pirstlyD they withdrw the lst pttern if it hs not the expeted sizeD H(h)F eondlyD they mke use of weight funtion to get the length of the indued polylineF henD stritly spekingD the semiElol estimtors re not nonElol estimtors though they re very lose to them @nd to wEsprse estimtorsA when the hypotheses tht ensure their onvergene pply tht is when the weight funtion is losed to the dimeter funtionF MDSS based estimators. hough it hs not een proved in the generl seD it is likely thtD in the frmework of quss digitiztionD wh sed length estimtors re nonElol estimtorsD under the ssumption tht the length of wh is estimted with its dimeter @s it is the se the hqtl lirry IAF V sndeedD in V it is shown thtD for onvex shpes with C 3 oundries nd evE erywhere stritly positive urvtureD the verge disrete size of ll REonneted mximl segments de(ned on disrete oundry is etween Θ(h -1 3 ) nd Θ(h 1 3 ln(h))F yur experimentsD even with the dmped sinusoids s 1 D s 2 nd the frtl funtion f @see etion RAD suggests tht this ound ould e lso vlid for n wh segmenttion of disrete funtion grphF yn the other sideD it is plin tht wh sed estimtor is not wEsprse estimtorF por instneD with n 0ne funtion it use single pttern t ny grid spingF 3.2. Convergence yur min result @heorem VA is stted nd proved in etion QFQF es the prie to py to get generlD nd nevertheless preiseD theorem is very umersome sttementD we present in this setion severl orollries whih re otined y restriting the hypotheses of heorem VF hereyD the signi(ne nd the implitions of eh orollry n e more esily understoodF ine the results presented here re rther strightforwrd onsequenes of heorem V whose proof is extensively detiled in the following setionD no proofs of the orollries re providedF he (rst orollry sttes the onvergene property of wEsprse estimtors under the weker ssumptions for the iuliden funtionF xeverthelessD this onvergene requires tht the mximum of the pttern solute widths tends towrd HF his is muh more restritive thn the hypothesis of onvergene in men used in heorem VF Corollary 1. Let g : [a, b] → R be a Lipschitz function and A be a (1, +∞)pattern function. Then,

lim h→0 L NL (A, g, h) = L(g).
sn gorollry ID due to the wek hypothesesD we nnot give ny ound on the onvergene speedF xevertheless it llows us to otin the multigrid onvergene for the lss of vipshitz funtionsD inluding frtl funtions suh s the funtion f 2 introE dued in usetion RFIF he funtion f 2 is of lss C ∞ lmost everywhereD ut its seond derivtive is not oundedF es onsequeneD the funtion f 2 does not meet the hypotheses of gorollries P nd QF ixhiiting frtl funtion my e surprisingD ut hving properties on funtion lss inluding frtl ones hs two motivtionsX IF frtl urves n e found in nturl senes nd then s segmented digitl ojet oundries in the multigrid frmeworkD PF frtl funtions emphsize some length estimtor properties tht n e hidden otherwiseF essuming smooth enough funtionD we n retrieve for wEsprse estimtors the onvergene speed otined in IV for sprse estimtors under somewht weker hypothesesF W Corollary 2. Let g : [a, b] → R be a dierentiable function whose derivative is Lipschitz and A be a (1, 1)-pattern function such that c v (A(g, h)) is upperbounded as h → 0. Then,

L(g) -L NL (A, g, h) = O(hM (h)) + O 1 M (h) @RA
where

M (h) = M 1 (A(g, h)).
sn iqution @RA the onstnts in the ig O only depend on b -aD max g nd max g nd n e expliitly omputedFhe optiml onvergene speed rte in h 1 2 is then otined y hoosing the pttern funtion suh tht M (h) = O(h -1 2 )F xote tht in gorollry P the pttern funtion is ssumed to e (1, 1)D whih is weker thn the (1, ∞)Epttern funtion sked in gorollry IF hen the onvergene omes minly from the smoothness hypothesisF o hndle the se of funtions tht re not di'erentile on their dominD we de(ne H(A(g, h)) s the @veesgueA mesure of the union of the A(g, h) open suintervls on whih g is not di'erentileF por instneD if the funtion g is di'erentile on (a, b) ut (nitely mny pointsD then H(A(g, h)) is upper ounded y nhM ∞ (A(g, h)) where n is the numer of points in (a, b) where g is not di'erentileF sn eppendix eD we ompute n upper ound of H(A(g, h)) for frtl funtion with in(nitely mny points where g is not di'erentile @in(nitely mny isolted points nd in(nitely mny limit pointsAF Corollary 3. Let g : [a, b] → R be a Lipschitz function whose derivative is k-Lipschitz on each interval included in its domain of denition for some k > 0.

Let A be a (1, +∞)-pattern function. Then,

L(g) -L NL (A, g, h) = O(hM (h)) + O 1 M (h) + O(H(h)) @SA where M = M ∞ (A(g, h)), M = M 1 (A(g, h)) and H(h) = H(A(g, h)).
he upper ound onvergene rte depends on H(A(g, h)) nd is not known in generlF 3.3. Proof of the main theorem sn this setionD we give some su0ient onditions under whih the nonElol length estimtors re onvergent for vipshitz funtionsF woreoverD heorem V gives ound on the error t grid sping h for vipshitz funtions whose derivtive is kEvipshitz @k > 0A on ny intervl inluded in their domin @of de(nitionAF Notations. sn the reminder of the rtileD we use some nottions tht we now presentF he (rst ones onern euliden ojetsF hereyD they do not depend upon the grid spingF he others re relted to the grid sping h nd should IH pigure PX he two min prts of the estimtion errorX the urve g @in greenD solidA to its hord g A c @in mgentD dottedEdshedA then the urve hord to the hord g A c @in lueD dshedA of the digitized urve D(g, h) @lk pointsAF e indexed y hF xeverthelessD s we never hve to work with two di'erent grid spingsD we prefer to omit the h index to lighten the nottionsF I = [a, b] is n intervl of R with nonEempty interior nd g : I → R is vipshitz funtion whose derivtive is denoted g @from demher9s theoremD g is di'erentile lmost everywhereAF e lso de(ne the funtion ϕ : 

R → R y ϕ(x) = √ 1 + x 2 F husD one hs L(g) = [a,b] ϕ • g F qiven some grid sping h > 0D AD respF BD
L(g l ) ≤ ϕ(k)(Ah -a) ≤ ϕ(k)h nd L(g r ) ≤ ϕ(k)(b -B h) ≤ ϕ(k)hF
e now look t the di'erene etween the length of C(g c ) nd the length of the polyline C(g A c )F hese two urves shre the sme extremities ut these depend on the grid sping hF Proposition 5. For any pattern function A such that M A +∞ × h → 0 as h → 0 and any Lipschitz function g, we have

lim h→0 L(g A c ) -L(g c ) = 0. Proof. vet h > 0F prom the disrete prtition A(g, h) = (a i ) N i=0 we de(ne prtition σ of the intervl [a, b] s a ≤ a 0 h < a 1 h < • • • < a N h ≤ bF vet L σ
e the length of the polyline interpolting g ording to the prtition σF yn the one hndD sine M A +∞ × h → 0 s h → 0D Aha < h nd b -B h < hD the norm of the prtition σ tends to H s h → 0F hen the vipshitzEontinuity of g ensures tht L(g) -L σ → 0 s h → 0F yn the other hndD it is plin tht L(g c ) -L(g A c ) ≤ L(g) -L σ (g) for ny hF e onlude strightforwrdlyF hen the derivtive of g is vipshitz ontinuousD the next roposition gives us ound on the di'erene etween the length of the urve C(g c ) nd the length of the polyline C(g A c )F sn order to del with the set D of points where g is not di'erentileD we need (rst to explin how we lulte the mesure H(A(g, h))

whih is de(ned y H(A(g, h)) = h i∈I a i -a i-1 where {a i } N i=0 = A(g, h) nd I = {i ∈ [0, N ] | (a i-1 , a i ) ∩ D = ∅}F
hen there is no miguityD we will write H A insted of H(A(g, h))F e lso de(ne less spei( mesureD H(g, δ) = sup i w i where the supremum is over ll the miniml overings 7 of D \ {a, b} y disjoint open suintervls of (a, b) with dimeters w i ≤ δF he rel H A is upper ounded y H(g, hM A +∞ )F sn eppendix eD we detil the lulus of H(g, δ) for frtl funtion with in(nitely mny points where g is not di'erentile @in(nitely mny isolted points nd in(nitely mny limit pointsAF Proposition 6. If g is k 1 -Lipschitz continuous and g is k 2 -Lipschitz on each interval included in its domain, we have for any pattern function A and any grid spacing h > 0

L(g c ) -L(g A c ) ≤ T hM A 1 1 + (C A ) 2 + U H A @UA
where T = k 2 (ba)/2 and U = (ϕ(k 1 ) -1).

Proof. vet h > 0F e onsider the prtition

A(g, h) = (a i ) N i=0 F vet J ⊂ [1, N ] ∩ Z e the set of susripts i suh tht g is di'erentile on (a i-1 h, a i h)F xote tht the funtion ϕ is IEvipshitz nd therey ϕ • g is k 2 EvipshitzF prom the men vlue theoremD on eh intervl (a i-1 h, a i h)D i ∈ J D there exists rel t i suh tht g(a i h) -g(a i-1 h) (a i -a i-1 )h = g (t i ). henD if i ∈ J D the length i of the restrition of C(g A c ) to the intervl [a i-1 h, a i h] is suh tht i = h(a r i -a r i-1 ) ϕ g (t i
) . ytherwiseD we hve the ovious lower ound i ≥ h(a ia i-1 ).

woreoverD for ny i / ∈ J D sine g is k 1 EvipshitzD one hs y iqution @TA

L g |[ai-1h,aih] ≤ ϕ(k 1 )h(a i -a i-1 ) henD L(g c )-L(g A c ) ≤ i∈J aih ai-1h ϕ•g (t)-ϕ•g (t i ) dt +(ϕ(k 1 )-1) i / ∈J h(a i -a i-1 ) oD L(g c ) -L(g A c ) ≤ i∈J aih ai-1h k 2 |t -t i | dt + (ϕ(k 1 ) -1)H A ≤ N i=1 k 2 h 2 (a i -a i-1 ) 2 2 + (ϕ(k 1 ) -1)H A ≤ 1 2 k 2 h 2 N (M A 2 ) 2 + (ϕ(k 1 ) -1)H A ≤ 1 2 k 2 (b -a)h (M A 1 ) 2 + V M A 1 + (ϕ(k 1 ) -1)H A
where V is the vrine of A(g, h)

≤ 1 2 k 2 (b -a)hM A 1 1 + (C A ) 2 + (ϕ(k 1 ) -1)H A
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where the penultimte inequlity omes from the well known formul V = (M A 2 ) 2 -(M A 1 ) 2 nd from the reltion

M A 1 = 1 N N i=1 (a i -a i-1 ) = 1 N (a N -a 0 ) ≤ 1 N h (b -a).
sn the ove propositionD oviouslyD the seond term of the sum in the right hnd side of the inequlity vnishes if g is di'erentileF sn prtiulrD if g is C 2 on ID then g nd g re vipshitz ontinuous on I nd

H A = 0F henD the di'erene L(g c ) -L(g A c ) is O hM A 1 (1 + (C A ) 2
) F hen g is di'erentile everywhere ut on (nitely mny pointsD H A is ounded y H(g, hM +∞ ) whih is equl to nhM +∞ @for smll enough hA where n is the numer of points where g is not di'erentileF hus the di'erene

L(g c ) -L(g A c ) is O hM A +∞ F sndeedD for ny sequene of positive numers (x i )D M A 1 (1 + (C A ) 2 ) = (M A 2 ) 2 M A 1 = x i 2 x i ≤ x i M A +∞ x i ≤ M A +∞
qiven vipshitz funtion g on n intervl I nd pttern funtion AD we now look t the di'erene etween L(g A c ) nd L( g A c ) tht is etween the length of two pieewise 0ne funtionsF woreoverD to hndle the wh length estimtorD we shll hve to use roposition U with two di'erent pttern funtions A nd BD tht is to ompre L(g A c ) nd L( g B c )F Proposition 7. Let f 1 and f 2 be two piecewise ane functions dened on

[c, d] ⊂ R (d > c
) with a common partition having p steps. Suppose that e 1 ≤ f 1 -f 2 ≤ e 2 for some reals e 1 , e 2 . Then

|L(f 1 ) -L(f 2 )| ≤ ϕ (k) p (e 2 -e 1 )
where k is the arithmetic mean of the set

{max(|s 1,i | , |s 2,i |)} p i=1 ,
the reals s 1,i , s 2,i , 1 ≤ i ≤ p, being the slopes of f 1 and f 2 on each subinterval of the common partition.

Proof. vet σ = (x i ) p i=0 e ommon prtition for f 1 nd f 2 F e write m i for

x i -x i-1 nd s 1,i D respF s 2,i D for the slope of f 1 D respF f 2 D on the intervl [x i-1 , x i ]F hen L(f 1 ) -L(f 2 ) = p i=1 (ϕ(s 1,i ) -ϕ(s 2,i )) m i .

IR

prom the men vlue theoremD we derive tht

L(f 1 ) -L(f 2 ) = p i=1 ϕ (s 0,i ) m i (s 1,i -s 2,i ).
whereD for ny iD s 0,i lies etween s 1,i nd s 2,i F xote thtD for ny i ≤ pD

m i (s 1,i -s 2,i ) = f 1 (x i ) -f 2 (x i ) -(f 1 (x i-1 ) -f 2 (x i-1 )). husD sD y hypothesisD e 1 ≤ f 1 -f 2 ≤ e 2 D we get -(e 2 -e 1 ) ≤ m i (s 1,i -s 2,i ) ≤ e 2 -e 1 .
hereforeD

|L(f 1 ) -L(f 2 )| ≤ p i=1 |ϕ (s 0,i )| |m i (s 1,i -s 2,i )| ≤ p(e 2 -e 1 )M 1 (ϕ (|s 0,i |)) p i=1 ≤ p(e 2 -e 1 )ϕ (M 1 |s 0,i | p i=1 ) ≤ p(e 2 -e 1 )ϕ (k)
where the penultimte inequlity is derived from the onvity of the funtion ϕ on [0, +∞)F hnks to the four previous propositionsD we n stte our theorem on the onvergene of nonElol length estimtorsF pigure Q illustrtes the theorem hypothesesF Theorem 8. Let g : [a, b] → R be a k 1 -Lipschitz function and A be a 1-pattern function.

If there exist a (1, β)-pattern function B, β ∈ [1, +∞], and a real ω such that for any grid spacing h,

g A c -g B c ∞ ≤ ωh @VA

then

• if β = +∞, the non-local estimation L NL (g, A, h) converges toward the length of the curve C(g) as h tends to 0;

• if g is k 2 -Lipschitz on each interval included in its domain, we have

L(g)-L NL (g, A, h) ≤ S h (side error) + T hM B 1 (1 + (C B ) 2 ) + U H B ) (discretization error) + V 1 M A 1 + 1 M B 1 (quantization error) @WA where S = 2ϕ(k 1 ), T = k 2 (b -a)/2, U = ϕ(k 1 ) -1 and V = (1 + 2ω)ϕ k 1 + 1/M A -1 (b -a). IS Furthermore, if B(g, h) ⊆ A(g, h), the term 1/M A 1 + 1/M 1
B in the right hand side of Equation 9 can be replaced by 1/M B 1 .

pigure QX rypotheses of heorem VF he prtition relted to A(g, h) splits the disrete urve in ptterns whose verge size in pixels tends towrd in(nity s the grid sping tends towrd zeroF enother prtition of the urveD relted to B(g, h)D hs ptterns whose verge solute size tends towrd zero s the grid sping tends towrd zeroF e tue @in gryA with onstnt height ontins the disrete points relted to the prtitions A(g, h) nd B(g, h)F

Proof. e write the di'erene etween L(g) nd L( g A c ) s the sum of three terms tht orrespond to the three kinds of errorsF

L(g) -L( g A c ) = (L(g l ) + L(g r )) + L(g c ) -L(g B c ) + L(g B c ) -L( g A c ) @IHA
ih term of the right hnd side of @IHA is upper ounded s followsF

• prom roposition RD we hve

L(g l ) + L(g r ) ≤ 2ϕ(k 1 )h @IIA husD L(g l ) + L(g r ) onverges to H s h → 0F
• prom roposition SD we know tht L(g B c ) onverges towrd L(g c ) s h → 0 provided β = +∞F woreoverD when g is k 2 Evipshitz ontinuous on the intervls inluded in its domin nd whtever is the vlue of βD from roposition T we hve

L(g c ) -L(g B c ) ≤ k 2 (b -a) 2 hM B 1 1 + (C B ) 2 + (ϕ(k 1 ) -1)H B . @IPA IT • prom rypothesis @VAD g A c -g B c ∞ ≤ ωh. husD we hve -ωh ≤ g B c -g A c ≤ (ω + 1)h. ine g is k 1 EvipshitzD the pieewise 0ne funtion g B c is lerly k 1 E vipshitzF vet A(g, h) = (a i ) N A i=0 F por ny i ∈ [1, N A ]D the solute slope of g A c on [a i-1 h, a i h] is ounded y k 1 + 1/(a i -a i-1 )F reneD the rithE meti men of the solute slopes of g A c is ounded y k = k 1 + 1/M A -1 @thus k ≤ k 1 + 1AF henD from roposition UD we derive tht L(g B c ) -L( g A c ) ≤ ϕ (k)N (1 + 2ω)h
where N is the size of the prtition A(g, h) ∪ B(g, h)F oD we hve N ≤ N A + N B nd we oserve thtD for ny I ∈ {A, B}D

M 1 I(g, h) = 1 N I (B -A) ≤ 1 hN I (b -a). husD we get L(g B c ) -L( g A c ) ≤ (1 + 2ω)ϕ (k)(b -a) 1 M A 1 + 1 M B 1
. @IQA st follows from iqution @IQA nd the hypotheses tht L(g B c ) -L( g A c ) onverges to H s h → 0F herefterD the onvergene is estlished one β = +∞F woreoverD iquE tion @WA derives oviously from @IIAD @IPA nd @IQAF fsillyD heorem V sttes tht nonElol estimtor @whih rely on n αEpttern funtionA is onvergent for vipshitz funtions provided it is not too fr from wEsprse estimtor @whih rely on n (α, β)Epttern funtionAF vet us now look t the possile options for the pttern funtion BF Choice of the pattern function B. es mentioned t the eginning of etion QFP the seond pttern funtion B is introdued so s to inlude wh estimtors for whih pttern solute size needs not tend to zeroF por exmpleD it is plin tht for n 0ne funtion g de(ned on [a, b]D n wh segmenttion will provide single pttern of size B -A ≈ (ba)/hF xeverthelessD fter n wh segmenttionD it is lwys possile to rti(illy sudivide the otined segments in order to de(ne the pttern funtion BF henD the de(nition of stright line segment ensures tht rypothesis @VA of heorem V is stis(ed @nd the onstnt ω n e set to 1 in our disretiztion modelAF hereyD together with the onstnt ωD the pieewise 0ne funtion g B c provides tue round the IU dt points tthed to the prtition B(g, h) in whih must sty the funtion g A c to relily estimte L(g)F ht wy this tue n e seen s dt (ttingF pigure Q gives n illustrtion of suh situtionF elsoD it should e notied tht if we ssume the sme hypotheses s in VD C 3 funtions with stritly positive urvtureD we n tke B = A with the wh segmenttion sine the existene of stritly positive miniml urvture on [a, b] ensures tht M A +∞ × h → 0 s h → 0F yn the other hndD for C 3 urves with lmost liner prtsD even with B ⊃ AD the rel ω would not e nullF fesidesD when wh is prtitioned in susegmentsD the length tht omes with the wh @its dimeterA is not the sum of the dimeters of the susegments nd it is the role of @VA in the theorem hypotheses to ound the di'erene @vi roposition UAF iventullyD sine there re in(nitely mny vlid hoies of B for the wh estimtorD iqution W leds to the following ound on the estimtion error @for the wh estimtorAX

L(g) -L NL (g, A, h) ≤ S h+ inf i T hM 1,i 1 + (C i ) 2 + U H A + V 1 M 1,i + 1 M A 1
where the in(mum is over ll 1Epttern funtions

B i suh tht M 1,i = M Bi 1 = o(1/h) s h → 0 nd where C i = C(B i (g, h))F
ith sprse estimtorsD the prtition suintervl length sequene provided y the pttern funtion is tht pproximtively orresponds to the symptoti verge disrete size of the wh on smooth urve with positive miniml urvture VF

• he wEsprse estimtor E rand with rndom pttern sizes equidistriuted etween I nd 2h -1 2 F reneD for smll enough grid spingsD the verge pttern size should e the sme s E Sp2 F xote tht for the three previous xviD we n pply heorem V tking A = BF

• he wh sed estimtor E DSS @tking the dimeter s the pttern length ! see the omment t the end of etion QFIAF he omputed errors re the disretiztionD the quntiztion nd the totl errorF he ounds nd the grid sping h re hosen suh tht the error on the ounds is nullF here re (ve test funtions tht we desrie nowF he (rst three stisfy the stronger ssumptions on the funtion g in heorem V @the funtion nd its derivtive re vipshitz ontinuousAD the two lst re vipshitz ut their derivtives re notF

• he nturl logrithm on the intervl [1, 2] where it is IEvipshitzD onve nd of lss C ∞ F • he funtion s 1 : x ∈ (0, 1] → x 4 25 sin 20
x , 0 → 0 whih hs in(nitely mny in)exion points @ut only (nitely mny in)exion points on ny intervl

[a, 1]D a > 0AD is IEvipshitz of lss C 1 @C ∞ on (0, 1]A with vipshitz ontinuous derivtiveF he grph of s 1 is shown pigure RF • he funtion s 2 :
x ∈ (0, 1] → x 2 2 sin 1 x , 0 → 0 whih hs in(nitely mny in)exion pointsD is IEvipshitz of lss C 1 @C ∞ on (0, 1]AF he onvergene is given y heorem V utD unlike the funtion IW s 1 D the derivtive of s 2 is not vipshitz on (0, 1]F hen the ound otined in roposition T is not vlid for this funtionF xeverthelessD only one omE puttion of pttern length @the (rst oneA is onerned y this restritionF he grph of s 2 is shown pigure SF • he frtl funtions f 1 nd f 2 de(ned on [0, 1] s followsF e denote y 1 J the hrteristi funtion of the intervl

J = [ 1 3 , 2 3 ] nd y {•} the frtionl prtF henD for ny i ∈ {1, 2}D f i = lim n→∞ f i,n where f 1,0 : x → 1 2 -x - 1 2 , f 2,0 : x → 1 2π (1 -cos(2πx)), f i,1 : x → 1 3 f i,0 ({3x})1 J (x) nd for n > 1D f i,n : x / ∈ J → 1 3 f i,n-1 ({3x}), x ∈ J → f i,n-1 (x). en illustrtion of the grphs C(f 1 ) nd C(f 2 ) is given pigures T nd UF he length of C(f i )D i ∈ {1, 2} is the length of C(f i,0 )F he funtions f 1 nd f 2 re IEvipshitzF he funtion f 1 is not di'erenE tile on [0, 1] ut it is plin tht the derivtive of f 1 is onstnt on ny intervl inluded in its dominF yn the ontrryD f 2 is of lss C 1 on [0, 1]D C ∞ lmost
everywhereD ut its seond derivtive is not oundedF hus iqution @WA of heorem V does not pply to f 2 F purthermoreD unlike s 2 D the numer of ptterns where the seond derivtive is unounded tends towrd +∞ s the grid sping tends to zeroF Remark 1. he pttern funtions of E DSS for the tested funtions on the tested grid spings hve not ontrdit the ssumption thtD in our frmeworkD wh re nonElol estimtorsF purthermoreD the ounds h -1/3 nd h -1 3 log(1/h) for the symptoti verge disrete size of the wh on smooth solid ontour with positive miniml urvture V (t our experiment on funtion grphs @see pigure VAF PH 10 -8 10 -7 10 -6 10 -5 10 -4 10 -3 10 -2 10 -1 10 0

log s 1 s 2 f 1 f 2 0.2 h -1/3 -h -1/3 log(h)
pigure VX everge disrete size of the wh produed y E DSS on the tested funtions ording to the grid spingF 4.2. On the theoretical bounds he tests gthered in le P im t ompring the theoretil ounds oE tined in heorem V with the experimentl vlues of the disretiztion error nd the quntiztion errorF o do soD we use the xvi E rand F sn the tleD the lue 9C9 represents the theoretil upper ound nd the green 9B9 represents the oserved error for the grid spings (2/3) n D n ∈ [1, 50] ∩ NF PI Discretization error. he disretiztion error hs two prtsF he seond one only onerns the funtion f 1 for it is the only one tht is not di'erentileF he (rst prt of the ound is

k 2 (b -a) 2 hM A 1 (1 + (C A ) 2 )
where k 2 is vipshitz onstnt for the derivtive of the tested funtionF e tookX log s

1 s 2 f 1 f 2 k 2 I IU ∞ H ∞
ine k 2 = 0 for f 1 D this funtion is not onerned y the (rst prt of the oundF hen the derivtive is not visphitz ontinuous @k 2 = ∞AD the lue 9C9 on the plot represent the vlues of hM A 1 (1 + (C A ) 2 )F ine E rand hs pttern sizes equidistriuted in the intervl [1, 2h -1/2 ]D for smll enough grid spings we hve

hM A 1 (1 + (C A ) 2 ) ≈ 4 3 h 1 2 nd therey k 2 (b -a) 2 hM A 1 (1 + (C A ) 2 ) ≈ 2 3 k 2 h 1 2 .
he yn line on the plots of the disretiztion error of the funtions logD s 1 D s 2 nd f 2 is the grph of h → Γh 1 2 where Γ = 2 3 k 2 @Γ = 4 3 for s 2 nd f 2 AF st n e seen in le P tht the oserved errors for the funtions log nd s 1 re less thn the upper ounds given y heorem VF pei(llyD the power in the mesured errors re lmost twie the oundsD s fr s the grid sping is smll enoughF e know from our previous work IVD tht onvexity llow to doule the onvergene rte of the sprse estimtorsF his explins the oserved di'erene for the logrithm @provided we n extend our previous result to the wEsprse estimtorsAF yn the ontrryD the funtion s 1 hs in(nitely mny in)exion pointsF xeverthelessD one the (rst grid step is pssedD it remins only (nitely mny of themF his ould explin the good onvergene rteF sn work in preprtionD we study this issue y ringing mesure of the set of in)exion pointsF yn the plots relted to the funtions s 2 nd f 2 D we n see tht hving n unounded seond derivtive drstilly dereses the onvergene rteD even for s 2 whih hs ounded seond derivtive on ny losed suintervl of its domin tht does not ontin HF egrding the funtion f 1 D whih is 1EvipshitzD the ound for the disretizE tion error is (ϕ(1) -1)H A (f 1 , h).

en upper ound for H A (f 1 , h) is lulted in eppendix eX

H A (f 1 , h) ≤ H(f 1 , δ) ≤ 15 4 δ 1-log 3 (2) PP where δ = hM A +∞ F ith E rand D δ = hM A +∞ ≈ 2h
1 2 @for smll enough grid spingsAF husD the ound for the funtion f 1 is pproximtively

15( √ 2 -1) 2 1+log 3 (2) h 1 2 (1-log 3 (2)) .
he yn line on the plot of the error for the funtion f 1 is the grph of h → Γh 1 2 (1-log 3 (2)) where Γ = 15( √ 2 -1)/2 1+log 3 (2) F he plot reltive to f 1 shows the good ury of the upper ound for this non di'erentile funtionF woreoverD if insted of tking δ = hM A +∞ in the oundD whih orresponds to the worst seD we tke δ = hM A 1 D tht is we over the points of non di'erentiility y ptterns of verge sizeD oth point louds lmost overlpF Quantization error. he upper ound for the quntiztion error is derived from roposition U nd the funtion just needs to e vipshitz ontinuousF husD this ound is vlid for our (ve test funtionsF ith the estimtor E rand we n tke just one pttern funtion @A = B nd ω = 0AF oD the quntiztion error is ounded y

ϕ k 1 + 1 M A -1 (b -a) 1 M A 1
where k 1 is vipshitz onstnt for the tested funtionF husD for smll enough grid spingsD the ound on the quntiztion error for the estimtor E rand is pproximtively ϕ (k 1 ) h

1 2 . por k 1 D we took log s 1 s 2 f 1 f 2 k 1 I HFU 0.7 I 1
he yn line on the plots of the quntiztion errors @for the (ve funtionsA is the grph of h → Γh 1 2 where Γ = ϕ (k 1 )F ith the quntiztion errorD the results for ll tested funtions re less thn the upper ounds given y heorem VF egin the powers in the mesured errors re lmost twie the oundsD s fr s the grid sping is smll enoughF es with the disretiztion errorD this orresponds to property of onve funtions shown in IV for the sprse estimtors nd this property ould lso e vlid for the xvis nd for lrger lss of funtions thn the onve onesF xevertheless this is not true in the worst seF rerefterD we show very simple exmple tht proves tht the ound nnot e improved for ny grid spingF vet us hoose grid sping h = k -2 /4D k ∈ N nd we ssume thtD t this grid spingD the pttern size is onstntD equls to h -1/2 = 2kF xowD we de(ne the periodi pieewise 0ne funtion

v k,a = (1 + a k ) 1 k v 0 (kx) PQ where 0 < a 1 nd v 0 (x) = - 1 2π arccos(cos(2πx)).
pigure W shows the plot of the funtion v 4,0.1 on [0, 1]F ih pttern is digitl stright segment nd the quntiztion error is mximl on eh segment for the di'erene etween the ordintes of the disrete funtion nd the ontinuous funtion t the lower end of the segments is (1 -2a)h ≈ hF yn le ID we show the reltive di'erene etween the quntiztion error @iA nd its upper ound @fA in heorem V for some funtions v k,a where a = 10

-3 F -h -2h -3h -4h -5h -6h -7h -8h -9h 1 k 2 k 3 k 1
pigure WX flue @upperA lineX the grph of the funtion v 4,0.1 F ed pointsX wh end points of the v 4,0.1 yf disretiztionF ed lineX polyline whose length is the non lol length estimtion of L

(g)F k 1 2 2 2 4 2 6 2 8 2 10 2 12 h 2 -2 2 -6 2 -10 2 -14 2 -18 2 -22 2 -24 QE 3e-1 6e-2 1e-2 3e-3 9e-4 2e-4 5e-5 QE-UB QE 2e-1 8e-2 2e-2 6e-3 1e-3 4e-4
IeER le IX eltive di'erene etween the quntiztion error for the funtion v k,a with a = 10 -3 nd the upper ound provided y heorem V 4.3. Comparison between the tested estimators e omprison of the di'erent estimtors on the (ve test funtion grphs is shown le QF he whD prse nd wEsprse estimtors re tested on the vogrithmD the dumped sinusoids s 1 D s 2 nd the frtl funtions f 1 D f 2 F hree errors re shown for the testX the disretiztion error @left olumnAD the quntiztion error @middle olumnA nd the totl error @right olumnAF Discretization error. he hisretiztion irror @hiA is due to the pproximE tion of the urve y hords whose width is given y the pttern funtionF husD generllyD the shorter the widthD the smller the hiF his is indeed wht we PR oserve in le Q where E MDSS nd E Sp3 whih hve pttern size verge of out h -1 3 onverge more quikly thn E Sp2 nd E rand whih hve pttern size verge of h -1 2 F he good performne of E MDSS on the f 1 grph whih is omE posed of stright line segments is nturlF gontrriwiseD s wh re dptiveD we ould expet tht E MDSS outperforms E Sp3 on s 1 D s 2 nd f 2 F urprisingly this is not the se on the grph of s 1 F Quantization error. he untiztion irror @iA omes from the vertil lignE ment of the hords on the gridF oD generllyD pttern funtion tht produe smll numer of ptterns yield to smll i on the ontrry to the hiF his is wht we oserve on the experimentF sn prtiulrD the prie of the dptive nture of E MDSS is reltively lrger iF Total error. he in)uene of the i nd the hi on the totl error depends on the studied grphF yn the one hndD the order of mgnitude of the i is pretty muh the sme for the (ve funtions nd eh xvi @with n exeption for E MDSS on the logrithmAF yn the other hndD the order of mgnitude of the hi inreses signi(ntly from the smooth onve funtion log to the frtl funtions for the four tested xviF yn the dumped sinusoid s 2 D the totl error for the E MDSS estimtor ene(ts from the ontrry signsD with sme order of mgnitudeD of the i nd the hiF e note lso tht the sprse estimtor E Sp2 nd its rndomized equivlentD the wEsprse estimtor E rand hve lmost the sme results for the (ve funtionsF iventullyD no estimtor gives the est results over ll the grphF

Conclusion

sn this rtileD we hve introdued new lss of length estimtorsD the nonE lol estimtors @xviAF he xvi gther ll the multigrid estimtors whose disrete grph length estimtion is mde with polyline whose verties elong to the disrete grph under the ssumption tht the verge of the line segment disrete sizes tends towrd in(nity s the grid sping tends towrd zeroF he xvi lss should enompss the wh sed length estimtorsF xevertheless we still need to prove it formllyF e hve lso de(ned sulss of the xviD the wEsprse estimtorsD for whih the verge of the line segment solute lengths tends towrd H s the grid sping itself tends towrd zeroF e proved tht ny xvi hs the multigrid onvergene property for the vipshitz funtions s soon s t ny grid sping its polyline is lose to the one of some wEsprse polylineF he ound on the onvergene rte is the sme s the one of semiE lol nd sprse estimtors in the generl seD under weker ssumptions on the funtionF he onvergene rte n e improved when the funtion is onve or onvex s it hs een shown for sprse estimtors in IVF his point will e developed in work in preprtion QF e hve lso to study how the mteril presented in this rtile ehves with tordn urves otined s oundries of solid ojets through vrious disretiztion shemes @nd more generllyD with ny grph of oneEtoEone vetorEvlued funtionAF 10 -1 10 0 10 1 10 -10 10 -8 10 -6 10 -4 10 -2 10 0 Γ h 1/2 (1-log3(2)) 0.9 h 1/2 (1-log3(2)) 10 -10 10 -8 10 -6 10 -4 10 -2 10 0 10 -10 10 -8 10 -6 10 -4 10 -2 10 0 Γ h 1/2 0.4 h 0.9 10 -2 10 -1 10 0 10 1 10 -10 10 -8 10 -6 10 -4 10 -2 10 0 

  [a, b] | |g (x)| = 1} is (niteD then y symmetries on the grph C(g)D it is possile to ome down to the se where |g | ≤ 1F xeverthelessD in this rtileD we mke no ssumption on the slope of the funtion g nd y discrete curve we men the grph of funtion γ : I → Z where I is n intervl of ZF sn the sequel of the rtileD for ny funtion f : [a, b] → RD L(f ) denotes the length of the grph C(f ) ording to tordn9s de

  with grid sping h of ontinuous urveF he pattern function tht we de(ne therefter produes segmenttion of the disE rete urve ΓF he points put forwrd y this segmenttion form polyline joining the two extremities of ΓF hen the length of this polyline is non local length estimation of the urveF xote tht ll the points of Γ re ignored in the estimtion exept the points used s verties of the polylineF en sllustrtion of the de(nition is given pigure IF Denition 1 (Pattern function). vet α, β ∈ RF • e pattern function is funtion tht mps disrete urve Γ nd grid sping h to prtition of the domin of ΓF vet C e set of reti(le funtionsF 6 R = R ∪ {-∞, +∞}. T • en α-pattern function A on C is pttern funtion suh thtD for ny reti(le funtion g ∈ CD lim h→0 M α (A(D(g, h), h)) = +∞, @PA • en (α, β)-pattern function A on C is n αEpttern funtion suh thtD for ny reti(le funtion g ∈ CD lim h→0 M β (A(D(g, h), h)) × h = 0. @QA en αEpttern funtionD respF (α, β)Epttern funtionD is n αEpttern funtionD respF (α, β)Epttern funtionD on the set of ll reti(le funtionsF essuming Γ = D(g, h)

  is the smllestD respF lrgestD integer suh tht Ah ∈ ID respF B h ∈ IF he funtions g l D g c D g r re respF the restritions of the funtion g to the intervls [a, Ah]D [Ah, B h]D [B h, b]F por ny pttern funtion AD we write M A α D respF C A D insted of M α (A(g, h))D respF C(A(g, h))D when there is no miguityF he numer of suintervls in the prtition A(g, h) is denoted N A D or just N when possile nd the integers de(ning the prtition A(g, h) re A = a 0 < a 1 < • • • < a N = BF pinllyD we de(ne two pieewise 0ne funtionsD g A c nd g A c D interpoling the ontinuous funtion g c nd its disretiztion @whih is equl to D(g, h)A ording to the pttern funtion AF he grph of g A c D resp g A c D is the polyline linking the points a i h, g(a i h) N i=0 whih re on C(g)D respF the grid points a i h, g(aih) h h N i=0 F pigure P shows the three funtions gD g A c D g A c on suintervl of AF he proof of heorem V n e split in three prtsF roposition R gives ound on the error due to the ignorne of the ext sisss of the urve extremitiesF roposition S nd roposition T evlute the di'erene etween the length of the urves C(g c ) nd C(g A c ) for given pttern funtion A under di'erent ssumptionsF qiven two pttern funtions A nd BD roposition U evlutes the di'erene etween the length of the urves C(g A c ) nd C( g B c )F he reson to use two distint αEpttern funtions A nd B omes from the need to del with nonElol estimtors s wh tht produe ptterns whose solute size does not tends to zero unlike wEsprse estimtor ptternsF prom the vipshitz hypothesis on gD we derive immeditely ound on the errors due to the loss of the true left nd right extremities of the urve C(g)F II Proposition 4. For any k-Lipschitz function g, we have L(g l ) + L(g r ) ≤ 2ϕ(k)h. Proof. ine g is kEvipshitzD the slope of ny hord of C(g) is less thn k in modulusF st follows tht the length of ny polyline (tting C(g) on suintervl [c, d] of [a, b] is ounded y ϕ(k)(dc)F henD ording to tordn9s de(nition of r lengthD we get L g |[c,d] ≤ ϕ(k)(dc) @TA where g |[c,d] denotes the restrition of the funtion g to the intervl [c, d]F sn prtiulrD

  = 0 nd rem ≤ H(h). husD tking B = AD ω = 0 nd β = 1 ll the hypotheses of heorem V re stis(edF heorem V is tested on rel funtions in the next setionF 4. Tests he tests hve een mde using the wp nd qw lirries through the sage PI softwreF he results re presented in le P nd le QF rerefterD we present the tested non lol length estimtors @xviA nd the tested funtionsF 4.1. Protocol he tested xvi reX • he sprse estimtors E Sp2 nd E Sp3 with IF E Sp2 X the disrete pttern size equl to h -of the funtion s 1 F PF E Sp3 X the disrete pttern size equl to h -1 3

  of the funtion s 2 F

  in multigrid length estimtions with the xvi E rand F qreen strsX the oserved errorsF flue rossesX the theoretil upper ounds given y heorem V @Γ is onstnt omputed from the expeted mens of the rndom sizesY see errors in funtion of the grid sping h for the estimtors E Sp2 D E DSS D E rand nd E Sp3 F he tested funtions re logD s 1 D s 2 D f 1 nd f 2 @see textAF PU

Actually, the convergence of a semi-local estimator depends upon some choice made in its denition (see Section 2.4).

A covering by a family E of sets is minimal if no subfamily of E is itself a covering. IP

Appendix A. Calculus of H(f, δ) e onsider the frtl funtion f de(ned in etion RFIF vet E e the set of points in [0, 1] t whih g is not di'erentileF E ontins isolted points whose tridi development is omposed of (nitely mny digits 0 or 2 followed y n in(nite sequene of digits I nd E ontins limit points whose tridi development is (niteD mde of digits H or P ut the lst whih is ny digitF e set F (δ) = H(f, δ)F ell tht

where the supremum is over the set E δ of ll miniml overings of the set E y disjoint open suintervls of (0, 1) with dimeters w i ≤ δF por δ ≥ 1 6 D the set {I i } 6 i=0 where

3 )F prom the reursive de(nition of f D one n see tht

where f |J denotes the restrition of the funtion f to n intervl JF husD for ny δ < 1 6 D

fy solving the reurrene reltion @eFPA with the initil equlity @eFIAD we get