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Abstract

This paper deals with action recognition in the context of video anal-
ysis based on the use of a sparse dictionary defined by the 3D spatio-
temporal representation of the actions. A 3D volume can be seen as a
set of gray-level 3D patches comprising 2D patches taken in successive
frames in order to capture a motion pattern. The goal of our proposal is
to recognize human actions within these 3D volumes whose 3D patches
are described with the dictionary atoms. To that end, we compute a mo-
tion signature by building a histogram based on the use of the atoms of
the dictionary. Paired with a SVM, we show that these signatures can
be exploited in the context of action recognition. This method has been
tested on the KTH database with good results.

1 Introduction

Action recognition research has developed a lot in the last years along with the
rise of video contents, especially because its applications are numerous in surveil-
lance, automatic video annotations or entertainment. Generally, it consists in
extracting features either from each pixel of the whole image (or successive
frames) [1], [2] or just from a few chosen pixels [3]. The goal is to classify some
human activities using the data extracted from videos.

Action recognition often involves a lot of data and because of that, some
techniques based on dictionaries and sparse representations [4], [5], [6] have
emerged in the recent years to deal better with this aspect. These methods rely
on the creation of a dictionary which can encode information contained in an
image.

For the analysis of human activities, motion plays a crucial role. Usually, a
motion descriptor can be computed (i.e Optical flow [7]) and the result is a 2D-
based patch representation of the motion. Instead, we choose to analyse motion
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directly by using the spatio-temporal volume of gray-level pixels to extend 2D
spatial patches without relying on an intermediary motion descriptor.

In this paper, we propose a method relying on a dictionary of 3D atoms (2
spatial dimensions and 1 temporal dimension) which can describe local motions
to classify image sequences of a few frames extracted from a video containing
human activities. The remainder of the paper is organized as follows: Section
2 presents the proposed action recognition method based on a dictionary of 3D
atoms. Section 3 describes the experimental results. Finally, some conclusions
are presented in Section 4.

2 Method framework

In this paper, we propose a method for human action recognition in the context
of 2D video sequences. We want to classify spatio-temporal volumes composed
of several frames and containing a human who perfoms a particular action.
We assume that these volumes are previously defined. Some examples of such
volumes can be observed on Figure 4.

The method described below builds a 3D patch-based dictionary from spatio-
temporal volumes which can represent motion. We define a 3D image patch as
a succession of 2D image patches (i.e the same patch and its variations through
the successive frames of a video). Hence, the dictionary can be considered as a
collection of patches called atoms (see Figure 1) which can be used to describe
any patches as a combination of these atoms.

The presented algorithm can be decomposed into 3 main steps : (i) Dictio-
nary learning, (ii) Signature computation and (iii) Classifier training.

2.1 Dictionary learning

We have a dataset of spatio-temporal volumes at our disposal from which we
can extract m 3D patches. From this set of 3D patches, we try to define the
most representative dictionary. Different methods exist in the literature to learn
dictionaries for sparse representation [8], [9]. We tested different dictionary
learning algorithms available in the state of the art [10] and we did not notice
any major difference in the results obtained by our method. Therefore, in our
proposal, we decided to use the well-known K-SVD algorithm [9] to carry out
the learning of the dictionary.

Starting with the notations, let p be a 3D patch of size (s × s × t), with s
being the size of a square patch in the spatial dimensions and t being the number
of frames considered in the temporal dimension. This patch p is reshaped and
treated as a column vector of size n = s2t : p = (ai)i∈[1,n] with ai a feature (gray

level) associated to the pixel i. Each patch is normalized as : pnorm = p−p̄
‖p‖2

where p̄ is the mean of the vector p and ‖ p ‖2 is the L2-norm.
Let Y = [p1

norm,p
2
norm, ...,p

m
norm] ∈ Rn×m be a a matrix composed of 3D

patches, with m being the size of the dataset and D = [d1,d2, ...,dNatoms ] ∈
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Rn×Natoms be the dictionary of Natoms atoms dk, where the number Natoms is
chosen empirically.

t = 1 t = 2 t = 3

Figure 1: Example of a 3D atom of (s × s × t) = (5 × 5 × 3) pixels from a
dictionary trained with the KTH database. This atom represents a horizontal
motion going from right to left.

The formulation of the dictionary learning algorithm is :

min
D,X
{‖Y −DX‖2F } such that ∀i ∈ [1,m] , ‖xi‖0 ≤ T0 (1)

where X = [x1,x2, ...,xm] ∈ RNatoms×m contains the coefficients of the decom-
position of Y using the dictionary D. xi = (αj)j∈‖1,Natoms‖ is a column vector
from X and ‖xi‖0 is the norm that counts the number of non-zero entry of the

vector. ‖ · ‖F is the Frobenius norm: A ∈ Rn×m, ‖A‖F =
√∑n

i=1

∑m
j=1 |aij |2 .

T0 is the maximum of non-zero entries.
K-SVD is an iterative algorithm performed in two steps on the dataset Y .

In the first step, the codes X are optimized with respect to a fixed dictionary
D (Sparse coding):

X(k+1) = arg min
X

{‖Y −D(k)X‖2F } (2)

such that ∀i ∈ [1,m] , ‖xi‖0 ≤ T0.
This step can be done using the Orthogonal Matching Pursuit (OMP) [11]
algorithm which is a greedy algorithm used for its efficiency.

The second step consists in the update of the dictionary D with respect to
X and is done according to (Dictionary update):

D(k+1) = arg min
D

{‖Y −DX(k+1)‖2F } (3)

The initial dictionary D(0) is initialized randomly with patches from the learning
set.

The output is an overcomplete dictionary D composed of Natoms whose
atoms can be seen as elementary motion patterns as shown in Figure 2.

2.2 Signature computation

This section explains how to compute the signature of a spatio-temporal volume
containing a moving object in a video sequence. Our implementation requires
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t = 1

t = 2 t = 3

Figure 2: Example of 25 atoms of size (s × s × t) = (5 × 5 × 3) pixels from a
learned dictionary of KTH database. The 3 images taken together can describe
elementary motion patterns.

a pre-processing step which consists in finding the localization of the humans
to define the spatio-temporal volumes. This step is necessary to narrow down
the region where motion occurs and can be done by using a pedestrian detector
such as [12]. A spatio-temporal volume V can be decomposed into a set of
overlapping 3D patches (see Figure 3). When the dictionary D is built, every
patch pnorm of the volume V can be described as a linear combination of atoms
dk (Equation 4).

pnorm =

(
Natoms∑
k=1

αk · dk

)
+ eerr (4)

where αk is the coefficient of atom dk and eerr is the reconstruction error.
The signature is defined as the histogram hV of the volume V characterizing

the motion inside the considered spatio-temporal volume. It is computed over
this spatio-temporal volume by summing the sparse coefficients αk of each atom
of the dictionary D for all the patches of the volume.

Formally, each bin hkV associated to the atom dk of the histogram is com-
puted according to :

∀k ∈ [1, Natoms] , h
k
V =

∑
pnorm∈V

|αk| (5)

with hV = (hkV )k∈‖1,Natoms‖.
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Figure 3: The spatio-temporal volume is decomposed into an overlapping set
of patches p which are also decomposed into a set of coefficients αk using the
learned dictionary D. These coefficients are used to build the signature which
is the histogram hV .

In order to handle the use of regions of different sizes, the histogram is then
normalized, such that :

Natoms∑
k=1

hkV = 1 (6)

As a consequence, a spatio-temporal volume can be represented using a his-
togram. An example of the resulting histogram is displayed in Figure 4.

2.3 Classifier training

The histogram (signature) hV described in section 2.2 can model the human
motion inside the volume V which is a region of a video and can consequently
be used to train a classifier in the context of action recognition using only a few
frames.

For the training, signatures are computed for labeled spatio-temporal vol-
umes. These signatures are then given as input to a classical multiclass SVM
classifier (Figure 5). The SVM is trained using a RBF kernel.

2.4 Spatial and temporal arrangement

Since a histogram representation discards the spatial and temporal dependen-
cies, decomposing the spatio-temporal volume into smaller ordered volumes can
give better results [13], [14]. Moreover, we do not want to increase the number
of parameters describing this spatio-temporal volume.

Therefore, in order to improve our representation, we divide the spatio-
temporal volumes into spatio-temporal cells (Figure 6). For 3D patches, cells
can be formed in both spatial and temporal dimensions. In the spatial dimen-
sions, we can divide the volume into equally distributed smaller volumes which
describe the motion at a specific location. In the temporal dimension, it can be
done by using multiple blocks of frames: for example, we can use nt = 2 volumes
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(a) t = 1 t = 2 t = 3

(b) t = 1 t = 2 t = 3

(c) (d)

Figure 4: Two examples of spatio-temporal volumes containing human actions
and the corresponding histogram (signature) computed with a dictionary of
Natoms = 150 trained with the KTH database: the spatio-temporal volume (a)
gives the signature (c) of a walking action and the spatio-temporal volume (b)
gives the signature (d) of a handwaving action.

by computing a signature for one volume made with t frames, coupled with the
signature of a second volume with t frames which results in a signature of twice
the size of the original signatures. The final signature used for classification is
the concatenation of the feature histograms computed for each spatio-temporal
cell. Experimentally, we found that using more cells yield an improved accuracy,
while the dimension of the features rises accordingly.

Figure 5: A classic multiclass SVM is trained using labeled signatures as input.
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(a) Spatial cells

(ns = 4)

(b) Temporal cells

(nt = 2)

Figure 6: Examples of ”decomposition” of a spatio-temporal volume into (a)
spatial and (b) temporal cells. Spatial cells are obtained by cutting the spatio-
temporal volume into ns = 4 parts. Temporal cells are obtained by juxtaposing
nt = 2 consecutive spatio-temporal volumes.

3 Experimentations

The proposed algorithm has been tested on the KTH database [15] which is a
large public dataset containing videos of 25 people executing 6 types of actions
(Walking, Running, Jogging, Boxing, Handwaving, Handclapping) in 4 different
scenarios. These scenarios include indoor and outdoor sequences, changes in
clothes and scale variations (Figure 7).

For the tests, we took 15 people divided in 2 groups, 10 for training / val-
idation and 5 for testing. This is the usual ratio with this dataset [15], [16].
For each video, the spatio-temporal volumes corresponding to the human are
manually annotated in a few frames, resulting in 10 computed signatures and
a dataset of about 3600 samples. During the testing, classification labels are
given for each sample.

Using this dataset, we aim to perform a classification of volumes using only a
few frames. Regarding the parameters of the algorithm, we took as the reference
the size (s×s×t) = (5×5×3) for the 3D patches, Natoms = 150 for the dictionary
size and T0 = 1 to define the number of atoms used to decompose one patch.

The dictionary is learned using the patches extracted from the spatio-temporal
volumes of one person from the dataset for all actions and all scenarios. The
SVM classifier is trained using a cross-validation paired with a gridsearch for
the parameters. The results presented below are the results of the classification
for the motion signature of each spatio-temporal volume taken independantly:
no label is given to the videoclips.

The parameters that can be changed in the method are the patch size (s×
s × t), the number of atoms in the dictionary Natoms, the number of non-zero
entry T0 used for the decomposition of 3D patches and the number of temporal
and spatial cells, nt and ns respectively, to take into account sequentiality and
spaciality. We explored many changes in the parameters and refinements to
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(a) Boxing (b) Handclapping (c) Handwaving

(d) Walking (e) Jogging (f) Running

Figure 7: Example of the actions performed within the KTH Dataset : ”Box-
ing”, ”Handclapping”, ”Handwaving”, ”Walking”, ”Jogging” and ”Running”.
Each action is executed in different conditions: indoor and outdoor, with clothes
and scale variations.

assess the limits of the proposed signature. The results for some of the setups
are given in Table 3.

First, for the choice of T0 we found that T0 = 1 gives out slightly better
results than T0 = 5 or T0 = 7. Moreover, the number of atoms contained in
the dictionary and the choice of the patch size also have an influence on the
results. We tested different patch sizes: t = 3 and t = 2 for the size in the
temporal dimension. The results are slightly better for t = 3. Another reason
is to emphasize the spatio-temporal volume aspect. For the spatial dimensions,
s = 9 and s = 5 lead to similar results. We evaluated 3 dictionary sizes:
Natoms = 50, Natoms = 150 and Natoms = 250. The classification performances
decrease a little for the smaller dictionary and do not vary much between the two
others. We found that Natoms = 150 is a good choice for this dataset because
the dimension of the signature increases rapidly when we use the division into
cells.

We remind that the final signature is the concatenation of the signatures
of the different cells (section 2.2). In the configuration, the spatio-temporal
volume is divided into ns = 4 regions in the spatial domain and into nt = 2
regions into the temporal domain resulting in 8 spatio-temporal cells in totals.
As a consequence, the final signature size is 1200. The choice of using temporal
and spatial cells greatly improved our result from 68.25% to 81.67%.

The confusion matrix given in Table 3 shows the repartition of classification
errors for the best configuration.

In [16], some classification results are given for the same dataset using various
spatio-temporal features. We are in totally different conditions in our experi-
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Natoms T0 Patch size nt ns Acc.
150 5 5× 5× 3 1 1 60.61%
150 1 5× 5× 3 1 1 68.25%
150 1 9× 9× 3 1 1 70.00%
50 1 5× 5× 3 1 1 65.92%
250 1 5× 5× 3 1 1 67.83%
150 1 5× 5× 3 2 1 66.75%
150 1 5× 5× 3 1 4 80.17%
150 1 9× 9× 3 1 4 79.25%
150 1 5× 5× 3 2 4 81.67%
150 1 9× 9× 3 2 4 75.33%

Table 1: Table containing the results of accuracy with different configurations
of the dictionary or the feature. As we can see, adding nt = 2 temporal and
ns = 4 spatial cells increases the classification accuracy since it gives back some
spatial localization information which is lost when building a histogram.

Walk Box Wave Clap Jog Run
Walk 0.92 0 0 0 0.10 0.01
Box 0.01 0.84 0.04 0 0 0
Wave 0.02 0.15 0.77 0.05 0 0
Clap 0 0.05 0.19 0.95 0 0
Jog 0.05 0 0 0 0.75 0.30
Run 0 0 0 0 0.15 0.69

Table 2: Confusion matrix for a dictionary learned on (5× 5× 3) patches, with
150 atoms and 8 spatio-temporal cells. Average accuracy for spatio-temporal
volume classification is : 81.67%.

ment since we only evaluated a subset of the KTH database and only a small
part of each video. However, in order to propose a comparison with these meth-
ods, we used the results of the volume classification as votes to label the videos.
The class label assigned to a video corresponds to the class which contains most
its volumes. In order to decide between 2 classes with equal number of votes,
the longest succession of volumes assigned to the same class is taken into ac-
count. Table 3 shows the results obtained. As we can see the accuracy in this
configuration increases: 85% instead of 81.67%. This result is due to the fact
that even if we have some false classifications within a given video, the majority
of frames are well classified resulting in a valid classification for the whole video.
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Methods Accuracy
HOG + Hessian 77.7%

HOG + Harris3D (detector) 80.9%
HOG/HOF + dense 86.1%

HOG/HOF + Harris3D (detector) 91.8%
Proposed method 85.0%

Table 3: Performance comparison for different features for the classification of
videoclips. The results for the other features are obtained in [16] using histogram
representations and Bag of Words model with a codebook size of 4000. For the
proposed method, video labels were given by using the label given to the volumes
as votes.

4 Conclusion

We have presented in this paper a new dictionary of 3D patches used to describe
human motions. This new system can decompose spatio-temporal volumes into
a motion signature that can be applied in the context of action recognition.
One advantage of this method is that the classification of an action can be
performed using only a reduced number of frames. This method has been tested
on the KTH database with good results. Please note that the parameter choices
presented in this paper depend on the database.

For future work, we are looking for dictionary reduction methods, to in-
crease the dictionary effectiveness and build more complex signatures without
increasing drastically their dimensions.
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