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INTRODUCTION

The past decade has witnessed many achievement in the design of adaptive controller for nonlinear systems with unknown parameters. Many significant results ( [START_REF] Kokotovic | Systematic design of adaptive controller for feedback linearizable systems[END_REF], [START_REF] Kanellakopouslos | Nonlinear and Adaptive Control Design[END_REF], [START_REF] Johansen | Robust adaptive control of minimum phase nonlinear systems[END_REF], [START_REF] Sastry | Adaptive control of linearizable systems[END_REF] and references therein) have been obtained. One of the important assumptions in these adaptive schemes is that the system nonlinearities are linear in the unknown parameters. In ( [START_REF] Hassan | Adaptive output feedback control of nonlinear systems represented by input-output models[END_REF]), an adaptive output feedback controller for a class of SISO nonlinear systems with unknown constant parameters is proposed. The controller uses a high gain observer for estimate the unmeasurable state and under an additional persistence of excitation, the unknown parameters are estimated. A globally stable adaptive output feedback controller was developed using high-gain adaptation for systems containing nonlinear parameterizations ( [START_REF] Marino | Global adaptive outputfeedback control of nonlinear systems-part ii: Nonlinear parameterization[END_REF]),which, however, is only applicable to set-point regulation control. In ( [START_REF] Santosuosso | Global adaptive output feedback controllers with application to nonlinear friction compensation[END_REF]), an output feedback controller for a class of nonlinear systems that consist of a set of unknown constant parameters and unmeasurable state variables was considered. Under the assumption that the dynamics of the unmeasurable state is asymptotically stable and us-ing parameter dependent filtered transformations, an output feedback controller was constructed. Recently ( [START_REF] Zhu | Adaptive controller and observer design of a class of nonlinear systems[END_REF]), a stable adaptive controller and observer for a class of nonlinear systems are designed using a parameters dependent lyapunov function.

In this paper, one proposes an adaptive output feedback controller for a class of nonlinear controllable and observable systems. More specifically, one will address an admissible tracking problem for systems without zero dynamics, allowing thereby a comprehensive presentation of the proposed control design framework. The adaptive output feedback controller is obtained by simply combining an appropriate high gain state feedback control with a high gain adaptive observer ( [START_REF] Farza | A set of adaptive observers for a class of mimo nonlinear systems[END_REF], [START_REF] Maatoug | Adaptive observer design for a class of mimo nonlinear systems[END_REF]). The state feedback control design was particularly suggested from the the high gain observer design bearing in mind the control and observation duality. Of particular interest, the controller gain involves a well defined design function which provides a unified framework for the high gain control design, namely several versions of sliding mode controllers are obtained by considering particular expressions of the design function. Furthermore, it is shown that a filtered integral action can be simply incorporated into the control design to carry out a robust compensation of step like disturbances while reducing appropriately the noise control system sensitivity. This paper is organized as follows. The problem formulation is presented in the next section. Section 3 is devoted to the state feedback control design with a full convergence analysis of the tracking error in a free disturbances case. The adaptive output feedback controller is presented in section 4 where the main result of this contribution is given. Section 5 emphasizes the high gain unifying feature of the proposed control design. The possibility to incorporate a filtered integral action into the control design is shown in section 6. Simulation results are given in section 7 to highlight the performances of the proposed controller.

PROBLEM FORMULATION

One seeks for an admissible adaptive tracking problem for MIMO systems which dynamical behavior can be de-scribed by the following state representation

ẋ = Ax + Bu + g(x) + Ψ(x)ρ y = Cx = x 1 (1) with x =      x 1 x 2 . . . x q      ; ρ =      ρ 1 ρ 2 . . . ρ m      ; g(x) =        g1 (x 1 ) g2 (x 1 , x 2 )
. . . gq-1 (x 1 , . . . , x q-1 ) gq (x)

       ; ΨT (x) =        ΨT 1 (x) ΨT 2 (x) . . . ΨT m (x)        , Ψj (x) =           Ψ1 j (x 1 ) Ψ2 j (x 1 , x 2 ) . . . Ψq-1 j (x 1 , . . . , x q-1 ) Ψq j (x)           A =          0 I p 0 0 . . . . . . I p 0 . . . . . . 0 0 . . . I p 0 . . . 0 0          (2) 
C = [I p , 0 p , . . . ,

0 p ] (3) 
B = [0 p , 0 p , . . . , I p ] (4) 
where the output y ∈ IR p ; the state x ∈ ϑ an open subset R n with x k ∈ IR n1 , k = 1, . . . , q; the input u(t) ∈ U , a compact subset of IR s ; ρ ∈ IR m is a vector of unknown constant parameters, ρ i ∈ IR, i = 1, . . . , m; g(x) ∈ IR n with gk (x) ∈ IR p , k = 1, . . . , q; Ψ(x) is a n × m matrix and each Ψj (x) ∈ IR n , j = 1, . . . , m, denotes its j th column with Ψk j (x) ∈ IR p , k = 1, . . . , q. The notation I k where k is a positive number refers to the k × k identity matrix while 0 k and 0 k1×k2 , k, k 1 , k 2 being positive integers, denote the null matrix with dimension k × k and k 1 × k 2 , respectively. Please notice that system (1 is controllable and uniformly observable. The observer-based controller design requires some assumptions which will be stated in due courses. At this step, one assumes the following: (A1) For any bounded input u, i.e. ∀u ∈ U a compact subset of IR s , the state x(t) and the unknown parameters ρ are bounded, i.e. x(t) ∈ X, for t ≥ 0 and ρ ∈ Ω where X ⊂ IR n and Ω ∈ IR m are compacts sets. (A2) The matrix Ψ(x) is continuous on X. (A3) The functions g(x) and Ψ(x) are Lipschitz. Please notice that since the state is confined to the bounded set X, one can extend the nonlinearities g(x) and Ψ(x) into g(x) and Ψ(x) in such a way that the restrictions of g(x) and Ψ(x) respectively coincide with g(x) and Ψ(x) on X and that g(x) and Ψ(x) become global Lipschitz, i.e. Lispchitz on the whole space IR n . Indeed, let σ : IR n -→ X, x → σ(x) be any smooth bounded saturation function that coincides with x on X, i.e. σ(x) = x for all x ∈ X (see e.g. [START_REF] Shim | Semi-global observer for multi-output nonlinear systems[END_REF][START_REF] Conlon | Differentiable Manifolds[END_REF]). One defines the respective Lipschitz extensions, g(x) and Ψ(x), of g and Ψ as follows:

g(x) = g(σ(x)) Ψ(x) = Ψ(σ(x))
Now, consider the following dynamical system:

ẋ = Ax + Bu + g(x) + Ψ(x)ρ y = Cx = x 1 (5) 
It is clear that system (5) coincides with system (1) for (x, u, ρ) ∈ X × U × Ω. Therefore, it does not make any difference that we consider system (5) instead of ( 1) for the observer-based controller synthesis. Indeed, system (5) shall be considered in the next section. Please notice that for any bounded input u ∈ U , g(x) and Ψ(x) are, by construction, globally Lipschitz with respect to x and are bounded for all x ∈ IR n .

The control problem to be addressed consists in an asymptotic tracking of an output reference trajectory that will be noted {y r (t)} ∈ IR p and assumed to be enough derived, i.e. lim t→∞ (y(t)y r (t)) = 0.

Taking into account the class of systems, it is possible to determine the system state trajectory {x r (t)} ∈ IR n and the system input sequence {u r (t)} corresponding to the output trajectory {y r (t)} ∈ IR p . This allows to define an admissible reference model as follows ẋr = Ax r + Bu r + g(x r ) + Ψ(x r )ρ

y r = Cx r (6) 
The reference model state x r ∈ IR n and its input u r ∈ IR s can be determined as follows

           x 1 r = y r x k r = ẋr k-1 -g k-1 (x 1 r , . . . , x k-1 r ) -Ψ k-1 (x 1 r , . . . , x k-1 r )ρ f or k ∈ [2, q] u r = ( ẋr q -g q (x r ) -Ψ q (x r )ρ) (7) 
By assuming that the reference trajectory is smooth enough, one can recursively determine the reference model state and input from the reference trajectory and its first derivatives, i.e. y

(i) r = d i y r dt i f or i ∈ [1, q -1], as follows.                                  ϕ 1 (y r ) = y r ϕ k y r , y (1) 
r , . . . , y

(k-1) r = k-2 j=0 ∂ϕ k-1 ∂y (j) r y r , . . . , y (k-2) r y (j+1) r -g k-1 ϕ 1 (y r ) , . . . , ϕ k-1 y r , y (1) 
r , . . . , y

(k-2) r -Ψ k-1 ϕ 1 (y r ) , . . . , ϕ k-1 y r , y (1) 
r , . . . , y

(k-2) r ρ f or k ∈ [2, q]
The adaptive output tracking problem can be hence turned to a state trajectory tracking problem defined by

lim t→∞ e(t) = 0 (8) 
where

e(t) = x(t) -x r (t) (9) 
Such problem can be interpreted as a regulation problem for the tracking error system obtained from the system and model reference state representations ( 1) and ( 6), respectively.

   ė = Ae + B (u(x) -u r ) + g (x) -g (x r ) + (Ψ(x) -Ψ(x r )) ρ e m = y -y r (10)

STATE FEEDBACK CONTROL

As it was early mentioned, the proposed state feedback control design is particularly suggested by the duality from the high gain observer design proposed in [START_REF] Farza | A set of observers for a class of nonlinear systems[END_REF]. The underlying state feedback control law is then given by

             u (x) = u r + ν (e) u r = ẋq r -g q (x r ) -Ψ q (x r ) ρ ν (e) = -K c λ q B T S∆ λ e ∆ = -K c B T Sē (11)
where e is the tracking error defined by ( 9), ∆ λ is the block diagonal matrix defined by

∆ λ = diag I p , 1 λ I p , . . . , 1 λ q-1 I p ( 12 
)
where λ > 0 is a positive scalar, S is the unique solution of the the following algebraic Lyapunov equation

S + A T S + SA = SBB T S (13) 
and K c : IR p → IR p is a bounded design function satisfying the following property

∀ξ ∈ Ξ one has ξ T K c (ξ) ≥ 1 2 ξ T ξ ( 14 
)
where Ξ is any compact subset of IR p . 

I p 0 p . . . 0 p       (16) 
Using some useful algebraic manipulations as in [START_REF] Farza | Observer design for a class of MIMO nonlinear systems[END_REF] yields

B T S = CS -1 T = [C q q I p C q-1 q I p . . . C 1 q I p ] (17) 
The above state feedback control law satisfies the tracking objective [START_REF] Zhu | Adaptive controller and observer design of a class of nonlinear systems[END_REF] as pointed out by the following fundamental result Theorem 3.1 The state and output trajectories of the ( 1)-( 4) subject to the assumptions A1 et A2 generated from the input sequence given by ( 11)-( 14) converge globally exponentially to those of the reference model ( 6) for relatively high values of λ.

Proof.: due to lack of place, the proof is not given but its main outlines are similar to those given in [START_REF] Hajji | Observer-based output feedback controller for a class of nonlinear systems[END_REF].

Remark 3.2 Consider the case where the state matrix structure is as follows

A =          0 A 1 0 . . . 0 0 0 A 2 . . . 0 . . . . . . . . . . . . 0 . . . . . . . . . A q-1 0 . . . . . . 0 0         
where A i ∈ R p×p f or i ∈ [1, q -1] are invertible constant matrices. One can easily show that the corresponding control law ν(e) in the expression of the control law [START_REF] Shim | Semi-global observer for multi-output nonlinear systems[END_REF] is then given by ν(e) = -

q-1 i=1 A i -1 K c λ q B T S∆ λ Λe (18) 
with

Λ = diag I p , A 1 , A 1 A 2 , . . . , q-1 i=1 A i (19)
To this end, let us consider the change of coordinates z = Λx, the system can be rewritten as follows

ż = ΛAΛ -1 z + ΛBu + Λϕ(x) y = CΛ -1 z = z 1 (20)
Taking into account the structure of the the system state realization as well as the transformation matrix, one gets

ΛAΛ -1 = 0 I n-p 0 0 ΛB = B q-1 i=1 A i and CΛ -1 = C (21)
One hence recovers the structure of the considered class of systems, i.e. equations ( 1) to ( 4), and naturally deduces the expression of the state feedback control law [START_REF] Narendra | Stable Adaptive Systems[END_REF].

ADAPTIVE OUTPUT FEEDBACK CONTROL

The adaptive output feedback control we are concerned by is obtained by invoking the certainty equivalence principle while using an adaptive high gain observer. Indeed consider the following dynamical system

u (x, ρ) = ẋq r -g q (x r ) -Ψ q (x r ) ρ + ν (ê) ( 22 
)
where xr is the estimation of the reference trajectory, x r , and is computed as in ( 8) by replacing ρ by ρ and

ν (ê) = -K c λ q B T S∆ λ ê ∆ = -K c λ q B T S∆ λ (x -xr ) (23) 
and

ẋ(t) = Ax + Bu (x, ρ) + g(x) + Ψ(x)ρ -θ∆ -1 θ S -1 + Υ P Υ T C T C (x -x) ρ(t) = -θP Υ T C T C (x -x) Υ(t) = θ (A -S -1 C T C) Υ(t) + ∆ θ Ψ(x(t)) with Υ(0) = 0 Ṗ (t) = -θP (t)Υ T (t)C T CΥ(t)P (t) + θP (t) with P (0) = P T (0) > 0 (24) where x =      x1 x2 . . . xq      ∈ IR n with xk ∈ IR p , k = 1, . . . , q; x
is the unknown trajectory of system (5); ρT = [ρ 1 ρ2 . . . ρm ] ∈ IR m ; S and C are respectively given by ( 15) and (3); ∆ θ is a diagonal matrix defined in a similar as the matrix ∆ λ (equation 12) for the positive scalar θ > 0; the notation P (0) = P T (0) > 0 means that the initial condition of the Ordinary Differential Equation (ODE) governing P is chosen SPD. The control law involves a gain depending on the bounded design function K c which is completely characterized by the fundamental property [START_REF] Gauthier | A simple observer for nonlinear systems -application to bioreactors[END_REF]. Some useful design functions have been given in [START_REF] Maatoug | A set of adaptive observers for a class of mimo nonlinear systems[END_REF] to emphasize the unifying feature of the proposed high gain concept.

Before stating our main result, one assumes the additional assumption : (A4) The inputs u are such that for any trajectory x of system (24) starting from (x(0), ρ(0)) ∈ X×Ω, the matrix CΥ(t) is persistently exciting i.e.

∃δ 1 , δ 2 > 0; ∃T > 0; ∀t ≥ 0 :

δ 1 I m ≤ t+T t Υ T (τ )C T CΥ(τ )dτ ≤ δ 2 I m
Please notice that assumption (A4) gives a certain excitation condition which is stated in a classical way [START_REF] Narendra | Stable Adaptive Systems[END_REF]. However, this assumption does not state how to generate the input u that ensures the realization of this condition.

In fact, up to our knowledge, except some particular cases (such as linear systems), the problem of characterizing the set of inputs ensuring the persistent excitation condition is still be open. Now, one states the main result. Indeed, the resulting control system achieves the required tracking performances as pointed out by the following Theorem. 

η = θAη -θS -1 C T C ε + ∆ θ (g(x) -g(x)) +∆ θ Ψ(x) -Ψ(x) + θS -1 C T CΥρ ρ Set V 1 (η) = λ 2q η T Sη, V 2 (ρ) = λ 2q ρT P -1 ρ and let V o (η, ρ) = λ 2q (V 1 + V 2 )
be the Lyapunov candidate function. According to the algebraic Lyapunov equation ( 15), one has:

V1 = -θV 1 -λ 2q θη T C T Cη +2λ 2q η T S∆ θ (g(x) -g(x)) +2λ 2q η T S∆ θ (Ψ(x) -Ψ(x)) ρ ≤ -(θ -k 1 )V 1 + k 2 V 1 V 2 (25) 
where k 1 and k 2 are positive constants which do not depend on θ ≥ 1.

Besides, one has:

V2 (t) = -θV 2 -λ 2q θ(Υρ) T C T CΥρ -2λ 2q θη T C T CΥρ (26) 
Combining ( 25) and (26), one gets:

V o = V1 + V2 ≤ -(θ -k 1 )V 1 -θV 2 + k 2 V 1 V 2 (27) 
The inequality (27) leads to:

V o (t) ≤ e -θ-k 1 2 t V o (0) (28) 
The rest of the proof is not given, but is similar to that given in [START_REF] Hajji | Observer-based output feedback controller for a class of nonlinear systems[END_REF].

FILTERED INTEGRAL ACTION

One can easily incorporate a filtered integral action into the proposed state feedback control design, for performance enhancement considerations, by simply introducing suitable state variables as follows

σf = e f ėf = -Γe f + Γe 1 (29) 
where Γ = Diag {γ i } is a design matrix that has to be specified according to the desired filtering action. The state feedback gain is then determined from the control design model

       ėa = A a e a + g a (x r , e a ) -g a (x r , 0) + B a (u a (e a ) -u r ) + (Ψ a (x r , e a ) -Ψ a (x r , 0)) ρ y a = σ f (30) e a =   σ f e f e   , A a =   0 I p 0 0 0 Γ 0 0 A   , B a =   0 p 0 p B   g a (x r , e a ) =   0 p -Γe f g(e + x r )   Ψ a (x r , e a ) =   0 p 0 p Ψ(e + x r )  
Indeed, the control design model structure (30) is similar to that of the error system [START_REF] Maatoug | Adaptive observer design for a class of mimo nonlinear systems[END_REF] and hence the underlying state feedback control design is the same. The adaptive output feedback control law incorporating a filtered integral action is then given by

                 ẋ = Ax + Bu (x) + g(x) + Ψ(x)ρ -θ∆ θ S -1 + ΥP Υ T C T C (x -x) ρ = -θP Υ T C T C (x -x) u(ê a , ρ) = ẋq r -g q (x r ) -Ψ q (x r )ρ + ν(ê a ) ν(ê a ) = -Γ -1 K c (λ q+2 B T a Sa ∆ aλ Λê a ) (31) 
with êa =

  σ f e f ê   (32) ∆ aλ = diag I p , 1 λ I p , . . . , 1 λ q I p , 1 λ q+1 I p (33) Λ = diag (I p I p Γ . . . Γ) ( 34 
)
where Sa is the unique symmetric positive definite matrix solution of the following Lyapunov algebraic equation

Sa + Sa Āa + ĀT a Sa = Sa Ba BT a Sa (35) 
and K c is a bounded design function satisfying inequality [START_REF] Gauthier | A simple observer for nonlinear systems -application to bioreactors[END_REF]. It can be easily shown that the resulting adaptive output feedback control system is globally stable and performs an asymptotic rejection of state and/or output step like disturbances.

ILLUSTRATIVE EXAMPLE

Let consider an academic tracking problem for the nonlinear double integrator described by

       ẋ1 = x 2 + -x 3 1 + sinω 1 t ρ 1 ẋ2 = (2 + tanh(x 2 ))u -atan(x 2 ) ρ 1 + cosω 1 t 1 + x 2 2 ρ 2 y = x 1
where the state vector is x = [x 1 x 2 ] T ∈ IR 2 and the functions Ψ and g specify as follows:

Ψ(x) =   -x 3 1 + sinω 1 t 0 -atan(x 2 ) cosω 1 t 1 + x 2 2   and g(x) = 0 0 .
ρ 1 and ρ 2 are constant unknown parameters. The value of w 1 used in simulation is 20. The desired output reference trajectory is generated from a second order generator with unitary static gain and two equal poles p 1 = p 2 = -5 which input sequence is shown by the figure 1. In order to achieve the control objective using the observer-based controller proposed in the paper, we have defined the auxiliary input v = ((2 + tanh(x 2 ))u. Then, the real input, applied to system is obtained as u = intensive simulation study has been made using all the design functions that has been described above. As the performances were almost comparable, one will present only those obtained with the design function given by the expression K c (ξ) = k c tanh(k o ξ). The design parameters have been specified as follows :k c = 1, k o = 7, λ = 4.51, τ = 50 and θ = 15. The obtained results are given in figures 2 and 3. Two remarks are worth to be mentioned. Firstly, the proposed controller achieve the required tracking performances . Secondly, the obtained results clearly show the good performances of the adaptive observer in providing satisfactory estimates of the states as well as of the unknown parameters.

CONCLUSION

A unified high gain state feedback control design framework has been developed to address an admissible tracking problem for a class of controllable and uniformly observable nonlinear systems. Such a framework has been particularly suggested thanks to the duality from the high gain system observation. The unifying feature is provided through a suitable design function that allows to rediscover all those well known high gain control methods, namely the sliding modes control. Moreover, the proposed state 

Remark 3 . 1

 31 Taking into account the structure of the matrices B et C and the fact that the following algebraic Lyapunov equationS + A T S + SA = C T C (15)has a unique symmetric positive definite solution S[START_REF] Gauthier | A simple observer for nonlinear systems -application to bioreactors[END_REF], one can deduce that equation (13) has a unique symmetric positive definite solution S which can be expressed as followsS = T S -1 T with T =      0p . . . 0 p I p . . . 0 p I p 0 p 0 p I p 0 p . . .

Theorem 4 . 1 Proof of Theorem 4 . 1 :

 4141 The control system corresponding to the adaptive output feedback controller (22)-(24) leads to an asymptotically exponentially vanishing tracking , i.e. lim t→∞ x(t)x r (t) = 0, provided that the assumptions A1 to A4 hold. one shall firstly show that the observation error converges exponentially to zero, i.e. lim t→∞ ε(t) = 0 and lim t→∞ ρ(t) = 0, and then conclude to the exponential convergence to zero of the tracking error estimate, i.e. lim t→∞ ê(t) = 0. The first part is established from a Lyapunov function using the error ε = ∆ θ ε and ρ. Define :η = ε -Υρ. One can show that:
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