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Non-local estimators: a new class of multigrid convergent

length estimators1

Loïc Mazo, Étienne Baudrier

ICube, University of Strasbourg, CNRS

300 Bd Sébastien Brant - CS 10413 - 67412 ILLKIRCH, FRANCE

Abstract

An interesting property for curve length digital estimators is the convergence
toward the continuous length and the associate convergence speed when the
grid spacing tends to zero. On the one hand, DSS based estimators have been
proved to converge but only under some convexity and smoothness or polygonal
assumptions. On the other hand, we have introduced in a previous paper the
sparse estimators and we proved their convergence for Lipschitz functions with-
out convexity assumption. Here, we introduce a wider class of estimators, the
non-local estimators, that intends to gather sparse estimators and DSS based
estimators. We prove their convergence and give an error upper bound for a
large class of functions.

Keywords: discrete geometry, length estimation, multigrid convergence

1. Introduction

We focus in this paper on one classical digital problem: the length estima-
tion. The problem is to estimate the length of a continuous curve S knowing
a digitization of S. As information is lost during the digitization step, there
is no reliable estimation without a priori knowledge. From a theoretical point
of view, a classical criterion to evaluate the quality of a geometric feature esti-
mator is the possession, or not, of the (multigrid) convergence property, that is
the estimation convergence toward the continuous curve feature when the grid
spacing tends to zero. The local estimators based on a segmentation of the
digital curve in patterns whose size is a constant that does not depends upon
the grid spacing do not satisfy the convergence property even for straight line
segments [15]. The adaptive estimators based on a segmentation in Maximal
Digital Straight Segments (MDSS) or based on a Minimum Length Polygon
(MLP) satisfy the convergence property for smooth, or polygonal, closed simple
curves under assumption of convexity [5]. The semi-local estimators [7], and
the sparse estimators [18], both based on a segmentation of the curve in pat-
terns whose size only depends upon the grid spacing, veri�es the convergence
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property2 without convexity hypothesis, for smooth functional curves of class
C2 with the former and for Lipschitz curves with the latter. We present here a
new class of length estimators, the non-local estimators, that aims to encompass
the sparse estimators and the MDSS based estimators.

The paper is organized as follows. In Section 2, some necessary notations
and conventions are recalled, then the existing estimators and their convergence
properties are detailed. In Section 3, the non-local estimators are de�ned and
the multigrid convergence property is proved for Lipschitz functions under some
assumptions satis�ed by sparse estimators and MDSS based estimators. Fur-
thermore, an upper bound on the error of the estimator is exhibited for a wide
subclass of the Lipschitz functions. Section 4 provides some illustrations about
the convergence speed and a comparison of the estimations for di�erent kind
of non-local estimators. Section 5 concludes the article and gives directions for
future works.

2. Background

2.1. Discretization models

In this work, we have restricted ourselves to the digitization of function
graphs. So, let us consider a continuous function g : [a, b] → R (a < b), its
graph C(g) = {(x, g(x)) | x ∈ [a, b]} and a positive real number h, the grid
spacing. We assume to have an orthogonal grid in the Euclidean space R2

whose set of grid points is hZ2.
The common methods to model the digitization of the graph C(g) with a

grid spacing h are closely related to each others. In this paper, we assume an
object boundary quantization (OBQ). This method associates to the graph C(g)
the h-digitization set

D(g, h) = {(kh,
⌊
g(kh)

h

⌋
h) | k ∈ Z and kh ∈ [a, b]}

where b·c denotes the �oor function. The set D(g, h) contains the uppermost
grid points which lie in the hypograph of g, hence it can be understood as a
part of the boundary of a solid object. Provided the slope of g is limited by
1 in modulus, D(g, h) is an 8-connected digital curve. Observe that if g is a
function of class C1 such that the set {x ∈ [a, b] | |g′(x)| = 1} is �nite, then by
symmetries on the graph C(g), it is possible to come down to the case where
|g′| ≤ 1. Nevertheless, in this article, we make no assumption on the slope of
the function g and by discrete curve we mean the graph of a function γ : I → Z
where I is an interval of Z.

In the sequel of the article, for any function
f : [a, b]→ R, L(f) denotes the length of the graph C(f) according to Jordan's
de�nition of length:

2Actually, the convergence of a semi-local estimator depends upon some choice made in its
de�nition (see Section 2.4).

2



L(f) = sup
a=x0<x1<···<xn=b

n∑
i=1

√
(xi − xi−1)2 + (f(xi)− f(xi−1))2

where the supremum is taken over all possible partitions of [a, b] and n is
unbounded.

2.2. Local estimators

Local length estimators (see [12] for a short review) are based on parallel
computations of the length of �xed size segments of a digital curve. For instance,
an 8-connected curve can be split into 1-step segments. For each segment, the
computation returns 1 whenever the segment is parallel to the axes and

√
2

when the segment is diagonal. Then all the results are added to give the curve
length estimation.

This kind of local computation is the oldest way to estimate the length of a
curve and has been widely used in image analysis. Nevertheless, it has not the
convergence property. In [15], Kulkarni et al. introduce a general de�nition of
local length estimation with sliding segments and prove that such computations
cannot give a convergent estimator for straight lines whose slope is small (less
than the inverse of the size of the sliding segment). In [22], a similar de�nition of
local length estimation is given with disjoint segments. Again, it is shown that
the estimator failed to converge for straight lines (with irrational slopes). This
behavior is experimentally con�rmed in [5] on a test set of �ve closed curves.
Moreover, the non-convergence is established in [6, 23] for almost all parabolas.

2.3. Adaptative estimators: DSS and MLP

Adaptive length estimators gather estimators relying on a segmentation of
the discrete curve that depends on each point of the curve: a move on a point can
change the whole segmentation. Unlike local estimators, it is possible to prove
the convergence property of adaptive length estimators under some assumptions.
Adaptive length estimators include two families of length estimators, namely
the Maximal Digital Straight Segment (MDSS) based length estimators and the
Minimal Length Polygon (MLP) based length estimators.

De�nition and properties of MDSS can be found in [14, 9, 5]. E�cient
algorithms have been developed for segmenting curves or function graphs into
MDSS and to compute their characteristics in a linear time [14, 10, 9]. The
decomposition in MDSS is not unique and depends on the start-point of the
segmentation and on the curve travel direction. The convergence property of
MDSS estimators has been proved for convex polygons whose MDSS polygonal
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approximation3 is also convex [11, Th. 13 and the proof 4]: given a convex
polygon C and a grid spacing h (below some threshold), the error between the
estimated length Lest(C, h) and the true length of the polygon L(C) is such that

|L(C)− Lest(C, h)| ≤ (2 +
√

2)πh. (1)

It must be noticed that there exists a wrong version of the above equation
in the literature 5. Empirical MDSS multigrid convergence has also been tested
in [5, 8] on smooth nonconvex planar curves. The obtained convergence has
order 1 as in the convex polygonal case. Nevertheless MDSS multigrid conver-
gence has not been proved under these assumptions. Another way to obtain
an estimation of the length of a curve using MDSS is to take the slopes of the
MDSSs to estimate the tangent directions and then to compute the length by
numerical integration [4, 5, 16]. The estimation is unique and has been proved
to be multigrid convergent for smooth curves (of class C3 with strictly posi-
tive curvature in [16], compact boundaries with positive reach in [17], ). The
convergence order is a O(h

1
3 ) in [16] and thus, worse than (1).

Let C be a simple closed curve lying in-between two polygonal curves γ1
and γ2. Then, there is a unique polygon, the MLP, whose length is minimal
between γ1 and γ2. The length of the MLP can be used to estimate the length
of the curve C. At least two MLP based length estimators have been described
and proved to be multigrid convergent for convex, smooth or polygonal, simple
closed curves, the grid-continua MLP algorithm (GC-MLP) proposed in [20]
and the Approximation Saussage MLP (AS-MLP) introduced in [2]. For both
of them, and for a given grid spacing h, the error between the estimated length
Lest(C, h) and the true length of the curve L(C) is a O(h):

|L(C)− Lest(C, h)| ≤ Ah

where A = 8 for GC-MLP and A ≈ 5.844 for AS-MLP.
On the one hand, as estimators described in this section are adaptive, the

convergence theorems rely on strong hypotheses, the proofs are di�cult to es-
tablish and often incomplete. On the other hand, the study of the MDSS in
[8] shows that the MDSS size tends to 0 and their discrete length tends toward

3Though the digitization of a convex set is digitally convex, it does not mean that a
polygonal curve related to a convex polygonal curve via a MDSS segmentation process is also
convex.

4The hypothesis on the convexity of the MDSS polygon is not assumed in the statement
of the theorem but it appears in the proof.

5The formulation of the right hand side of (1) in the literature is (2εDSS +
√
2)πh where

εDSS is a bound for the Hausdor� distance between a real straight segment and its discretiza-
tion, expressed in the unit given by the grid-spacing and it is related to the chord property
of the straight lines established by Rosenfeld [19]. Accordingly, in [11], it is said that "the
'classical' value of εDSS is 1". A few month later, in [13], the authors chose to express the
same constant εDSS in absolute length unit, so they claim that "its 'classical' value is 1/r"
but they forgot to update the right hand side of the majorization. Afterward, the mistake
propagated to [5] and led to an erroneous conclusion.
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in�nity as the grid spacing tends to zero. Thereby, one could ask whether com-
bining a local estimation with an increasing window size as the grid spacing
decreases would give a convergent estimator under more general assumptions
and/or with simpler proofs of convergence. The following sections explore this
question.

2.4. Semi-local length estimators

The notion of semi-local estimator appears in [7]. At a given grid spacing ,
a semi-local estimator resembles a local estimator: it can be implemented via a
parallel computation, each processor handling a �xed size segment of the curve.
Nevertheless, in the framework of semi-local estimation, the processors must be
aware of the grid spacing on which the size of the segments depends.

Given a grid spacing h, a semi-local estimator segments a discrete curve in
"patterns" of equal discrete sizeH(h) and, possibly, a rest whose size is less than
H(h). By pattern, we mean a �nite sequence of discrete points with consecutive
abscissae. The function H which controls the discrete size of the patterns, that
is the number of pixels in each pattern, is called pattern function.

The patterns of a semi-local length estimator have

- a discrete size H(h) that tends to in�nity as the grid spacing decreases
toward zero (Property P∞) while

- their true size hH(h) tends to zero (Property P0).

It is proved in [7] that the semi-local length estimators are multigrid convergent
for functions of class C2 with an error in O(h

1
2 ) for the best pattern size choice

H(h) = Θ(h−
1
2 ).

For a SL estimator, a pattern length should be close to the Euclidean distance
between its extremities. This has led us to de�ne a subfamily of the semi-local
length estimators that we present in the next section.

2.5. Sparse length estimators

The notion of sparse estimator is introduced in [18]. They are a subclass of
the semi-local estimators for which the estimation of a pattern length is exactly
its diameter. Hence, the information given by the points inside a pattern, but its
extremities, is discarded. This justi�es the name given to this class of estimators.

Under the hypothesis that the pattern function H has the properties P∞ and
P0, it is proved in [18] that sparse length estimators are multigrid convergent for
Lipschitz functions. Furthermore, for function of class C2, the error rate is the
same as for SL estimators. If, besides, the function is of class C2 and concave,
then the error is in O(h) for the best pattern size choice H(h) = Θ(h−

1
2 ).

On the one hand, with semi-local and sparse estimators, the pattern size is
constant for a given grid spacing. This is important for an algorithmic point
of view. Nevertheless, it does not really matter to prove the convergence and
the properties P∞ and P0 could be expressed in terms of means. On the other
hand, it has been proved in [8], under some hypotheses, that the average size
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of the maximal digital straight segments of a contour veri�es the properties P∞
and P0. This led us to de�ne a new family of length estimators that is presented
in the next section.

3. Non-local estimators

We introduce a new class of length estimators that aims to gather sparse
estimators and adaptive estimators. To do so, we need to relax the hypothesis
on the length of the patterns by allowing variable lengths. We need also to allow
very large patterns when the curve is close to straight segments.

3.1. De�nition

The de�nition of non-local estimators involves some generalized means. We
recall that for any non-zero real number α, the generalized mean of parameter
α, or α-mean, of a �nite sequence of positive numbers (xi)

n
i=0 is de�ned by

Mα((xi)
n
i=0) =

(
1

n

n∑
i=0

xi
α

) 1
α

.

Furthermore, M+∞((xi)
n
i=0) = max((xi)

n
i=0) and

M−∞((xi)
n
i=0) = min((xi)

n
i=0). For any α, β ∈ R, one has6

α < β =⇒ Mα((xi)
n
i=0) ≤Mβ((xi)

n
i=0).

When σ is a partition of some interval I, we write Mα(σ) for the α-mean of
the σ subinterval length sequence. We also write C(σ) for the coe�cient of
variation of the σ subinterval length sequence. Recall that the coe�cient of
variation is the ratio of the standard deviation to the arithmetic mean and that
1 + C(σ)

2
=
(
M2(σ)/M1(σ)

)2
.

Let Γ be a discretization with a grid spacing h of a continuous curve. The
pattern function that we de�ne thereafter produces a segmentation of the dis-
crete curve Γ. The points put forward by this segmentation form a polyline
joining the two extremities of Γ. Then the length of this polyline is a non local
length estimation of the curve. Note that all the points of Γ are ignored in the
estimation except the points used as vertices of the polyline. An Illustration of
the de�nition is given Figure 1.

De�nition 1 (Pattern function). Let α, β ∈ R.

• A pattern function is a function that maps a discrete curve Γ and a grid
spacing h to a partition of the domain of Γ.

Let C be a set of recti�able functions.

6R = R ∪ {−∞,+∞}.
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• An α-pattern function A on C is a pattern function such that, for any
recti�able function g ∈ C,

lim
h→0

Mα(A(D(g, h), h)) = +∞, (2)

• An (α, β)-pattern function A on C is an α-pattern function such that, for
any recti�able function g ∈ C,

lim
h→0

Mβ(A(D(g, h), h))× h = 0. (3)

An α-pattern function, resp. (α, β)-pattern function, is an α-pattern function,
resp. (α, β)-pattern function, on the set of all recti�able functions.

Assuming Γ = D(g, h) where g is a recti�able curve, Equation (2) means that
the pattern size in pixels tends in α-mean toward in�nity as h tends toward 0.
Equation (3) means that the absolute pattern size tends in β-mean toward 0
as h tends toward 0. For instance, looking at the continuous curve depicted in
Figure 1, we could make the following thought experiment. We zoom in the
�gure to see the patterns evolve as the grid spacing h tends toward 0. We can
imagine two ways to do so. Firstly, the size of the windows remains constant
while the grid spacing decreases. Then, from Equation (2) we should see smaller
and smaller patterns. Secondly, the grid remains unchanged while the window
size increases. Then, from Equation (3) we should see larger and larger patterns.
Figure 1 (b�d) shows two snapshots of this experiment (at h = 0.2 and h = 0.1
for two (1, 1)-pattern functions, one with a (almost) regular partition of the
domain and one with a somewhat adaptive partition (smaller curvature, larger
patterns).

A non-local multigrid length estimator is the choice of an α-pattern func-
tion for some α ∈ R. When, furthermore, we use an (α, β)-pattern function
to construct our estimator, we say that we have an M-sparse multigrid length
estimator (the 'M' in M-sparse stands for mean). The α parameter ensures
that we do not pick too much points while the β parameter ensures that we
pick enough points on the discrete curve to get the convergence. It is worthy
to note that in the contrary of the conventional framework of continuous curves
recti�cation from samples, recti�cation from discretized curves enjoins to use
only few points among the available ones as shown the non-convergence of the
local estimators.

In the sequel, given a recti�able function g and a grid spacing h, we denote
by LNL(A, g, h) the length of D(g, h) returned by the non-local estimator related
to the pattern function A. By abuse of notation, we also write A(g, h) instead
of A(D(g, h), h).

Here we detail the inclusion relations between the non-local estimators and
the estimators described in Section 2.

Local estimators. The patterns associated to a local estimator have a constant
size that does not depend on the grid spacing. Thereby, the local estimators are
not non-local estimators (this justi�es the name given to the class of estimators
introduced in this paper).
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(a) h = 0.2 (b) h = 0.1

(c) h = 0.2 (d) h = 0.1

Figure 1: Two examples of (1, 1)-pattern functions. (a�d) Blue points: the dis-
crete curve which is the discretization of x 7→

√
1 + x2−1 on the interval [0, 2.1].

Red points: extremities of the subintervals provided by the pattern function for
the considered grid spacings. (a�b) Patterns with a constant size (but the last)
proportional to bh− 1

2 c. (c�d) Patterns with increasing sizes 1, 2, 3, . . . (positive
integers).

Semi-local and sparse estimators. The subinterval-length sequence for sparse
estimators is (H(h), . . . ,H(h), rem) where rem ≤ H(h), H(h) tends to in�nity
and hH(h) tends to 0 as the grid spacing h tends to 0. Thus, it is plain that they
are M-sparse length estimators related to (1, 1)-pattern functions. As a matter
of fact, M-sparse estimators are derived from sparse estimators by replacing the
�xed size patterns and their limit properties by variable ones with in mean limit
properties.

In the case of semi-local estimators, it is also true that the discrete size of each
pattern tends to in�nity and that their absolute size tends to 0. Nevertheless,
the semi-local length estimators as de�ned in [7] do not exactly comply to the
de�nition of non-local estimators for two reasons. Firstly, they withdraw the
last pattern if it has not the expected size, H(h). Secondly, they make use
of a weight function to get the length of the induced polyline. Then, strictly
speaking, the semi-local estimators are not non-local estimators though they
are very close to them (and to M-sparse estimators) when the hypotheses that
ensure their convergence apply that is when the weight function is closed to the
diameter function.

MDSS based estimators. Though it has not been proved in the general case,
it is likely that, in the framework of Gauss digitization, MDSS based length
estimators are non-local estimators, under the assumption that the length of a
MDSS is estimated with its diameter (as it is the case the DGtal library [1]).
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Indeed, in [8] it is shown that, for convex shapes with C3 boundaries and ev-
erywhere strictly positive curvature, the average discrete size of all 4-connected
maximal segments de�ned on a discrete boundary is between a Θ(h−

1
3 ) and a

Θ(h
1
3 ln(h)). Our experiments, even with the damped sinusoids s1, s2 and the

fractal function f (see Section 4), suggests that this bound could be also valid
for an MDSS segmentation of a discrete function graph. On the other side, it is
plain that a MDSS based estimator is not a M-sparse estimator. For instance,
with an a�ne function it use a single pattern at any grid spacing.

3.2. Convergence

Our main result (Theorem 8) is stated and proved in Section 3.3. As the price
to pay to get a general, and nevertheless precise, theorem is a very cumbersome
statement, we present in this section several corollaries which are obtained by
restricting the hypotheses of Theorem 8. Thereby, the signi�cance and the
implications of each corollary can be more easily understood.

Since the results presented here are rather straightforward consequences of
Theorem 8 whose proof is extensively detailed in the following section, no proofs
of the corollaries are provided.

The �rst corollary states the convergence property of M-sparse estimators
under the weaker assumptions for the Euclidean function. Nevertheless, this
convergence requires that the maximum of the pattern absolute widths tends
toward 0. This is much more restrictive than the hypothesis of convergence in
mean used in Theorem 8.

Corollary 1. Let g : [a, b] → R be a Lipschitz function and A be a (1,+∞)-
pattern function. Then,

lim
h→0

LNL(A, g, h) = L(g).

In Corollary 1, due to the weak hypotheses, we cannot give any bound on
the convergence speed.

Nevertheless it allows us to obtain the multigrid convergence for the class
of Lipschitz functions, including fractal functions such as the function f2 intro-
duced in Subsection 4.1. The function f2 is of class C∞ almost everywhere, but
its second derivative is not bounded. As a consequence, the function f2 does not
meet the hypotheses of Corollaries 2 and 3. Exhibiting a fractal function may
be surprising, but having properties on function class including fractal ones has
two motivations:

1. fractal curves can be found in natural scenes and then as segmented digital
object boundaries in the multigrid framework,

2. fractal functions emphasize some length estimator properties that can be
hidden otherwise.

Assuming a smooth enough function, we can retrieve for M-sparse estimators
the convergence speed obtained in [18] for sparse estimators under somewhat
weaker hypotheses.
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Corollary 2. Let g : [a, b] → R be a di�erentiable function whose derivative
is Lipschitz and A be a (1, 1)-pattern function such that cv(A(g, h)) is upper-
bounded as h→ 0. Then,

L(g)− LNL(A, g, h) = O(hM(h)) + O
( 1

M(h)

)
(4)

where M(h) = M1(A(g, h)).

In Equation (4) the constants in the big O only depend on b − a, max g′ and
max g′′ and can be explicitly computed.The optimal convergence speed rate in
h

1
2 is then obtained by choosing the pattern function such thatM(h) = O(h−

1
2 ).

Note that in Corollary 2 the pattern function is assumed to be (1, 1), which
is weaker than the (1,∞)-pattern function asked in Corollary 1. Then the
convergence comes mainly from the smoothness hypothesis.

To handle the case of functions that are not di�erentiable on their domain,
we de�ne H(A(g, h)) as the (Lebesgue) measure of the union of the A(g, h)
open subintervals on which g is not di�erentiable. For instance, if the function
g is di�erentiable on (a, b) but �nitely many points, then H(A(g, h)) is upper
bounded by nhM∞(A(g, h)) where n is the number of points in (a, b) where g is
not di�erentiable. In Appendix A, we compute an upper bound of H(A(g, h))
for a fractal function with in�nitely many points where g is not di�erentiable
(in�nitely many isolated points and in�nitely many limit points).

Corollary 3. Let g : [a, b] → R be a Lipschitz function whose derivative is k-
Lipschitz on each interval included in its domain of de�nition for some k > 0.
Let A be a (1,+∞)-pattern function. Then,

L(g)− LNL(A, g, h) =

O(hM ′(h)) + O
( 1

M(h)

)
+ O(H(h))

(5)

where M ′ = M∞(A(g, h)), M = M1(A(g, h)) and H(h) = H(A(g, h)).

The upper bound convergence rate depends on H(A(g, h)) and is not known in
general.

3.3. Proof of the main theorem

In this section, we give some su�cient conditions under which the non-local
length estimators are convergent for Lipschitz functions. Moreover, Theorem 8
gives a bound on the error at grid spacing h for Lipschitz functions whose
derivative is k-Lipschitz (k > 0) on any interval included in their domain (of
de�nition).

Notations. In the remainder of the article, we use some notations that we now
present. The �rst ones concern euclidean objects. Thereby, they do not depend
upon the grid spacing. The others are related to the grid spacing h and should
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Figure 2: The two main parts of the estimation error: the curve g (in green,
solid) to its chord gAc (in magenta, dotted-dashed) then the curve chord to the
chord

⌊
gAc
⌋
(in blue, dashed) of the digitized curve D(g, h) (black points).

be indexed by h. Nevertheless, as we never have to work with two di�erent grid
spacings, we prefer to omit the h index to lighten the notations.

I = [a, b] is an interval of R with a non-empty interior and g : I → R is a
Lipschitz function whose derivative is denoted g′ (from Rademacher's theorem,
g is di�erentiable almost everywhere). We also de�ne the function ϕ : R → R
by ϕ(x) =

√
1 + x2. Thus, one has L(g) =

∫
[a,b]

ϕ ◦ g′.
Given some grid spacing h > 0, A, resp. B, is the smallest, resp. largest,

integer such that Ah ∈ I, resp. Bh ∈ I. The functions gl, gc, gr are resp.
the restrictions of the function g to the intervals [a,Ah], [Ah,Bh], [Bh, b]. For
any pattern function A, we write MAα , resp. CA, instead of Mα(A(g, h)), resp.
C(A(g, h)), when there is no ambiguity. The number of subintervals in the
partition A(g, h) is denoted NA, or just N when possible and the integers
de�ning the partition A(g, h) are A = a0 < a1 < · · · < aN = B. Finally, we
de�ne two piecewise a�ne functions, gAc and

⌊
gAc
⌋
, interpoling the continuous

function gc and its discretization (which is equal to D(g, h)) according to the
pattern functionA. The graph of gAc , resp

⌊
gAc
⌋
, is the polyline linking the points(

aih, g(aih)
)N
i=0

which are on C(g), resp. the grid points
(
aih, b g(aih)h ch

)N
i=0

.
Figure 2 shows the three functions g, gAc ,

⌊
gAc
⌋
on a subinterval of A.

The proof of Theorem 8 can be split in three parts. Proposition 4 gives
a bound on the error due to the ignorance of the exact abscissas of the curve
extremities. Proposition 5 and Proposition 6 evaluate the di�erence between
the length of the curves C(gc) and C(gAc ) for a given pattern function A under
di�erent assumptions. Given two pattern functions A and B, Proposition 7
evaluates the di�erence between the length of the curves C(gAc ) and C(

⌊
gBc
⌋
).

The reason to use two distinct α-pattern functions A and B comes from the
need to deal with non-local estimators as MDSS that produce patterns whose
absolute size does not tends to zero unlike M-sparse estimator patterns.

From the Lipschitz hypothesis on g, we derive immediately a bound on the
errors due to the loss of the true left and right extremities of the curve C(g).
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Proposition 4. For any k-Lipschitz function g, we have

L(gl) + L(gr) ≤ 2ϕ(k)h.

Proof. Since g is k-Lipschitz, the slope of any chord of C(g) is less than k in
modulus. It follows that the length of any polyline �tting C(g) on a subinterval
[c, d] of [a, b] is bounded by ϕ(k)(d− c). Then, according to Jordan's de�nition
of arc length, we get

L
(
g|[c,d]

)
≤ ϕ(k)(d− c) (6)

where g|[c,d] denotes the restriction of the function g to the interval [c, d]. In
particular, L(gl) ≤ ϕ(k)(Ah− a) ≤ ϕ(k)h and L(gr) ≤ ϕ(k)(b−Bh) ≤ ϕ(k)h.

We now look at the di�erence between the length of C(gc) and the length
of the polyline C(gAc ). These two curves share the same extremities but these
depend on the grid spacing h.

Proposition 5. For any pattern function A such that MA+∞× h→ 0 as h→ 0
and any Lipschitz function g, we have

lim
h→0

L(gAc )− L(gc) = 0.

Proof. Let h > 0. From the discrete partition A(g, h) = (ai)
N
i=0 we de�ne a

partition σ of the interval [a, b] as a ≤ a0h < a1h < · · · < aN h ≤ b. Let Lσ
be the length of the polyline interpolating g according to the partition σ. On
the one hand, since MA+∞ × h→ 0 as h→ 0, Ah− a < h and b− Bh < h, the
norm of the partition σ tends to 0 as h → 0. Then the Lipschitz-continuity of
g ensures that L(g) − Lσ → 0 as h → 0. On the other hand, it is plain that
L(gc)− L(gAc ) ≤ L(g)− Lσ(g) for any h. We conclude straightforwardly.

When the derivative of g is Lipschitz continuous, the next Proposition gives
us a bound on the di�erence between the length of the curve C(gc) and the length
of the polyline C(gAc ). In order to deal with the set D of points where g is not
di�erentiable, we need �rst to explain how we calculate the measure H(A(g, h))
which is de�ned by H(A(g, h)) = h

∑
i∈I ai − ai−1 where {ai}Ni=0 = A(g, h)

and I = {i ∈ [0, N ] | (ai−1, ai) ∩ D 6= ∅}. When there is no ambiguity, we
will write HA instead of H(A(g, h)). We also de�ne a less speci�c measure,
H(g, δ) = sup

∑
i wi where the supremum is over all the minimal coverings 7 of

D \ {a, b} by disjoint open subintervals of (a, b) with diameters wi ≤ δ. The
real HA is upper bounded by H(g, hMA+∞). In Appendix A, we detail the
calculus of H(g, δ) for a fractal function with in�nitely many points where g
is not di�erentiable (in�nitely many isolated points and in�nitely many limit
points).

7A covering by a family E of sets is minimal if no subfamily of E is itself a covering.
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Proposition 6. If g is k1-Lipschitz continuous and g′ is k2-Lipschitz on each
interval included in its domain, we have for any pattern function A and any
grid spacing h > 0

L(gc)− L(gAc ) ≤ T hMA1
(
1 + (CA)2

)
+ UHA (7)

where T = k2(b− a)/2 and U = (ϕ(k1)− 1).

Proof. Let h > 0. We consider the partition A(g, h) = (ai)
N
i=0. Let J ⊂

[1, N ]∩Z be the set of subscripts i such that g is di�erentiable on (ai−1h, aih).
Note that the function ϕ is 1-Lipschitz and thereby ϕ ◦ g′ is k2-Lipschitz.
From the mean value theorem, on each interval
(ai−1h, aih), i ∈ J , there exists a real ti such that

g(aih)− g(ai−1h)

(ai − ai−1)h
= g′(ti).

Then, if i ∈ J , the length `i of the restriction of C(gAc ) to the interval [ai−1h, aih]
is such that

`i = h(ari − ari−1)ϕ
(
g′(ti)

)
.

Otherwise, we have the obvious lower bound

`i ≥ h(ai − ai−1).

Moreover, for any i /∈ J , since g is k1-Lipschitz, one has by Equation (6)

L
(
g|[ai−1h,aih]

)
≤ ϕ(k1)h(ai − ai−1)

Then,

L(gc)−L(gAc ) ≤
∑
i∈J

∫ aih

ai−1h

ϕ◦g′(t)−ϕ◦g′(ti) dt +(ϕ(k1)−1)
∑
i/∈J

h(ai−ai−1)

So,

L(gc)− L(gAc ) ≤∑
i∈J

∫ aih

ai−1h

k2 |t− ti| dt+ (ϕ(k1)− 1)HA

≤
N∑
i=1

k2h
2 (ai − ai−1)2

2
+ (ϕ(k1)− 1)HA

≤ 1

2
k2h

2N(MA2 )2 + (ϕ(k1)− 1)HA

≤ 1

2
k2(b− a)h

(MA1 )2 + V

MA1
+ (ϕ(k1)− 1)HA

where V is the variance of A(g, h)

≤ 1

2
k2(b− a)hMA1

(
1 + (CA)2

)
+ (ϕ(k1)− 1)HA

13



where the penultimate inequality comes from the well known formula
V = (MA2 )2 − (MA1 )2 and from the relation

MA1 =
1

N

N∑
i=1

(ai − ai−1)

=
1

N
(aN − a0)

≤ 1

Nh
(b− a).

In the above proposition, obviously, the second term of the sum in the right
hand side of the inequality vanishes if g is di�erentiable. In particular, if g is
C2 on I, then g and g′ are Lipschitz continuous on I and HA = 0. Then, the
di�erence L(gc)− L(gAc ) is a O

(
hMA1 (1 + (CA)2)

)
.

When g is di�erentiable everywhere but on �nitely many points, HA is
bounded by H(g, hM+∞) which is equal to nhM+∞ (for small enough h) where
n is the number of points where g is not di�erentiable. Thus the di�erence
L(gc) − L(gAc ) is a O

(
hMA+∞

)
. Indeed, for any sequence of positive numbers

(xi),

MA1 (1 + (CA)2) =
(MA2 )2

MA1
=

∑
xi

2∑
xi
≤
∑
xiM

A
+∞∑

xi
≤MA+∞

Given a Lipschitz function g on an interval I and a pattern function A,
we now look at the di�erence between L(gAc ) and L(

⌊
gAc
⌋
) that is between the

length of two piecewise a�ne functions. Moreover, to handle the MDSS length
estimator, we shall have to use Proposition 7 with two di�erent pattern functions
A and B, that is to compare L(gAc ) and L(

⌊
gBc
⌋
).

Proposition 7. Let f1 and f2 be two piecewise a�ne functions de�ned on
[c, d] ⊂ R (d > c) with a common partition having p steps. Suppose that
e1 ≤ f1 − f2 ≤ e2 for some reals e1, e2. Then

|L(f1)− L(f2)| ≤ ϕ′(k) p (e2 − e1)

where k is the arithmetic mean of the set

{max(|s1,i| , |s2,i|)}pi=1,

the reals s1,i, s2,i, 1 ≤ i ≤ p, being the slopes of f1 and f2 on each subinterval
of the common partition.

Proof. Let σ = (xi)
p
i=0 be a common partition for f1 and f2. We write mi

for xi − xi−1 and s1,i, resp. s2,i, for the slope of f1, resp. f2, on the interval
[xi−1, xi].

Then

L(f1)− L(f2) =

p∑
i=1

(ϕ(s1,i)− ϕ(s2,i))mi.

14



From the mean value theorem, we derive that

L(f1)− L(f2) =

p∑
i=1

ϕ′(s0,i)mi(s1,i − s2,i).

where, for any i, s0,i lies between s1,i and s2,i.
Note that, for any i ≤ p,

mi(s1,i − s2,i) = f1(xi)− f2(xi)− (f1(xi−1)− f2(xi−1)).

Thus, as, by hypothesis, e1 ≤ f1 − f2 ≤ e2, we get
−(e2 − e1) ≤ mi(s1,i − s2,i) ≤ e2 − e1.

Therefore,

|L(f1)− L(f2)| ≤
p∑
i=1

|ϕ′(s0,i)| |mi(s1,i − s2,i)|

≤ p(e2 − e1)M1

(
(ϕ′(|s0,i|))pi=1

)
≤ p(e2 − e1)ϕ′(M1

(
|s0,i|

)p
i=1

)

≤ p(e2 − e1)ϕ′(k)

where the penultimate inequality is derived from the concavity of the function
ϕ′ on [0,+∞).

Thanks to the four previous propositions, we can state our theorem on the
convergence of non-local length estimators. Figure 3 illustrates the theorem
hypotheses.

Theorem 8. Let g : [a, b]→ R be a k1-Lipschitz function and A be a 1-pattern
function.
If there exist a (1, β)-pattern function B, β ∈ [1,+∞], and a real ω such that
for any grid spacing h,

‖
⌊
gAc
⌋
−
⌊
gBc
⌋
‖∞ ≤ ωh (8)

then

• if β = +∞, the non-local estimation LNL(g,A, h) converges toward the
length of the curve C(g) as h tends to 0;

• if g′ is k2-Lipschitz on each interval included in its domain, we have

L(g)−LNL(g,A, h) ≤
Sh (side error)

+ T hMB1 (1 + (CB)2) + UHB) (discretization error)

+ V
(

1
MA1

+ 1
MB1

)
(quantization error)

(9)

where S = 2ϕ(k1), T = k2(b− a)/2, U = ϕ(k1) − 1 and V = (1 +

2ω)ϕ′
(
k1 + 1/MA−1

)
(b− a).
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Furthermore, if B(g, h) ⊆ A(g, h), the term 1/MA1 + 1/M1
B in the right hand

side of Equation 9 can be replaced by 1/MB1 .

Figure 3: Hypotheses of Theorem 8. The partition related to A(g, h) splits the
discrete curve in patterns whose average size in pixels tends toward in�nity as
the grid spacing tends toward zero. Another partition of the curve, related to
B(g, h), has patterns whose average absolute size tends toward zero as the grid
spacing tends toward zero. A tube (in gray) with constant height contains the
discrete points related to the partitions A(g, h) and B(g, h).

Proof. We write the di�erence between L(g) and L(
⌊
gAc
⌋
) as the sum of three

terms that correspond to the three kinds of errors.

L(g)− L(
⌊
gAc
⌋
) = (L(gl) + L(gr)) +(

L(gc)− L(gBc )
)

+
(
L(gBc )− L(

⌊
gAc
⌋
)
)

(10)

Each term of the right hand side of (10) is upper bounded as follows.

• From Proposition 4, we have

L(gl) + L(gr) ≤ 2ϕ(k1)h (11)

Thus, L(gl) + L(gr) converges to 0 as h→ 0.

• From Proposition 5, we know that L(gBc ) converges toward L(gc) as h→ 0
provided β = +∞.
Moreover, when g′ is k2-Lipschitz continuous on the intervals included in
its domain and whatever is the value of β, from Proposition 6 we have

L(gc)− L(gBc ) ≤ k2(b− a)

2
hMB1

(
1 + (CB)2

)
+ (ϕ(k1)− 1)HB. (12)
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• From Hypothesis (8),

‖
⌊
gAc
⌋
−
⌊
gBc
⌋
‖∞ ≤ ωh.

Thus, we have
−ωh ≤ gBc −

⌊
gAc
⌋
≤ (ω + 1)h.

Since g is k1-Lipschitz, the piecewise a�ne function gBc is clearly k1-
Lipschitz. Let A(g, h) = (ai)

NA

i=0. For any i ∈ [1, NA], the absolute slope
of
⌊
gAc
⌋
on [ai−1h, aih] is bounded by k1 +1/(ai−ai−1). Hence, the arith-

metic mean of the absolute slopes of
⌊
gAc
⌋
is bounded by k = k1 + 1/MA−1

(thus k ≤ k1 + 1). Then, from Proposition 7, we derive that∣∣L(gBc )− L(
⌊
gAc
⌋
)
∣∣ ≤ ϕ′(k)N(1 + 2ω)h

where N is the size of the partition A(g, h) ∪ B(g, h). So, we have N ≤
NA +NB and we observe that, for any I ∈ {A,B},

M1

(
I(g, h)

)
=

1

NI
(B −A) ≤ 1

hNI
(b− a).

Thus, we get∣∣L(gBc )− L(
⌊
gAc
⌋
)
∣∣ ≤

(1 + 2ω)ϕ′(k)(b− a)

(
1

MA1
+

1

MB1

)
. (13)

It follows from Equation (13) and the hypotheses that L(gBc ) − L(
⌊
gAc
⌋
)

converges to 0 as h→ 0.

Thereafter, the convergence is established once β = +∞. Moreover, Equa-
tion (9) derives obviously from (11), (12) and (13).

Basically, Theorem 8 states that a non-local estimator (which rely on an
α-pattern function) is convergent for Lipschitz functions provided it is not too
far from a M-sparse estimator (which rely on an (α, β)-pattern function). Let
us now look at the possible options for the pattern function B.

Choice of the pattern function B. As mentioned at the beginning of Section 3.2
the second pattern function B is introduced so as to include MDSS estimators
for which pattern absolute size needs not tend to zero. For example, it is
plain that for an a�ne function g de�ned on [a, b], an MDSS segmentation
will provide a single pattern of size B − A ≈ (b− a)/h. Nevertheless, after an
MDSS segmentation, it is always possible to arti�cially subdivide the obtained
segments in order to de�ne the pattern function B. Then, the de�nition of a
straight line segment ensures that Hypothesis (8) of Theorem 8 is satis�ed (and
the constant ω can be set to 1 in our discretization model). Thereby, together
with the constant ω, the piecewise a�ne function gBc provides a tube around the
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data points attached to the partition B(g, h) in which must stay the function⌊
gAc
⌋
to reliably estimate L(g). That way this tube can be seen as a data �tting.

Figure 3 gives an illustration of such a situation. Also, it should be noticed that
if we assume the same hypotheses as in [8], C3 functions with strictly positive
curvature, we can take B = A with the MDSS segmentation since the existence
of a strictly positive minimal curvature on [a, b] ensures that MA+∞ × h→ 0 as
h → 0. On the other hand, for C3 curves with almost linear parts, even with
B ⊃ A, the real ω would not be null. Besides, when a MDSS is partitioned in
subsegments, the length that comes with the MDSS (its diameter) is not the
sum of the diameters of the subsegments and it is the role of (8) in the theorem
hypotheses to bound the di�erence (via Proposition 7). Eventually, since there
are in�nitely many valid choices of B for the MDSS estimator, Equation 9 leads
to the following bound on the estimation error (for the MDSS estimator):

L(g)− LNL(g,A, h) ≤ Sh+

inf
i

(
T hM1,i

(
1 + (Ci)

2
)

+ UHA + V
( 1

M1,i
+

1

MA1

))
where the in�mum is over all 1-pattern functions Bi such that M1,i = MBi1 =
o(1/h) as h→ 0 and where Ci = C(Bi(g, h)).

With sparse estimators, the partition subinterval length sequence provided
by the pattern function is

(H(h), . . . ,H(h), rem)

where
lim
h→0

H(h) = +∞, lim
h→0

hH(h) = 0 and rem ≤ H(h).

Thus, taking B = A, ω = 0 and β = 1 all the hypotheses of Theorem 8 are
satis�ed.

Theorem 8 is tested on real functions in the next section.

4. Tests

The tests have been made using the MPFR and GMP libraries through
the sage [21] software. The results are presented in Table 2 and Table 3.
Hereafter, we present the tested non local length estimators (NLE) and the
tested functions.

4.1. Protocol

The tested NLE are:

• The sparse estimators ESp2 and ESp3 with

1. ESp2: the discrete pattern size equal to bh− 1
2 c which is generally

optimal for such an estimator (see [18]),
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Figure 4: Graph of the function s1.

2. ESp3: the discrete pattern size equal to bh− 1
3 c that approximatively

corresponds to the asymptotic average discrete size of the MDSS on
a smooth curve with positive minimal curvature [8].

• The M-sparse estimator Erand with random pattern sizes equidistributed
between 1 and b2h− 1

2 c. Hence, for small enough grid spacings, the average
pattern size should be the same as ESp2. Note that for the three previous
NLE, we can apply Theorem 8 taking A = B.

• The MDSS based estimator EDSS (taking the diameter as the pattern
length � see the comment at the end of Section 3.1).

The computed errors are the discretization, the quantization and the total error.
The bounds and the grid spacing h are chosen such that the error on the bounds
is null.

There are �ve test functions that we describe now. The �rst three satisfy
the stronger assumptions on the function g in Theorem 8 (the function and
its derivative are Lipschitz continuous), the two last are Lipschitz but their
derivatives are not.

• The natural logarithm on the interval [1, 2] where it is 1-Lipschitz, concave
and of class C∞.

• The function

s1 :

{
x ∈ (0, 1] 7→ x4

25 sin 20
x ,

0 7→ 0

which has in�nitely many in�exion points (but only �nitely many in�exion
points on any interval [a, 1], a > 0), is 1-Lipschitz of class C1 (C∞ on (0, 1])
with a Lipschitz continuous derivative.

The graph of s1 is shown Figure 4.

• The function

s2 :

{
x ∈ (0, 1] 7→ x2

2 sin 1
x ,

0 7→ 0

which has in�nitely many in�exion points, is 1-Lipschitz of class C1 (C∞

on (0, 1]). The convergence is given by Theorem 8 but, unlike the function
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s1, the derivative of s2 is not Lipschitz on (0, 1]. Then the bound obtained
in Proposition 6 is not valid for this function. Nevertheless, only one com-
putation of pattern length (the �rst one) is concerned by this restriction.
The graph of s2 is shown Figure 5.
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Figure 5: Graph of the function s2.

• The fractal functions f1 and f2 de�ned on [0, 1] as follows.

We denote by 1J the characteristic function of the interval J = [ 13 ,
2
3 ] and

by {·} the fractional part.
Then, for any i ∈ {1, 2}, fi = limn→∞ fi,n where

f1,0 : x 7→ 1

2
−
∣∣∣∣x− 1

2

∣∣∣∣ , f2,0 : x 7→ 1

2π
(1− cos(2πx)),

fi,1 : x 7→ 1

3
fi,0({3x})1J(x)

and for n > 1,

fi,n :

{
x /∈ J 7→ 1

3fi,n−1({3x}),
x ∈ J 7→ fi,n−1(x).

An illustration of the graphs C(f1) and C(f2) is given Figures 6 and 7.
The length of C(fi), i ∈ {1, 2} is the length of C(fi,0).

The functions f1 and f2 are 1-Lipschitz. The function f1 is not di�eren-
tiable on [0, 1] but it is plain that the derivative of f1 is constant on any
interval included in its domain. On the contrary, f2 is of class C1 on [0, 1],
C∞ almost everywhere, but its second derivative is not bounded. Thus
Equation (9) of Theorem 8 does not apply to f2. Furthermore, unlike s2,
the number of patterns where the second derivative is unbounded tends
toward +∞ as the grid spacing tends to zero.

Remark 1. The pattern functions of EDSS for the tested functions on the tested
grid spacings have not contradict the assumption that, in our framework, MDSS
are non-local estimators. Furthermore, the bounds h−1/3 and h−

1
3 log(1/h) for

the asymptotic average discrete size of the MDSS on a smooth solid contour
with positive minimal curvature [8] �t our experiment on function graphs (see
Figure 8).
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Figure 6: Graph of the fractal function f1.
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Figure 7: Graph of the fractal function f2.

10−1

100

101

102

103

104

10−810−710−610−510−410−310−210−1100

log
s1
s2
f1
f2

0.2 h−1/3

−h−1/3 log(h)

Figure 8: Average discrete size of the MDSS produced by EDSS on the tested
functions according to the grid spacing.

4.2. On the theoretical bounds

The tests gathered in Table 2 aim at comparing the theoretical bounds ob-
tained in Theorem 8 with the experimental values of the discretization error
and the quantization error. To do so, we use the NLE Erand. In the table, the
blue '+' represents the theoretical upper bound and the green '*' represents the
observed error for the grid spacings b(2/3)nc, n ∈ [1, 50] ∩ N.
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Discretization error. The discretization error has two parts. The second one
only concerns the function f1 for it is the only one that is not di�erentiable.

The �rst part of the bound is

k2(b− a)

2
hMA1 (1 + (CA)2)

where k2 is a Lipschitz constant for the derivative of the tested function. We
took:

log s1 s2 f1 f2
k2 1 17 ∞ 0 ∞

Since k2 = 0 for f1, this function is not concerned by the �rst part of the
bound. When the derivative is not Lispchitz continuous (k2 =∞), the blue '+'
on the plot represent the values of hMA1 (1 + (CA)2).

Since Erand has pattern sizes equidistributed in the interval [1, 2h−1/2], for
small enough grid spacings we have

hMA1 (1 + (CA)2) ≈ 4

3
h

1
2

and thereby
k2(b− a)

2
hMA1 (1 + (CA)2) ≈ 2

3
k2h

1
2 .

The cyan line on the plots of the discretization error of the functions log, s1, s2
and f2 is the graph of h 7→ Γh

1
2 where Γ = 2

3k2 (Γ = 4
3 for s2 and f2).

It can be seen in Table 2 that the observed errors for the functions log and
s1 are less than the upper bounds given by Theorem 8. Speci�cally, the power
in the measured errors are almost twice the bounds, as far as the grid spacing
is small enough. We know from our previous work [18], that convexity allow to
double the convergence rate of the sparse estimators. This explains the observed
di�erence for the logarithm (provided we can extend our previous result to the
M-sparse estimators). On the contrary, the function s1 has in�nitely many
in�exion points. Nevertheless, once the �rst grid step is passed, it remains only
�nitely many of them. This could explain the good convergence rate. In a work
in preparation, we study this issue by bringing a measure of the set of in�exion
points.

On the plots related to the functions s2 and f2, we can see that having an
unbounded second derivative drastically decreases the convergence rate, even
for s2 which has a bounded second derivative on any closed subinterval of its
domain that does not contain 0.

Regarding the function f1, which is 1-Lipschitz, the bound for the discretiza-
tion error is

(ϕ(1)− 1)HA(f1, h).

An upper bound for HA(f1, h) is calculated in Appendix A:

HA(f1, h) ≤ H(f1, δ) ≤
15

4
δ1−log3(2)
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where δ = hMA+∞.
With Erand, δ = hMA+∞ ≈ 2h

1
2 (for small enough grid spacings). Thus, the

bound for the function f1 is approximatively

15(
√

2− 1)

21+log3(2)
h

1
2 (1−log3(2)).

The cyan line on the plot of the error for the function f1 is the graph of h 7→
Γh

1
2 (1−log3(2)) where Γ = 15(

√
2− 1)/21+log3(2).

The plot relative to f1 shows the good accuracy of the upper bound for this
non di�erentiable function. Moreover, if instead of taking δ = hMA+∞ in the
bound, which corresponds to the worst case, we take δ = hMA1 , that is we cover
the points of non di�erentiability by patterns of average size, both point clouds
almost overlap.

Quantization error. The upper bound for the quantization error is derived from
Proposition 7 and the function just needs to be Lipschitz continuous. Thus, this
bound is valid for our �ve test functions.

With the estimator Erand we can take just one pattern function (A = B and
ω = 0). So, the quantization error is bounded by

ϕ′
(
k1 + 1

MA−1

)
(b− a)

1

MA1

where k1 is a Lipschitz constant for the tested function. Thus, for small enough
grid spacings, the bound on the quantization error for the estimator Erand is
approximatively

ϕ′(k1) h
1
2 .

For k1, we took

log s1 s2 f1 f2
k1 1 0.7 0.7 1 1

The cyan line on the plots of the quantization errors (for the �ve functions)
is the graph of h 7→ Γh

1
2 where Γ = ϕ′(k1).

With the quantization error, the results for all tested functions are less than
the upper bounds given by Theorem 8. Again the powers in the measured errors
are almost twice the bounds, as far as the grid spacing is small enough. As with
the discretization error, this corresponds to a property of concave functions
shown in [18] for the sparse estimators and this property could also be valid for
the NLEs and for a larger class of functions than the concave ones. Nevertheless
this is not true in the worst case. Hereafter, we show a very simple example
that proves that the bound cannot be improved for any grid spacing.

Let us choose a grid spacing h = k−2/4, k ∈ N and we assume that, at this
grid spacing, the pattern size is constant, equals to h−1/2 = 2k. Now, we de�ne
the periodic piecewise a�ne function

vk,a = (1 +
a

k
)

1

k
v0(kx)
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where 0 < a� 1 and

v0(x) = − 1

2π
arccos(cos(2πx)).

Figure 9 shows the plot of the function v4,0.1 on [0, 1]. Each pattern is a digital
straight segment and the quantization error is maximal on each segment for
the di�erence between the ordinates of the discrete function and the continuous
function at the lower end of the segments is (1 − 2a)h ≈ h. On Table 1, we
show the relative di�erence between the quantization error (QE) and its upper
bound (UB) in Theorem 8 for some functions vk,a where a = 10−3.

−h
−2h

−3h

−4h

−5h

−6h

−7h

−8h

−9h

1
k

2
k

3
k 1

Figure 9: Blue (upper) line: the graph of the function v4,0.1. Red points: MDSS
end points of the v4,0.1 OBQ discretization. Red line: polyline whose length is
the non local length estimation of L(g).

k 1 22 24 26 28 210 212

h 2−2 2−6 2−10 2−14 2−18 2−22 2−24

QE 3e-1 6e-2 1e-2 3e-3 9e-4 2e-4 5e-5∣∣∣QE−UBQE

∣∣∣ 2e-1 8e-2 2e-2 6e-3 1e-3 4e-4 1e-4

Table 1: Relative di�erence between the quantization error for the function vk,a
with a = 10−3 and the upper bound provided by Theorem 8

4.3. Comparison between the tested estimators

A comparison of the di�erent estimators on the �ve test function graphs
is shown Table 3. The MDSS, Sparse and M-sparse estimators are tested on
the Logarithm, the dumped sinusoids s1, s2 and the fractal functions f1, f2.
Three errors are shown for the test: the discretization error (left column), the
quantization error (middle column) and the total error (right column).

Discretization error. The Discretization Error (DE) is due to the approxima-
tion of the curve by chords whose width is given by the pattern function. Thus,
generally, the shorter the width, the smaller the DE. This is indeed what we
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observe in Table 3 where EMDSS and ESp3 which have a pattern size average of
about h−

1
3 converge more quickly than ESp2 and Erand which have a pattern size

average of h−
1
2 . The good performance of EMDSS on the f1 graph which is com-

posed of straight line segments is natural. Contrariwise, as MDSS are adaptive,
we could expect that EMDSS outperforms ESp3 on s1, s2 and f2. Surprisingly
this is not the case on the graph of s1.

Quantization error. The Quantization Error (QE) comes from the vertical align-
ment of the chords on the grid. So, generally, a pattern function that produce a
small number of patterns yield to a small QE on the contrary to the DE. This
is what we observe on the experiment. In particular, the price of the adaptive
nature of EMDSS is a relatively larger QE.

Total error. The in�uence of the QE and the DE on the total error depends
on the studied graph. On the one hand, the order of magnitude of the QE is
pretty much the same for the �ve functions and each NLE (with an exception
for EMDSS on the logarithm). On the other hand, the order of magnitude of the
DE increases signi�cantly from the smooth concave function log to the fractal
functions for the four tested NLE. On the dumped sinusoid s2, the total error
for the EMDSS estimator bene�ts from the contrary signs, with same order of
magnitude, of the QE and the DE. We note also that the sparse estimator
ESp2 and its randomized equivalent, the M-sparse estimator Erand have almost
the same results for the �ve functions. Eventually, no estimator gives the best
results over all the graph.

5. Conclusion

In this article, we have introduced a new class of length estimators, the non-
local estimators (NLE). The NLE gather all the multigrid estimators whose
discrete graph length estimation is made with a polyline whose vertices belong
to the discrete graph under the assumption that the average of the line segment
discrete sizes tends toward in�nity as the grid spacing tends toward zero. The
NLE class should encompass the MDSS based length estimators. Nevertheless
we still need to prove it formally. We have also de�ned a subclass of the NLE,
the M-sparse estimators, for which the average of the line segment absolute
lengths tends toward 0 as the grid spacing itself tends toward zero. We proved
that any NLE has the multigrid convergence property for the Lipschitz functions
as soon as at any grid spacing its polyline is close to the one of some M-sparse
polyline. The bound on the convergence rate is the same as the one of semi-
local and sparse estimators in the general case, under weaker assumptions on the
function. The convergence rate can be improved when the function is concave
or convex as it has been shown for sparse estimators in [18]. This point will be
developed in a work in preparation [3]. We have also to study how the material
presented in this article behaves with Jordan curves obtained as boundaries of
solid objects through various discretization schemes (and more generally, with
any graph of a one-to-one vector-valued function).
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Discretization error Quantization error Total error
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0.01 h1
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Γ h1/2

0.1 h1
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1 2
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x
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2
0 x
)
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0.3 h1
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1 x
)
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Γ h1/2
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10−1010−810−610−410−2100
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0.3 h1
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F
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l
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Γ h1/2 (1−log3(2))

0.9 h1/2 (1−log3(2))

10−10
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10−4
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100

10−1010−810−610−410−2100

Γ h1/2

0.4 h0.9

10−2
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F
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a
l
f
2

10−5
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0.7 h0.18
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Γ h1/2

0.2 h0.85

10−5
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100
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10−1010−810−610−410−2100

Table 2: Errors in multigrid length estimations with the NLE Erand. Green
stars: the observed errors. Blue crosses: the theoretical upper bounds given by
Theorem 8 (Γ is a constant computed from the expected means of the random
pattern sizes; see text).
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Discretization error Quantization error Total error
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Table 3: Estimation errors in function of the grid spacing h for the estimators
ESp2, EDSS, Erand and ESp3. The tested functions are log, s1, s2, f1 and f2 (see
text).
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Appendix A. Calculus of H(f, δ)

We consider the fractal function f de�ned in Section 4.1. Let E be the set
of points in [0, 1] at which g is not di�erentiable. E contains isolated points
whose triadic development is composed of �nitely many digits 0 or 2 followed
by an in�nite sequence of digits 1 and E contains limit points whose triadic
development is �nite, made of digits 0 or 2 but the last which is any digit.

We set F (δ) = H(f, δ). Recall that

F (δ) = sup
∑
i

wi

where the supremum is over the set Eδ of all minimal coverings of the set E by
disjoint open subintervals of (0, 1) with diameters wi ≤ δ.

For δ ≥ 1
6 , the set {Ii}6i=0 where Ii = (2i−1

12 , 2i+1
12 ) ∩ [0, 1] is a minimal

covering of E with open disjoint intervals.
Hence, for any δ ≥ 1

6 , we have

F (δ) = 1. (A.1)

When δ < 1
6 , any minimal covering in Eδ can be split in three parts: a minimal

covering of E ∩ [0, x1] where x1 ∈ ( 1
3 ,

1
2 ), an interval that contains the point 1

2
and a minimal covering of E ∩ [x2, 1] where x2 ∈ ( 1

2 ,
2
3 ).

From the recursive de�nition of f , one can see that

H(f|[0, 13 ], δ) = H(f|[ 23 ,1], δ) = 1
3H(f, 3δ)

where f|J denotes the restriction of the function f to an interval J .
Thus, for any δ < 1

6 ,

F (δ) = 2× ( 1
3 (F (3δ) + δ) + δ = 2

3F (3δ) + 3δ (A.2)

By solving the recurrence relation (A.2) with the initial equality (A.1), we get

F (δ) =

(
2

3

)n
+ 3δ

n−1∑
i=0

2i with
1

9
≤ 3nδ <

1

3

=

(
2

3

)n
+ 3δ(2n − 1) with n = −blog3(δ) + 2c

Therefore,

F (δ) ≤ 9

4

(
2

3

)− log3(δ)

+ 3δ

(
1

2
2− log3(δ)

)
≤ 15

4
δ1−log3(2).

Note that log3(2) is the Hausdor� dimension of the set E.
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