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Abstract

An interesting property for curve length digital estimators is the con-
vergence toward the continuous length and the associate convergence
speed when the resolution tends to infinity. On the one hand, DSS based
estimators have been proved to converge but only under some convex-
ity and smoothness or polygonal assumptions. On the other hand, we
have introduced in a previous paper the sparse estimators and we proved
their convergence for Lipschitz functions without convexity assumption.
Here, we introduce a wider class of estimators, the non-local estimators,
that intends to gather sparse estimators and DSS based estimators. We
prove their convergence and give an error upper bound for a large class of
functions.

1 Introduction

We focus in this paper on one classical digital problem: the length estimation.
The problem is to estimate the length of a continuous curve S knowing a dig-
itization of S. As information is lost during the digitization step, there is no
reliable estimation without a priori knowledge. From a theoretical point of
view, a classical criterion to evaluate the quality of a geometric feature esti-
mator is the possession, or not, of the (multigrid) convergence property, that
is the estimation convergence toward the continuous curve feature when the
resolution tends to infinity. The local estimators based on a segmentation of
the digital curve in patterns whose size is a constant that does not depends
upon the resolution do not satisfy the convergence property even for straight
line segments [I]. The adaptive estimators based on a segmentation in Maxi-
mal Digital Straight Segments (MDSS) or based on a Minimum Length Polygon
(MLP) satisfy the convergence property for smooth, or polygonal, closed simple
curves under assumption of convexity [2]. The semi-local estimators [3], and
the sparse estimators [4], both based on a segmentation of the curve in patterns



whose size only depends upon the resolution, verifies the convergence propertyﬂ
without convexity hypothesis, for smooth curves of class C? with the former and
for Lipschitz curves with the latter. We present here a new class of length esti-
mators, the non-local estimators, that aims to encompass the sparse estimators
and the MDSS based estimators.

The paper is organized as follows. In Section 2] some necessary notations
and conventions are recalled, then the existing estimators and their convergence
properties are detailed. In Section [3] the non-local estimators are defined and
the multigrid convergence property is proved for Lipschitz functions under some
assumptions satisfied by sparse estimators and MDSS based estimators. Fur-
thermore, an upper bound on the error of the estimator is exhibited for a wide
subclass of the Lipschitz functions. Section [d] provides some illustrations of the
obtained convergence speed lower bounds and a comparison of the estimations
for different kind of non-local estimators. Section [ concludes the article and
gives directions for future works.

2 Background

2.1 Discretization models

In this work, we have restricted ourselves to the digitization of function graphs.
So, let us consider a continuous function ¢ : [a,b] - R (a < b), its graph
C(g) = {(z,g9(z)) | = € [a,b]} and a positive real number r, the resolution. We
assume to have an orthogonal grid in the Euclidean space R? whose set of grid
points is hZ? where h = 1/r is the grid spacing.

The common methods to model the digitization of the graph C(g) at the
resolution 7 are closely related to each others. In this paper, we assume an
object boundary quantization (OBQ). This method associates to the graph C(g)
the h-digitization set

DO(g,h) = {(kh, V(khh)J h) | k € Z and kh € [a,b]}

where |-| denotes the floor function. The set D®(g, h) contains the uppermost
grid points which lie in the hypograph of g, hence it can be understood as a
part of the boundary of a solid object. Provided the slope of g is limited by
1 in modulus, D°(g,h) is an 8-connected digital curve. Observe that if g is a
function of class C' such that the set {z € [a,b] | |¢/(z)| = 1} is finite, then by
symmetries on the graph C(g), it is possible to come down to the case where
|¢’| < 1. Nevertheless, in this article, we make no assumption on the slope of
the function g.

In the sequel of the article, for any function f: [a,b] — R, L(f) denotes the

L Actually, the convergence of a semi-local estimator depends upon some choice made in its
definition (see Theorem [1)).



length of the graph C(f) according to Jordan’s definition of length:

L(f) = sup > V(@i —zia)? + (f(@) — fio1))?

a=zo<a1<--<zp=bj_;

where the supremum is taken over all possible partitions of [a, b] and n is
unbounded.

2.2 Local estimators

Local length estimators (see [5] for a short review) are based on parallel com-
putations of the length of fixed size segments of a digital curve. For instance,
an 8-connected curve can be split into 1-step segments. For each segment, the
computation returns 1 whenever the segment is parallel to the axes and /2
when the segment is diagonal. Then all the results are added to give the curve
length estimation.

This kind of local computation is the oldest way to estimate the length of a
curve and has been widely used in image analysis. Nevertheless, it has not the
convergence property. In [I], Kulkarni et al. introduce a general definition of
local length estimation with sliding segments and prove that such computations
cannot give a convergent estimator for straight lines whose slope is small (less
than the inverse of the size of the sliding segment). In [6], a similar definition of
local length estimation is given with disjoint segments. Again, it is shown that
the estimator failed to converge for straight lines (with irrational slopes). This
behavior is experimentally confirmed in [2] on a test set of five closed curves.
Moreover, the non-convergence is established in [7} [§] for almost all parabolas.

2.3 Adaptative estimators: DSS and MLP

Adaptive length estimators gather estimators relying on a segmentation of the
discrete curve that depends on each point of the curve: a move on a point can
change the whole segmentation. Unlike local estimators, it is possible to prove
the convergence property of adaptive length estimators under some assumptions.
Adaptive length estimators include two families of length estimators, namely
the Maximal Digital Straight Segment (MDSS) based length estimators and the
Minimal Length Polygon (MLP) based length estimators.

Definition and properties of MDSS can be found in [9, 10, 2]. Efficient
algorithms have been developed for segmenting curves or function graphs into
MDSS and to compute their characteristics in a linear time [9, 11}, 10]. The
decomposition in MDSS is not unique and depends on the start-point of the
segmentation and on the curve travel direction. The convergence property of
MDSS estimators has been proved for convex polygons whose MDSS polygonal
approximationﬂ is also convex [12, Th. 13 and the proof Ell: given a convex

2Though the digitization of a convex set is digitally convex, it does not mean that a
polygonal curve related to a convex polygonal curve via a MDSS segmentation process is also
convex.

3The hypothesis on the convexity of the MDSS polygone is not assumed in the statement



polygon C and a grid spacing h (below some threshold), the error between the
estimated length L (C, h) and the true length of the polygon L(C) is such that

|L(S) — Lest (S, h)| < (2 + V/2)rh. (1)

It must be noticed that there exists a wrong version of the above equation
in the literature EL Empirical MDSS multigrid convergence has also been tested
in [2, I5] on smooth nonconvex planar curves. The obtained convergence has
order 1 as in the convex polygonal case. Nevertheless MDSS multigrid conver-
gence has not been proved under these assumptions. Another way to obtain
an estimation of the length of a curve using MDSS is to take the slopes of the
MDSSs to estimate the tangent directions and then to compute the length by
numerical integration [16] (2, 17]. The estimation is unique and has been proved
to be multigrid convergent for smooth curves (of class C? with bounded curva-
ture in [2], of class C3 with strictly positive curvature in [I7]). The convergence
order is a O(h3) 1 in [17] and thus, worse than (T).

Let C be a simple closed curve lying in-between two polygonal curves v
and 7. Then, there is a unique polygon, the MLP, whose length is minimal
between 1 and 7,. The length of the MLP can be used to estimate the length
of the curve C. At least two MLP based length estimators have been described
and proved to be multigrid convergent for convex, smooth or polygonal, simple
closed curves, the grid-continua MLP algorithm (GC-MLP) proposed in [I8]
and the Approximation Saussage MLP (AS-MLP) introduced in [19]. For both
of them, and for a given grid spacing h, the error between the estimated length
Lest (C, h) and the true length of the curve L(C) is a O(h):

|L(C) - Lcst(c, h)| S Ah

where A = 8 for GC-MLP and A ~ 5.844 for AS-MLP.

On the one hand, as estimators described in this section are adaptive, the
convergence theorems rely on strong hypotheses, the proofs are difficult to es-
tablish and often incomplete. On the other hand, the study of the MDSS in
[15] shows that the MDSS size tends to 0 and their discrete length tends toward
infinity as the grid step tends to 0. Thereby, one could ask whether combin-
ing a local estimation with an increasing window size as the resolution grows
would give a convergent estimator under more general assumptions and/or with
simpler proofs of convergence. The following sections explore this question.

of the theorem but it appears in the proof.

4The formulation of the right hand side of in the literature is (26 pss + v/2)7h where
epss is a bound for the Hausdorff distance between a real straight segment and its discretiza-
tion, expressed in the unit given by the grid-spacing and it is related to the chord property
of the straight lines established by Rosenfeld [13]. Accordingly, in [12], it is said that "the
’classical” value of epgg is 1". A few month later, in [T4], the authors chose to express the
same constant epgg in absolute length unit, so they claim that "its ’classical’ value is 1/r"
but they forgot to update the right hand side of the majorization. Afterward, the mistake
propagated to [2] and led to an erroneous conclusion.



2.4 Semi-local length estimators

The notion of semi-local estimator appears in [3]. Here, we give a slightly
different presentation of this notion. At a given resolution, a semi-local estimator
resembles a local estimator: it can be implemented via a parallel computation,
each processor handling a fixed size segment of the curve. Nevertheless, in
the framework of semi-local estimation, the processors must be aware of the
resolution on which the size of the segments depends.

More formally, a pattern of size N is a discrete function from [0, N]NZ to Z.
The diameter of a pattern w is the real ||w|| = /N2 + w(N)2. We denote by Py
the set of patterns of size N and by P the set of all patterns: P = [y, ZIONINZ,

A semi-local estimator is a pair (H,p) where

e H: (0,00) — N* gives the size of the patterns given a grid spacing h and
lim H(h) = +o0, (2)
h—0
lim hH (h) =0, (3)
h—0

e p: P — [0,00) gives the estimated feature (here, the length) associated to
a pattern.

Let g: [a,b] — R be a rectifiable function. At a given grid spacing h correspond-
ing to a resolution r, the digitization D (g, h) of the curve C(g) is segmented in
N, patterns wy,...,wy, of size H(h) and, possibly, a rest w, whose size is less
than H(h). Then, the length of the curve C(g) is estimated by

N,
L%(g,h) = h ) _p(e).

We can see that the patterns of a semi-local length estimator have a discrete
size that tends to infinity as the resolution grows to infinity (Equation [2|) while
their true size tends to zero (Equation . Under these constraints, and a con-
straint on the function p, it is proved in [3] that the semi-local length estimators
are multigrid convergent for functions of class C2.

Theorem 1 ([3, Prop. 1]). Let (H,p) be a semi-local estimator such that
max {p(w) — ||w|| |w € Px} = o(k) as k — +oc.

Then, for any function g € C?([a,b]), the estimation L5%(g, h) converges toward
the length of the curve C(g). Furthermore, if the term o(k) in the third hypothesis
is a constant and H(h) = ©(h™2), then L(g) — L5“(g, h) = O(h?).

In the above theorem, the hypothesis states that the function p applied to a
pattern w must return a value close to its diameter. This has led us to define a
subfamily of the semi-local length estimators that we present in the next section.



2.5 Sparse length estimators

The notion of sparse estimator is introduced in [4]. They are a subclass of the
semi-local estimators for which the estimation of a pattern length is exactly its
diameter. Hence, the information given by the points inside a pattern, but its
extremities, is discarded. This justifies the name given to this class of estimators.
As semi-local estimators, sparse estimators can be defined by a sparsity
function H:]0,+o00[— N* that verifies the two assertions
lim H(h) = +o0 and lim hH(h) = 0.
h—0 h—0
For any function g : [a,b] — R and any grid spacing h = 1/r, the digitization
D9(g,h) of the curve C(g) is segmented in N, patterns wo,...,wy, 1 of size
H(h) and a last pattern wy, whose size is less than, or equal to, H(h). The
sparse estimator with parameter H of the length of the curve C(g) is defined by

Np,
L%(g,h) = h) " Jlws .
1=0

Sparse estimators have the following convergence properties.

Theorem 2 ([4]). Let H be a sparsity function and g: [a,b] — R a Lipschitz
function. Then, the estimator L°P converges toward the length of the curve C(g).
Furthermore,

e if g is of class C?

(o) ~ L6, = OA(1) + O ( 3705
e if g is C? and concave,

Lig) — L%(g.h) = O(R*H(h)?) + O (H(1h)>

e if g is C with everywhere strictly negative curvature and hz = o(hH(h)),

L(g) = L¥(g,h) = O(h*H(h)*) + O(h).

On the one hand, with semi-local and sparse estimators, the pattern size
is constant for a given resolution. This is important for an algorithmic point
of view. Nevertheless, it does not really matter to prove the convergence and
Equations , could be expressed in terms of means. On the other hand,
it has been proved in [15], under some hypotheses, that the average size of the
maximal digital straight segments of a contour verify eqs. and (3). This
led us to define a new family of length estimators that is presented in the next
section.



3 Non-local estimators

We introduce a new class of length estimators that aims to gather sparse esti-
mators and adaptive estimators. To do so, we need to relax the hypothesis on
the length of the codes w; by allowing variable lengths. We need also to allow
very large patterns when the curve is close to straight segments.

3.1 Definition

We recall that for any non-zero real number «, the generalized mean of param-
eter a, or a-mean, of a finite sequence of positive numbers (z;)?, is defined
by

Mo((2:)}o) = <i2x> .
=0

Furthermore, M o ((2i)f—) = sup((z:)j=y) and M_o((:)f=) = inf((2;)i)-
For any «, 8 € R, one ha

a<f = Ma((2i)izo) < Mp((2:)iZ0)-

When o is a partition of some interval I, we write M, (o) for the a-mean of
the o subinterval length sequence. We also write ¢, (o) for the coefficient of
variation of the o subinterval length sequence. Recall that the coefficient of
variation is the ratio of the standard deviation to the arithmetic mean and that
1+ co(0)? = Ma(0)2 /My (o).

We are now able to give the definition of the non-local estimators. An
Tllustration of the definition is given Figure

Definition 1 (Pattern function). Let I be a closed real interval. Let o, 3 € R.

e A pattern function on I is a function that maps a resolution r to a partition
of riINZ.

e An a-pattern function is a pattern function such that

lim M, (A(r)) = 400, (4)

r—+00

e An («, 8)-pattern function is an «-pattern function such that
Mg(A(r)) = o(r) asr— 0. (5)

Definition 2 (Non-local estimator). Let g: I — R be a rectifiable function and
A be an a-pattern function on I (o € R). The non-local length estimation
with parameter A of the length of the curve C(g) at the resolution r, denoted
LNY(g, A1), is given by the length of the polyline (PI),ca¢r) defined by P =
(a, rg(a)] /).

SR=RU {—00,+00}.




|—Continuous function I—Continuous function
* Pattern function | * Pattern function
+ Digitized function ] | + Digitized function

Figure 1: Non-local estimation at two resolutions. The red points are the ver-
tices of the polyline whose length yields the non local estimation of the contin-
uous black curve length at the given resolutions.

A non-local multigrid length estimator is a function that maps a rectifi-
able function g together with a resolution r to a mon-local length estimation
LNY(g, Ay, 1) where A, is some a-pattern function. If, besides, Ay is an (a, f)-
pattern function for any g (8 € R), we say that £ is an M-sparse multigrid
length estimator.

In other words, at a given resolution r, a non-local estimator (NLE) splits
a discrete curve in patterns in such a way that the pattern discrete sizes tend
to infinity, in mean, as r tends to infinity. A M-sparse estimator is a non-local
estimator whose patterns have absolute size tending to 0, in mean, as r tends
to infinity.

Here we detail the inclusion relations between the non-local estimators and
the estimators described in Section

Local estimators The patterns associated to a local estimator have a con-
stant size that does not depend on the resolution. Thereby, the local estimators
are not non-local estimators (this justifies the name given to the class of esti-
mators introduced in this paper).

Semi-local and sparse estimators The subinterval-length sequence for sparse
estimators is (H(h),..., H(h),rem) where rem < H(h), H(h) tends to infinity
and hH (h) tends to 0 as the grid spacing h tends to 0 (i.e., r — +00). Thus, it
is plain that they are M-sparse length estimators. As a matter of fact, M-sparse
estimators are derived from sparse estimators by replacing the fixed size pat-
terns and their limit properties by variable ones with in mean limit properties
(the "M’ in M-sparse stands for mean).

In the case of semi-local estimators, it is also true that the discrete size of each
pattern tends to infinity and that their absolute size tends to 0. Nevertheless,
the semi-local length estimators as defined in [3] do not exactly comply to the
rule given for the computation of the length in Definition [2| for two reasons.



Firstly, they withdraw the last pattern if it has not the expected size, H(h).
Secondly, the result of the estimation is not necessarily based on a polyline
because of the length function p (even if it is asymptotically the case when the
hypothesis of Theorem [1| is satisfied). Then, strictly speaking, the semi-local
estimators are not non-local estimators though they are very close to them (and
to M-sparse estimators) when Theorem [1] applies.

MDSS based estimators Though it has not been proved in the same frame-
work nor in the general case, it is likely that MDSS based length estimators are
non-local estimators, under the assumption that the length of a MDSS is esti-
mated with its diameter (as it is the case the DGtal library [20]). Indeed, in [I5]
it is shown that, in the framework of Gauss digitization and for convex shapes
with C® boundaries and everywhere strictly positive curvature, the average dis-
crete size of all 4-connected maximal segments defined on a discrete boundary
is between a ©(r3) and a O(r3 In(r)). Our experiments, even with the damped
sinusoids s1, sy and the fractal function f (see Section , suggests that this
bound could be valid for an MDSS segmentation of a discrete function graph.
This hypothesis must now be theoretically confirmed. On the other side, it is
plain that a MDSS based estimator is not a M-sparse estimator. For instance,
with an affine function it use a single pattern at any resolution.

3.2 Convergence

In this section, we give some sufficient conditions under which the non-local
length estimators are convergent for Lipschitz functions. Moreover, Theorem [3]
gives a bound on the error at resolution r for Lipschitz functions whose derivative
is k-Lipschitz on any interval included in their domain (k > 0).

Notations In the remainder of the article, we use the following notations.

I = [a,}] is an interval of R with a non-empty interior and, for any r > 0, A",
resp. B, is the smallest, resp. largest, integer in r1.

g: I — R is a Lipschitz function whose derivative is denoted ¢’ (from Rade-
macher’s theorem, g is differentiable almost everywhere).

The functions ¢, g", g are resp. the restrictions of the function g to the inter-
vals [a, A"h], [A"h, B"h], [B"h,b] where h is the grid spacing (h = 1).

We also define the function ¢: R — R by ¢(z) = /14 22. Thus, one has
L(g) = Jiup®o9"

For any pattern function A on I and any r > 0, we write M,,, resp. ¢,, instead
of M, (A(r)), resp. ¢,(A(r)), when there is no ambiguity, the number of subin-
tervals in the partition A(r) is denoted N7; and we define two piecewise affine
functions, ¢”y and [g";], whose graphs are respectively

- the polyline linking the points (aih, g(aih))i]\;’%

NA

. . . . a;h
- the polyline linking the points (aih, {%J h)izo



Figure 2: The two main parts of the estimation error: the curve g (in green,
solid) to its chord ¢”; (in magenta, dotted-dashed) then the curve chord to the
chord g7 ] (in blue, dashed) of the digitized curve D° (g, h) (black points).

where (ai)fv:% = A(r).
Figure [2| shows the three functions g, g7, |¢"y| on a subinterval of A.

The proof of Theorem [3] can be split in three parts. Proposition [I] gives
a bound on the error due to the ignorance of the exact abscissas of the curve
extremities. Proposition 2] and Proposition [3] evaluate the difference between
the length of the curves C(g") and C(gy) for a given pattern function A under
different assumptions. Given two pattern functions A and B, Proposition [4]
evaluates the difference between the length of the curves C(g”;) and C(|gg]).
The reason to use two distinct a-pattern functions A and B comes from the
need to deal with non-local estimators as MDSS that produce patterns whose
absolute size does not tends to zero unlike M-sparse estimator patterns.

From the Lipschitz hypothesis on g, we derive immediately a bound on the
errors due to the loss of the true left and right extremities of the curve C(g).

Proposition 1. For any k-Lipschitz function g, we have
L(g") + L(g") < 2¢(k)h.

Proof. Since g is k-Lipschitz, the slope of any chord of C(g) is less than k in
modulus. It follows that the length of any polyline fitting C(g) on a subinterval
[c,d] of [a,b] is bounded by ¢(k)(d — ¢). Then, according to Jordan’s definition
of arc length, we get

L(9je.q) < p(k)(d —c) (6)
where g4 denotes the restriction of the function g to the interval [c,d]. In
particular, L(g%) < ¢(k)(A"h —a) < @(k)h and L(g®) < @(k)(b — B"h) <
o(k)h. O

We now look at the difference between the length of C(g") and the length of
the polyline C(g7,)-

10



Proposition 2. For any pattern function A such that My (A(r)) = o(r) as
r — 400 and any Lipschitz function g, we have

Jim  L(gi) — L(g") = 0.

Proof. For any function f defined on an interval J and any partition o of J, we
note L,(f) the length of the polyline interpolating f related to the partition
o. Remember that, from the Jordan’s definition of arc length and the triangle
inequality, if o and ¢’ are two partitions of the interval J and f is a function
defined on J, then

Ugal = LU(f)SLU’(f)SL(f)

Let k£ > 0 be a Lipschitz constant for g on I. Let ¢ > 0 and o a partition of
I such that L(g) — L,(g) < /2. We denote by n the number of subintervals of
the partition o. Since M~ = o(r) as r — 400, there exists a positive real r

such that
M+oo 3

< .

2(n —1)(p(k) —1)

Let r > rg and h = £. We set o9 = (0 U{A"h, B"h}) N [A"h, B"h]. Tt can
easily be seen that

Vr > 70,

L(g") = Loy (9") < L(g) = Lo(g) < /2.
We set 0, = 09 U A(r). Firstly, we observe that

L(g") = Loy, (9") < L(9") — Loy (g") <

for the partition oy, is finer than the partition oy.

N | ™

Then we give an upper bound for L, (g") — L(g’y). Let A(r) = (ag)i]i%.
For any ¢ € [1, N3] NZ, let R{, 0 < j < n; be the points of C(g) with abscissas
in 0o, N[al_y,a’] (thereby, the abscissa of R is al_; and the abscissa of R} is
al). Observe that n; # 1 for at most (n — 1) values of ¢ (there is at most n — 1

points in o that are not in A(r)).

N n;
Loo,r(gr) - L(g;\) = Z Z d(Rg_17 Rz) - d(R?, R;m)
i=1 j=1
< (p(k) — Dh(al —al_y) (for g is k-Lipschitz)
< (n—1)(p(k) = 1)hM oo
<<
-2
Then,
L(g") = L(g24) < (L(9") = Loy . (")) + (Loy . (97) — L(g4))
€ €
< 1z
-2 + 2
<e.

11



We conclude the proof straightforwardly. O

When the derivative of g is Lipschitz continuous, the next lemma gives us a
bound on the difference between the length of the curve C(g") and the length
of the polyline C(g").

Proposition 3. If g is ki-Lipschitz continuous and g’ is ko-Lipschitz on each
interval included in its domain, we have for any pattern function A and any
resolution r > (

< 20290ty () (14 €0 (A0)?) + (olh0) - Do) (D)

with § = hM oo (A(r)) and Hs(g) = max >, w; where the mazimum is over all
minimal covem’ngfﬂ of the set of points in [a,b] at which g is not differentiable by
closed subintervals of [a, b] with diameters w; < § and pairwise disjoint interiors.

Proof. Let A(r) = (a?)f\;%. Let D C [1, N] N Z be the set of subscripts i such
that g is differentiable on (al_;h,alh). Note that the function ¢ is 1-Lipschitz
and thereby ¢ o ¢’ is ko-Lipschitz.
From the mean value theorem, on each interval (a]_;h,alh), i € D, there exists
a real t7 such that
g(aih) — g(aj_,h)
(af —aj_y)h

Thus, the length of the restriction of C(g”;) to the interval [a]_,h,a]h] is

=g'(t7).

V(g(arn) = glal_0)? + h2(af — ap_y)* = h(a] — a}_,) p(g/(£))) if i € D and

V(g(arn) = g(a_y)? + h2(af — ap_y)? > h(a] — af_,) if i ¢ D.

Moreover, for any ¢ ¢ D, since g is ki-Lipschitz, one has by Equation @

L(jfar_,narn) < (k1)h(a; —aj_y)

6 A covering by a family F of sets is minimal if no subfamily of E is itself a covering.

12



Then,

L(g") — L(gla) < Z/

h
pog'(t)—pog'(t;)dt +
iep”ai_1h

-
a;
e
i1

(p(k1) = 1) h(a] —ai_y)

i¢D

a:h
< Z/ o [t — 7] dt + (p(ky) — 1)Hs(g)
i_1h

ieD V%

A (a) —ai,)?
< Zkzh — T (p(k1) — 1)Hs(g)
=1

1
< 5k RN Ms? + (p(k1) — D)Hs(g)

< 1@h(b — a)MlTJ;V + (p(k1) — D)Hs(9)

2
where V' is the variance of A(r)

< %kg (b—a)hM; (1+¢,?) + (p(k1) — D)Hs(g)

where the penultimate inequality comes from the well known formula
V= M22 — M12 and from the relation

N’V‘
1 EA: 1 T T 1
M1 = N;‘ i:1(ai - ai,l) = 7]\[;1 (aqu — ao) S hNQ (b— a).

O

In the above proposition, obviously, the second term of the sum in the right
hand side of the inequality vanishes if ¢ is differentiable. In particular, if g is
C? on I, then g and ¢’ are Lipschitz continuous on I and Hs(g) = 0. Then, the
difference L(g") — L(gy) is a O(hM;(1+ ¢,?)).

When g is differentiable everywhere but on finitely many points, Hs(g) is
equal to nd (for small enough §) where n is the number of points where ¢ is not
differentiable. Thus the difference L(g") — L(g%) is a O(hM,). Indeed, for
any sequence of positive numbers (z;),

My? Y2 < dowiMy
M, 2w T 2w
In [A] we detail the calculus of Hs(g) for a fractal function with infinitely

many points where g is not differentiable (infinitely many isolated points and
infinitely many limit points).

M1(1+Cv2) = < MJroo

Given a Lipschitz function g on an interval I and A, B two pattern functions
on I, we now look at the difference between L(g’y) and L(|gp]) that is between
the length of two piecewise affine functions.

13



Proposition 4. Let f1 and fo be two piecewise affine functions defined on
[e,d] C R (d > ¢) with a common partition having p steps. Suppose that eq <
f1— fo < ey for some reals ey, es. Then

IL(f1) — L(f2)| < ¢'(k)p(e2 — e1)

where k is the arithmetic mean of the set {max(|s1 |, |s2,:])}'_,, the reals sq;,
824, 1 <1 < p, being the slopes of fi and fa on each subinterval of the common
partition.

Proof. Let 0 = (z;)}_, be a common partition for f; and fo. We write m;
for x; — z;—; and sy, resp. sa;, for the slope of fi, resp. fz, on the interval
(@1, 2]

Then

p

L(f1) = L(f2) = Y _(p(s1.0) — pls2.0)) mi.

i=1

From the mean value theorem, we derive that

L(f1) = L(f2) = 290/(80,2') mi(s1,i — 52,i)-
i=1

where, for any 4, so; lies between s ; and sg ;.
Note that, for any i < p,

mi(s1,: — s2,i) = fi(zi) — faz:) — (fi(ziz1) — fa(2io1))-
Thus, as, by hypothesis, e; < f1 — fo < es, we get
—(e2 —e1) <my(s1,; — s2,4) < ex —ey.

Therefore,

b
IL(f1) — Z (s0,0)] [mi(s1, — s2,6)]

p( ez — e1) My ((¢'(|s0.4]))7-1)
plez —e1)@' (M ([s0al);_,)
ple2 —e1) ¢’ (k)

ININIA

where the penultimate inequality is derived from the concavity of the function
¢’ on [0, +00). O

Thanks to the four previous propositions, we can state our theorem on the
convergence of non-local length estimators. Figure [3] illustrates the theorem
hypotheses.

14



Theorem 3. Let g: [a,b] — R be a ki-Lipschitz function and A be a 1-pattern

function.
If there exist a (1, 5)-pattern function B, 5 € [1,+0o0], and a real w such that

for any resolution r,
rlilgal = Loslll+oe < w (8)

then

- if B = +oo, the non-local estimation LNY(g, A,r) converges toward the
length of the curve C(g) as r tends to +oo;

- if g’ is ky-Lipschitz on each interval included in its domain, we have
L(g) - LNL(gvAa’r) <
Sh (side error)
+ ThM;(1+¢,?)+UHs(g) (discretization error)

+V (ﬁl + 1V11{> (quantification error)
(9)
where
S = 2@(]{1)7
T= m, My = My (B(r)), ¢, = ¢y (B(r)),

2
U=o(k1) =1, 8§ = hMio(B(r)) and Hs(g) = maxZwi where

the mazimum is over all minimal coverings of the set of points in
[a,b] at which g is not differentiable, by closed intervals with

diameters w; < 0 and pairwise disjoint interiors,

V= (1+2w)y (kl + m)(b —a) and M = M, (A(r)).

Furthermore, if B(r) C A(r), the term ﬁl + Mil, in the right hand side of
Equation@ can be replaced by ﬁl

Proof. We write the difference between L(g) and L(|g’;|) as the sum of three
terms.

L(g) ~L(lgia)) = (L(g*) + L(g")) +(L(g") — L(g)) + (L(gg) — L(lga])) (10)
Each term of the right hand side of is majorized as follows.
e From Proposition [T we have
L(g") + L(g") < 2p(k1)h (11)

Thus, L(g%) + L(g®) converges to 0 as r — +oo.

15



— Continuous function
+ Discrete function

O Pattern function A

Pattern function B

02 ! ! .
0 0.5 1 1.5 2 25 3

Figure 3: Hypotheses of Theorem The partition related to A(r) split the
discrete curve in patterns whose average size in pixels tends toward infinity
as the resolution tends itself toward infinity. Another partition of the curve,
related to B(r), has patterns whose average absolute size tends toward 0 as the
resolution tends toward infinity. A tube (in gray) with constant height contains
the discrete points related to the partitions A(r) and B(r).

e From Proposition [2} we know that L(gp) converges towards L(g") as r —
400 provided 8 = +oo.
When ¢’ is ko-Lipschitz continuous on the intervals included in its domain,
from Proposition [3] we have

b—a)

La") - Llop) < 2D han, (11 e2) + (olk) - DHse). (12)

e From Hypothesis ;

IL924) = LgB]ll+oe < wh-

Thus, we have
—wh < g5 — |ga) < (w+1)h.

Since g is ki-Lipschitz, the piecewise affine function gg is clearly k-
Lipschitz. Let A(r) = (ai)iﬁ. For any i € [1, N7;], the absolute slope of
Lg"s] on [a;—1h, a;h] is bounded by k1+1/(a;—a;—1). Hence, the arithmetic
mean of the absolute slopes of |¢7; ] is bounded by k = ki +1/M_; (A(r))
(thus k < k1 + 1). Then, from Proposition 4, we derive that

[L(g5) — L(Lga Dl < @' (k)N (1 + 2w)h

where N is the size of the partition A(r)UB(r). So, we have N < N, + Ny
and we observe that, for any Z € {A, B},

1
_Nf

M (Z(r)) (BT —A") <

< hN%(b—a)-

16



Thus, we get

. - 1 1
L6b) - LDl < A+ 200 B0 -0) (37 + 577 ) - (9
It follows from Equation and the hypotheses that L(g) — L(|g%])
converges to 0 as r — 400.

Thereafter, the convergence is established once § = +o00. Moreover, Equa-

tion @D derives obviously from eqs. to . O

Basically, Theorem [3| states that a non-local estimator is convergent for
Lipschitz functions provided it is not too far from a M-sparse estimator. We
can also infer from this theorem that a non-local length estimation LN"(g, A, )
by a M-sparse estimator converges toward L(g) when A is a (1, +o00)-pattern
function or when, for instance, A is a (1, 1)-pattern function, g is differentiable,
its derivative is Lipschitz and the coefficient of variation of A(r) is bounded as
r — oo. Let us now look at the possible options for the pattern function 5.

Choice of the pattern function B As mentioned at the beginning of Sec-
tion the second pattern function B is introduced so as to include MDSS
estimators for which pattern absolute size needs not tend to zero. For example,
it is plain that for an affine function g defined on [a, b], an MDSS segmentation
will provide a single pattern of size B" — A" = (b — a)r. Nevertheless, after an
MDSS segmentation, it is always possible to artificially subdivide the obtained
segments in order to define the pattern function B. Then, the definition of a
straight line segment ensures that Hypothesis of Theorem is satisfied (and
the constant w can be set to 1 in our discretization model). Thereby, together
with the constant w, the piecewise affine function gj provides a tube around the
data points attached to the partition B(r) in which must stay the function |g’) |
to reliably estimate L(g). Thus this tube can be seen as a data fitting. Figure
gives an illustration of such a situation. Also, it should be noticed that if we
assume the same hypotheses as in [15], C® functions with strictly positive cur-
vature, we can take B = A with the MDSS segmentation since the existence of
a strictly positive minimal curvature on [a, b] ensures that M (A(r)) = o(r).
Nevertheless, even with finitely many inflexion points, we could not directly ap-
plied Theoremwith B = Ato C? curves. Indeed, when a MDSS is partitioned
in subsegments, the length that comes with the MDSS (its diameter) is not the
sum of the diameters of the subsegments and it is the role of in the theorem
hypotheses to bound the difference (via Proposition . Eventually, since there
are infinitely many valid choices of B for the MDSS estimator, Equation [J]leads
to the following bound on the estimation error (for the MDSS estimator):

1 1
L(g)—LN"(g,r) < inf <Sh +ThM; (L4 cy:?) + UMts,(9) +V (M + M,)>
i 1,4 1

where the infimum is over all 1-pattern functions 5; such that M7 ; = My (B;(r)) =
o(r) as r — 400 and where ¢, ; = ¢,(B;(r)) and &; = hM o (Bi(r)).
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With sparse estimators, the parition subinterval length sequence provided
by the pattern function is (H(h),..., H(h),rem) where limy_,o H(h) = +oo0,
limy, o hH(h) = 0 and rem < H(h). Thus, taking B=A4, w =0 and 5 =1 all
the hypotheses of Theorem [3] are satisfied.

Theorem Bl is tested on real functions in the next section.

4 Tests

The tests have been made using the MPFR and GMP libraries through the
SAGE [21] software. The results are presented in Table [1| and Table Here-
after, we present the tested non local length estimators (NLE) and the tested
functions.

4.1 Protocol
The tested NLE are:

e The sparse estimators £5P2 and £5P3 with

1. £5r2; the discrete pattern size of r2 which is generally optimal for
such an estimator (see [4]),

2. £5P3; the discrete pattern size r3 that approximatively corresponds
to the asymptotic average discrete size of the MDSS on a smooth
curve with positive minimal curvature [15].

e The M-sparse estimator £ with random pattern sizes equidistributed
between 1 and 27z, Hence, for large enough resolutions, the average
pattern size should be the same as £5P2. Note that for the three previous
NLE, we can apply Theorem [3] taking A = B.

e The MDSS based estimator £PSS (taking the diameter as the pattern
length — see the comment at the end of Section [3.1]).

The computed errors are the discretization and the quantization errors. The
bounds and the grid spacing h are chosen such that the error on the bounds is
null. Then the total error comes down to the sum of both discretization and
quantization errors.

There are five test functions that we describe now. The first three satisfy
the stronger assumptions on the function g in Theorem [3| (the function and
its derivative are Lipschitz continuous), the two last are Lipschitz but their
derivatives are not.

e The natural logarithm on the interval [1, 2] where it is 1-Lipschitz, concave
and of class C°.

18
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Figure 4: Graph of the function s;.
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Figure 5: Graph of the function s,.

e The function

4 win 20
o x € (0,1] = 5z sin 22,
0—0

which has infinitely many inflexion points (but only finitely many inflexion
points on any interval [a, 1], @ > 0), is 1-Lipschitz of class C'* (C* on (0, 1])
with a Lipschitz continuous derivative.

The graph of s; is shown Figure [4

e The function

o - xE(O,l]Hg—Qsin%,
2100

which has infinitely many inflexion points, is 1-Lipschitz of class C* (C*®
on (0,1]). The convergence is given by Theorem |3| but, unlike to the
function sq, the derivative of sy is not Lipschitz on (0, 1]. Then the bound
obtained in Proposition [3]is not valid for this function. Nevertheless, only
one computation of pattern length (the first one) is concerned by this
restriction. The graph of s is shown Figure

e The fractal functions f; and fo defined on [0, 1] as follows.

We denote by 1; the characteristic function of the interval J = [%7 %] and
by {-} the fractional part.

Then, for any i € {1,2}, f; = lim,, 0 fi,n, Where

1

fl’oll"—>§—

1
-

1
1k fa0: 2= %(1 — cos(27)),
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figr x> %fi,O({?’x})lJ(x)

and for n > 1,
fi " T ¢ J = %fi,n—l({gx})v
’ x € J— fin_1(z).

An illustration of the graphs C(f1) and C(f2) is given Figures [f] and
The length of C(f;), ¢ € {1,2} is the length of C(f; o).

The functions f; and fo are 1-Lipschitz. The function f; is not differen-
tiable on [0, 1] but it is plain that the derivative of f; is constant on any
interval included in its domain. On the contrary, f5 is of class C! on [0, 1],
C* almost everywhere, but its second derivative is not bounded. Thus
Equation @D of Theorem (3| does not apply to fo. Furthermore, unlike ss,
the number of patterns where the second derivative is unbounded tends
toward +oo as the resolution grows.

o=

AN

=

1 2 1 2 7 s 1
9 9 3 3 9 9
Figure 6: Graph of the fractal function f;.

1

3=

1

o=
L | | | 1 L |
1 2 1 2 7 s 1
9 9 3 3 9 9

Figure 7: Graph of the fractal function fs.

Remark 1. The pattern functions of EPSS for the tested functions on the tested
resolutions have not contradict the assumption that MDSS are non-local estima-
tors. Furthermore, the bounds r'/3 and r3 log(r) for the asymptotic average
discrete size of the MDSS on a smooth solid contour with positive minimal cur-
vature fit our experiment (see Figure @)

4.2 On the theoretical bounds

The tests gathered in Table[I]aim at comparing the theoretical bounds obtained
in Theorem 3| with the experimental values of the discretization error and the
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Figure 8: Average discrete size of the MDSS produced by PSS on the tested
functions according to the resolution.

quantization error. In the table, the blue '+’ represents the theoretical upper
bound and the green "*’ represents the observed error for the resolutions [1.5" |,
n € [1,50] N N.

Discretization error The discretization error has two parts. The second one
only concerns the function f; for it is the only one that is not differentiable.
The first part of the bound is

Mhmu +c2)

where k5 is a Lipschitz constant for the derivative of the tested function. We
took:

log S1 S9 fl f2
ko 1 17 oo 0 o

Since ko = 0 for f1, this function is not concerned by the first part of the
bound. When the derivative is not Lispchitz continuous (k2 = 00), the blue '+’
on the plot represent the values of hM; (1 + c2).

Since £ has pattern sizes equidistributed in the interval [1,2+/7], for large
enough resolutions we have

1 1
hMl(lJrcfj)z;x\/Fx(qug):

r

Nl

ol s

and thereby
kg(b — a)
2
The cyan line on the plots of the discretization error of the functions log, s1, s
and f, is the graph of 7 — ['r~% where I' = 2k, (I' = £ for s, and fa).

It can be seen in Table[T]that the observed errors for the functions log and s;
are less than the upper bounds given by Theorem [3] Specifically, the power in
the measured errors are almost twice the bounds, as far as the resolution is big
enough. We know from our previous work [4], that convexity allow to double the

2
hMl(l + Cg) ~ gkg’l“i%.
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Discretization error

Quantization error

Total error
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Table 1:
function
bounds given by Theorem

Observed length estimation errors and theoretical upper bounds in
of the resolution r for the NLE £'#"4. Blue crosses: the theoretical

Green stars: the observed errors. I': a constant
that is computed from the bounds in Theorem [3 and from the expected gener-
alized means of the random pattern sizes (see text).
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convergence rate of the sparse estimators. This explains the observed difference
for the logarithm (provided we can extend our previous result to the M-sparse
estimators). On the contrary, the function s; has infinitely many inflexion
points. Nevertheless, once the first grid step is passed, it remains only finitely
many of them. This could explain the good convergence rate. In a work in
preparation, we study this issue by bringing a measure of the set of inflexion
points.

On the plots related to the functions s, and fo, we can see that having an
unbounded second derivative drastically decreases the convergence rate, even
for so which has a bounded second derivative on any closed subinterval of its
domain that does not contain 0.

Regarding the function f;, which is 1-Lipschitz, the bound for the discretiza-
tion error is

(p(1) = DHs(9)
where § = hM .. An upper bound for Hs(g) is calculated in [A}

15 4
Hylg) < 2212

With €704 § = hM o & L x 24/ = 2r~2 (for enough large resolutions).
Thus, the bound for the function f; is approximatively

15(V2=1)  _1at0g,(2))
21+log;(2)

The cyan line on the plot of the error for the function f; is the graph of r —
Dy 2(1-1083(2)) where T' = 15(y/2 — 1) /21 Hogs(2),

The plot relative to f; shows the good accuracy of the upper bound for this
non differentiable function. Moreover, if instead of taking § = hM, in the
bound, which corresponds to the worst case, we take 6 = hM;, that is we cover
the points of non differentiability by patterns of average size, both point clouds
overlap almost.

Quantization error The upper bound for the quantization error is derived
from Proposition [4 and the function just needs be Lipschitz continuous. Thus,
this bound is valid for our five test functions.

With the estimator £'4"¢ we can take just one pattern function (A = B and

w = 0). So, the quantization error is bounded by
'(k + L)(b— a)L
P2 0 B v M,

where k; is a Lipschitz constant for the tested function. Thus, for enough
large resolutions, the bound on the quantization error for the estimator £#74 ig
approximatively

¢ (k) r2.

For ki, we took
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log 51 s2  fi fo
kq 1 0.7 07 1 1

The cyan line on the plots of the quantization errors (for the five functions)
is the graph of r — I'r~2 where ' = ¢/ (ky).

With the quantization error, the results for all tested functions are less than
the upper bounds given by Theorem [3] Again the powers in the measured errors
are almost twice the bounds, as far as the resolution is big enough. As with the
discretization error, this corresponds to a property of concave functions shown
in [4] for the sparse estimators and this property could also be valid for the
NLEs and for a larger class of functions than the concave ones. Nevertheless
this is not true in the worst case. Hereafter, we show a very simple example
that proves that the bound cannot be improved for any resolution.

Let us choose a resolution r = 4k2, k € N and we assume that, at this
resolution, the pattern size is constant, equals to /7 = 2k. Now, we define the
periodic piecewise affine function

a:(1+2)

1
’ —vo(kz)

k
where 0 < a < 1 and

1
vo(x) = o arccos(cos(27z)).

Figure |§| shows the plot of the function v4 0.1 on [0,1]. Each pattern is a digital
straight segment and the quantization error is maximal on each segment for
the difference between the ordinates of the discrete function and the continuous
function at the lower end of the segments is (1 — 2a)h & h (where h is the grid
step). On Table [2] we show the relative difference between the quantization
error (EQ) and the upper bound (UB) in Theorem [3| for some functions vy,
where a = 1073,

k 1 22 24 26 28 210 212
r 4 26 210 214 218 222 224
QE 3e-1 6Ge-2 le-2 3e-3 9e-4 2e-4 be-d

Q2| [ 2e1 8e2 22 6e-3 le3 ded  le-d

Table 2: Relative difference between the quantization error for the function vy, 4
with a = 1072 and the upper bound provided by Theorem

4.3 Comparison between the tested estimators

A comparison of the different estimators on the five test function graphs is
shown Table The MDSS, Sparse and M-sparse estimators are tested on
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Discretization error Quantization error Total error
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Table 3: Estimation errors in function of the resolution r for the estimators
£Sp2 gbSS - grand 5 £593, The tested functions are log, s1, s2, f1 and fy (see
text).
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Figure 9: Blue (upper) line: the graph of the function v4 1. Red points: MDSS
end points of the vy OBQ discretization. Red line: polyline whose length is
the non local length estimation of L(g).

the Logarithm, the dumped sinusoids s;, s and the fractal functions fi, fo.
Three errors are shown for the test: the discretization error (left column), the
quantization error (middle column) and the total error (right column).

Discretization error The Discretization Error (DE) is due to the approx-
imation of the curve by chords whose width is given by the pattern function.
Thus, generally, the shorter the width, the smaller the DE. This is indeed what
we observe in Table [3| where EMPSS and £5P3, which have a pattern size aver-
age of about r% while £592 and £ have a pattern size average of rz. The
good performance of EMPSS on the f; graph which is composed of straight line
segments is natural. Contrariwise, as MDSS are adaptive, we could expect that
EMDSS gutperforms £5P3 on 51, sy and fy. Surprisingly this is only the case on
the graph of fs.

Quantization error The Quantization Error (QE) comes from the vertical
alignment of the chords on the grid. So, generally, a pattern function that
produce a small number of patterns yield to a small QE on the contrary to the
DE. This is what we observe on the experiment. In particular, the price of the
adaptive nature of EMPSS ig g relatively larger QE.

Total error The influence of the QE and the DE on the total error depends
on the studied graph. On the one hand, the order of magnitude of the QE is
pretty much the same for the five functions and each NLE (with an exception for
EMDSS on the logarithm). On the other hand, the order of magnitude of the DE
increases significantly from the smooth concave function log to the fractal func-
tions for the four tested NLE. Surprisingly, the adaptive estimator has relatively
bad performances on the two dumped sinusoids while it has the best results on
the fractal fo which is built from a sine. We note also that the sparse estimator
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£5P2 and its randomized equivalent, the M-sparse estimator £#*4 have almost
the same results for the five functions. Eventually, no estimator gives the best
results over all the graph.

5 Conclusion

In this article, we have introduced a new class of length estimators, the non-
local estimators (NLE). The NLE gather all the multigrid estimators whose
discrete graph length estimation is made with a polyline whose vertices belong
to the discrete graph under the assumption that the average of the line segment
discrete sizes tends toward infinity as the resolution grows to infinity. The NLE
class should encompass the MDSS based length estimators. Nevertheless we
still need to prove it formally. We have also defined a subclass of the NLE, the
M-sparse estimators, for which the average of the line segment absolute sizes
tends toward 0 as the resolution tends toward infinity. We proved that any NLE
has the multigrid convergence property for the Lipschitz functions as soon as at
any resolution its polyline is close to the one of some M-sparse polyline. The
bound on the convergence rate is the same as the one of semi-local and sparse
estimators in the general case, under weaker assumptions on the function. The
convergence rate can be improved when the function is concave or convex as it
has been shown for sparse estimators in [4]. This point will be developed in a
work in preparation [22]. We have also to study how the material presented in
this article behaves with Jordan curves obtained as boundaries of solid objects
through various discretization schemes (and more generally, with any graph of
a one-to-one vector-valued function).

A Calculus of Hs(f)

We consider the fractal function f defined in Section Let E be the set
of points in [0,1] at which g is not differentiable. E contains isolated points
whose triadic development is composed of finitely many digits 0 or 2 followed
by an infinite sequence of digits 1 and E contains limit points whose triadic
development is finite, made of digits 0 or 2 but the last which is any digit.

We set F'(6) = Hs(f). Recall that

F(5) = maxZwi

where the maximum is over the set & of all minimal coverings of the set E by

closed subintervals of [0, 1] with diameters w; < § and pairwise disjoint interiors.
For § > §, the set {I;}}_; where I; =[5!, 4] is a minimal covering of E

with intervals whose interiors are pairwise disjoint.

Hence, for any § > £, we have

F(5) = 1. (14)
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When 6 < %, any minimal covering in & can be split in three parts: a minimal
covering of E N [0, ] where 1 € [3, 5), an interval that contains the point ;
and a minimal covering of E N [z, 1] where x5 € (3, 2].

From the recursive definition of f, one can see that

Hs(fijo,1) = Hs(fiiz.1) = 5Has(f)

where f|; denotes the restriction of the function f to an interval J.
Thus, for any 6 < %,

1
’3

F(6) =2x (3(F(38)+6) + 6 =2F(38) + 36 (15)

By solving the recurrence relation with the initial equality , we get

n n—1
F(z) = (;) +35% 2" with % <3"6 < é
=0
2\" .
= (3) +36(2" — 1) with n=— [log;(d) + 2]

Therefore,

—logs(9)
9 /(2 3 1
Fo<Z|(2 — 9~ logz(9)
(5)_4(3> +3(5(2

S §61_10g3(2) .

4
Note that logs(2) is the Hausdorff dimension of the set F.
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