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Low frequency coupling and mode interference
in an inhomogeneous lattice of finite length
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Laboratoire de Mécanique et d’acoustique - CNRS, UPR 7051, Aix-Marseille Univ, Centrale Marseille,
Cedex 20, 13402 Marseille, France, pachebat@lma.cnrs-mrs.fr.

Summary

The propagation through a lattice made with two waveguides periodically coupled by perforations
is studied at low-frequencies. A degree of inhomogeneity is introduced with parametrically opened
diaphragms inserted into one waveguide of the lattice. Analytical results obtained thanks to the
fourth-order transfer matrix formalism illustrate three physical phenomena. The first phenomena
is the effect of the perforations, the second is the effect of the inhomogeneity of the lattice, and
the third is the effect of the interference between propagating modes when the system have finite
length. These results give analytical expressions for the insertion loss, the characteristic impedance
or propagation constants, that can be of practical interest for understanding and designing non local
acoustic treatments for automotive and turbofan engines. The cases of a strongly inhomogeneous
lattice and almost homogeneous lattice and their transition to homogeneous and branched resonator

cases are discussed.

PACS no. 43.20.Mv, 43.20.Hq

1. Introduction

This work aims to describe the acoustic propagation
at low frequencies in a system of two coupled waveg-
uides, with a particular focus on understanding the
effect introduced by inhomogeneity of the lattice, that
is made of two waveguides filled with different propa-
gation media. The coupling is carried out periodically,
with lateral perforations disposed regularly in the ax-
ial direction of the waveguides (see Fig.1). This initial
system was chosen to represent by means of a discrete
model, a variety of situations encountered in practice
for noise mitigation by wall treatments for automotive
exhaust and aircraft turbofan engine nacelles.

The analytical model for an elementary cell of the
periodic lattice and for a lattice of finite length is de-
tailed in [1]. Conventional tools for propagation in pe-
riodic media [2] make possible to establish the analyt-
ical expressions that characterize an elementary cell of
the inhomogeneous lattice (eigenvectors, eigenmodes,
and associated characteristic impedances, phase ve-
locities ...). In the following, expressions for the
fourth-order transfer matrix and the dispersion equa-
tion of the lattice are recalled in section 2 and 3. The
coupling between the two waveguides by means of lat-

(c) European Acoustics Association

eral perforations is described rigorously by a perfora-
tion matrix [3].

By introducing boundary conditions at the ends of
the lattice, the influence of the properties of one ele-
mentary cell on the potential noise mitigation (inser-
tion loss) of a lattice of finite length is also illustrated.

waveguide @

perforation / waveguide @
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Figure 1. Inhomogeneous lattice, with two waveguides
(with different propagation media), periodically coupled
by lateral perforations

Starting from well known (and extreme) lattice con-
figurations used as references, namely coupled waveg-
uides filled with air (totally homogeneous lattice) and
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Helmbholtz resonators branched on Waveguide 1 (to-
tally inhomogeneous lattice), the discrete model is
used to unveil how the degree of inhomogeneity mod-
ifies the properties of the lattice and its associated
insertion loss. The degree of inhomogeneity of the lat-
tice is introduced here by means of parametrically
opened diaphragms inserted into Waveguide 2. The
cases of a strongly inhomogeneous lattice and almost
homogeneous lattice and their transition to extreme
(references) case are discussed.

2. Fourth order transfer matrix of one
cell of a periodic lattice

We consider two waveguides periodically coupled
along their axes by lateral perforations as shown in
Fig.1. In this section, we write the transfer matrix
of an elementary cell (of length 2[) of the periodic
lattice. The two waveguides are filled with different
propagation media, and the resulting lattice is called
an inhomogeneous lattice.

Kergomard et al. [3] showed that coupling between
plane waves in guides 1 and 2 introduced by a lateral
perforation situated at a given abscissa x,, can be
described in an exact manner by a perforation matrix
of fourth order. At a given frequency, the plane wave
amplitudes of the acoustic pressures and velocity on
the left of a lateral perforation

_ (Vi) _
= (Vi) -

can be related to the same quantities on the right
Vg of the perforation, using a fourth order perforation
matrix P in order to write:

viL , (1)

V. =Pr Vgi. (2)

The matrix Pr takes the form [3] (anti-symmetrical
orientation):

Pr = (’71 + 'YQM) 72 (I - M) (3)
NnI-M) (v2+mM) )’
with
Sl 2 2ZaY9 1 Yil
p— 7’ M p— I —_— s
71,2 Sl+S27 +1_Zayvs <Za_1 1 >7

where S; and S5 are the cross sections of the waveg-
uides, and Z, and Y introduce respectively the series
(specific) impedance and shunt (specific) admittance
of the lateral perforation. I is the second order iden-
tity matrix.
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Figure 2. Cylindrical Lattices of finite length: inhomoge-
neous lattice (top), branched Helmholtz resonators with
closed cells in Waveguide 2 (center) and homogeneous lat-
tice (bottom).

The propagation of plane waves along the uncou-
pled portion of the waveguides, i.e. between abscissa
Znt1 and z, (length 21, see Fig.1), is described by a
classical fourth order transfer matrix 7

Ay By 0 0

_ T10 _ O1D10 0
T‘(o T2>_ 0 0 Ay By |~ @

0 0 Cy Dy

The complete transfer matrix relating the plane
wave amplitudes on the left of two successive perfo-
rations of the periodic lattice (see Fig.1) is written as
the product of the transfer and the perforation ma-
trix:

Vin = PrT Vi1 (5)
(and also VR, =T PF Vrnt1)

Since the expressions for the transfer matrix 7 and
the perforation matrix Pr given above are general,
they can describe propagation at low frequency in a
great variety of physical situations. For instance situa-
tions where Waveguides 1 and 2 are non reciprocal (for
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instance by the presence of flow), exhibit viscothermal
losses (equivalent fluid modeling a porous material),
or include discontinuities like diaphragms (as for ex-
ample in [4]).

3. Dispersion within the reciprocal
periodic lattice

Kergomard and Pachebat [1] showed that thanks to
the block-wise expressions of the perforation matrix
(Eq.3) and the transfer matrix (Eq.4), the eigenvec-
tors and eigenvalues of the transfer matrix Px7 can
be obtained analytically.

In the following, the lateral perforations radius is
supposed to be small compared to the wavelength.
The series impedance associated to anti-symmetrical
profile of the flow velocity across the perforation can
be ignored, by choosing Z, = 0 [3] in the expression of
the perforation matrix (Eq.3) . Under this particular
assumption, the characteristic polynomial det(PzT —
AZ)=0 gives the dispersion equation [1]

1 - B By
Z*”\ {72A1+71A2] ) (6)

where A 5 = det(T12 — AI) = A — A(A12 + Dyo) +
det T 2 and I is the identity matrix of order 2.

In the following, we also assume that the waveg-
uides are symmetrical and reciprocal. These physical
properties imply for the transfer matrices of Waveg-
uides 1 and 2: Ao = Dio and det(Ti2) = 1.
Thus we can rewrite the dispersion equation of or-

der four in A (Eq.6), as a second order polynomial in
cosh = (A +1/X)/2:

2 B By
— 7
Y, coshl'— A, +COShF*A2’ (™)

where Y, = 2Y,5152/(S1 + S2) is the acoustic admit-
tance of the lateral perforation,and Bi s = B12/51 2.

The discriminant A of the quadratic equation in
coshT' (Eq.7) can be written by defining a Coupling
coefficient C, as follows:

B, — By
A = (A —-A)?|1+2=——="C+C?
(4 2) B:1 + Ba
1., B+ B,
Wherec—§nm . (8)

The two solutions of the dispersion equation (Eq.7)
are:

cosh = 3 (A1 + Ay
+ %Yp @1 +§2] - \/E>
coshIV = % (A1 + A ) 9)

+ 1%, [B1 + Ba] + VA)
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Nb of cells n. 15
Nb of pert/cell n 11
Cell Length 2! 8.510~% m
Guide 1 radius 7 254102 m
Guide 2 radius 79 5.0810~2 m
Perf. radius r, 1.25107 3 m

Perf. open ratio o 2.1

Diaph. open ratio o4  [0.08;0.8]
Diaph. radius 74 1.2510? m
Nb of diaph./cell ng [1;10]

Table I. Geometrical parameters of the lattice shown in
Fig.2

The first eigenmode coshI' corresponds to an aver-
age plane mode propagating within the lattice with
no influence of the lateral perforations (at any ab-
scissa in the lattice, pressures within Waveguides 1
and 2 are equal in amplitude and phase). The second
eigenmode coshI" is called the flute mode (pressures
within Waveguides 1 and 2 are equal in amplitude
and opposite in phase) [3, 1]. Expressions for the flute
mode can be found for a continuous model in [5] and
[6]. The flute mode is always strongly evanescent at
very low frequency (large Y},). The strong coupling be-
tween Waveguides 1 and 2 occurs when the coupling
coefficient C (Eq.8) is large: the media within Waveg-
uides 1 and 2 are not very different (A; — A5 is small),
or when the perforation effect is strong (large V).

After some algebra (see [1] for details), and start-
ing from the analytical expressions of the eigenvectors
and eigenvalues of the transfer matrix Pz7T of one cell,
it is possible to obtain analytically the transfer ma-
trix (P£T )™ for a periodic set of n, cells, to take into
account the boundary conditions of a finite length lat-
tice (via the expression of (Pz7)™ as an impedance
matrix), and to obtain the expression of the inser-
tion loss of the finite length lattices represented in
Fig.2. The analytical approach proposed, in addition
to providing a physical interpretation of the results,
avoids numerical problems that usually appear when
one eigenmode is strongly evanescent.

4. Application to an automotive muf-
fler

In order to illustrate the effect of inhomogeneity of
the lattice on the propagation and attenuation at
low frequencies, we apply the above results to a par-
ticular geometry shown in Fig.2 (top). This geom-
etry includes diaphragms within Waveguide 2. The
diaphragm opening is used as a parameter in order
to explore a wide variety of situations. With no di-
aphragms, the lattice is homogeneous (Fig.2, bottom),
and the geometrical dimensions (see Tab.I) are cho-
sen according to the long resonator studied numer-
ically by Sullivan and Crocker [7]. On the opposite,
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Figure 3. Properties of the two eigenmodes of an elementary cell of the strongly inhomogeneous lattice (o4 = 0.08):
solutions of the dispersion equation (left), characteristic impedance (center) and relative phase velocity (right). Plane
mode (marker o) and flute mode (marker <). Filled marker indicate the stop band [F; ; F;"] (no propagating eigenmodes).
Solutions for two extreme lattice configurations are shown for reference: homogeneous lattice (o4 = 1, dashed and dash-
dot lines), and branched Helmholtz resonators (o4 = 0, solid line).
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Figure 4. Properties of the two eigenmodes of an elementary cell of the almost homogeneous lattice (o4 = 0.8): solutions of
the dispersion equation (left), characteristic impedance (center) and relative phase velocity (right). Plane mode (marker
o) and flute mode (marker <»). Filled marker indicate the band [F;; F, | with two propagating eigenmodes. Solutions
for two extreme lattice configurations are shown for reference: homogeneous lattice (04 = 1, dashed and dash-dot lines),
and branched Helmholtz resonators (o4 = 0, solid line).

with totally closed diaphragms, the lattice is a series
of branched resonators (Fig.2, center). But thanks to
the approach presented above, we can also explore
two intermediate situations by varying the diaphragm
opening: an almost homogeneous lattice (wide open
diaphragms) and a strongly inhomogeneous lattice (di-
aphragms with very small opening).

Waveguides 1 and 2 are co-axial cylinders filled with
ambient air. The classical transfer matrix for a plane
mode (pressure-velocity) along one uncoupled portion
of length [ of lossless Waveguide 1 or 2 (no lateral
perforation) is:

( cos(kl)

b1z = | Sgin(kl) /20

)

3 Z9 sin(kl)
cos(kl) )

where Z0 = poco and k = w/cy are the characteris-
tic impedance and wavenumber of the medium (air)

filling Waveguides 1 and 2, with pg its density and ¢
its sound velocity.

The transfer matrix T; and Ty of Eq.4 are given
by Ty = (t1)?, and Ty = toDty where the acoustic
mass impedance Z; in the matrix

D:((l)Zld> (10)

introduces the inhomogeneity due to the pres-
ence of the diaphragms within Waveguide 2. The
impedance of one diaphragm is chosen as Z; =

JwpSa/2rg (1 — \/WTZ/SQ). The open ratio of the di-

aphragms for one cell is defined as o4 = ngr3/(r3—r?)
where ng4 is the number of diaphragms around the cir-
cumference of one elementary cell. Similarly, for the
lateral perforations, the impedance 1/Y; of one per-
foration is chosen as 1/Y; = jwp/2r . The open ratio
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Figure 5. Insertion Loss of the strongly inhomogeneous lat-
tice (o0q = 0.08) of finite length. Black line indicate a stop
band (no propagating eigenmodes). Solutions for two ex-
treme lattice configurations are shown for reference: ho-
mogeneous lattice (04 = 1, dash-dot line), and branched
Helmholtz resonators (o4 = 0, thin solid line).
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Figure 6. Insertion Loss of the almost homogeneous lat-
tice (o4 = 0.8) of finite length. Black line indicate a band
with two propagating eigenmodes. Solutions for two ex-
treme lattice configurations are shown for reference: ho-
mogeneous lattice (04 = 1, dash-dot line), and branched
Helmholtz resonators (o4 = 0, thin solid line).

of the lateral perforations for one cell is defined as
os = nsr?/(4lr1) where ng is the number of lateral
perforations (all situated at z,, (n = 1l..n.)) of ele-
mentary cell number n.

5. Results

We first examine how two classical configurations
can be interpreted thanks to the proposed approach.
The first configuration is an homogeneous lattice and
the second is a lattice with Helmholtz resonators
branched on Waveguide 1. Then we will study the
effect of inhomogeneity of the lattice on the propaga-
tion and insertion loss at low frequencies.

Low frequency coupling and mode interference in a finite length lattice

At the limit where propagation media are identical
within Waveguides 1 and 2 (A; = A,, Fig.2, bottom),
C tends to infinity and the two eigenmodes (Eq.9)
reduce for a homogeneous lattice to the following ex-
pression:

{ coshl' =4 (11)
coshIY = A+ %Y;,(Bl + Bs)’

The corresponding homogeneous plane mode T’
and homogeneous flute mode T are represented in
Fig.3 (left) with dashed lines and dash-dot lines
respectively. Analytical expressions for the normal-
ized characteristic impedance of the plane mode
Zc(w)/(poco/S1) and the flute mode Z/(w)/(poco/S1),
and their relative phase velocity co/vg(w) =
Im(T)co/(2lw) and co/vj(w) = Im(I")co/(2lw) can
also be obtained (not presented). Their variation is
shown in Fig.3 (center) and Fig.3 (right), using the
same dashed and dash-dot lines. Fig.3 shows, as al-
ready reported in [1], that a homogeneous lattice is
a particular case with a non dispersive plane mode
(co/ve(w) is constant) which is always propagating (-
1<coshT' < 1). The flute mode coshI” tends asymp-
totically, when increasing frequency above its cut-on
frequency F,f = 1803Hz (F) is given by coshI” = 1),
towards physical characteristics similar to the plane
mode. This similarity for f > F, between homoge-
neous plane mode and flute mode results in longitu-
dinal interferences, driven by the total length of the
finite lattice, as detailed in [1], associated to resonant
attenuation peaks of the insertion loss of the homoge-
neous lattice for f > F.F (Fig.5, dash-dot line).

In the case of branched Helmholtz resonators, the
diaphragms are totally closed. The impedance Z; in
Eq.10 tends to infinity and A; <« Ay , By < Bs. The
unique mode propagating through the lattice is given
by:

1
coshF:Al—l—EBl, (12)

where Z;, = 1/Y, + B2/2(Ay — 1) is the input
impedance of the Helmholtz resonator of one cell of
the lattice (Fig.2, center). The series of branched res-
onators acts as a local reacting treatment on Waveg-
uide 1, with a maximum effect (see Fig.3 left, thin
solid line) at the Helmholtz resonance F, = 912
Hz (given by Z, = 0). The lattice exhibits a stop
band with |coshT'| > 1 (when ignoring viscothermal
losses) within the interval [F},; F,/], that corresponds
also to a very small relative characteristic impedance
Ze(w)/(poco/S1) (see Fig.3 center, thin solid line) and
relative phase velocity c¢/vg(w) (see Fig.3 right, thin
solid line). The existence of this stop band (no prop-
agating mode) induces a cumulative attenuation: the
insertion loss shown in Fig.5 (thin solid line) is di-
rectly proportional to the number of elementary cells
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of the finite lattice (here n. = 15, see Tab.I), and is
very small outside the stop band.

In the case of a strongly inhomogeneous lattice, the
open area of the diaphragms between two neighboring
cells of the lattice represents only 8% of Sy (that is
o4 = 0.08). At low frequencies and for the plane mode
(marker o), Fig.3 shows that the propagation constant
coshT" Fig.3 (left), the characteristic impedance Fig.3
(center), and the relative phase velocity Fig.3 (right),
are very similar to the branched Helmholtz resonator
solution (thin solid line). Conversely, at frequencies
above F.f(given by coshI” = 1), the flute mode
(marker <) is very close to the branched Helmholtz
resonator solution (thin solid line). This small amount
of aperture (8%) into the resonators wall is sufficient
to reduce dramatically the stop band from [F},; F]
(branched Helmholtz resonators) to [F, ; F,| (where
F," is given by coshI' = —1). The stop band is in-
dicated with black filled markers on Fig.3. Concern-
ing the insertion loss (Fig.5), the strongly inhomoge-
neous lattice (thick line) differs significantly from the
branched Helmholtz resonator case (thin solid line)
only for frequencies below F, . In particular within
the stop band [F, ; F;"], the two insertion losses are
very close, and the strongly inhomogeneous lattice
may probably be described as a locally reacting liner,
at least for frequencies within or close to the stop
band. This point might be further investigated.

If one continues to open the diaphragms (increasing
04), the cut-off frequency of the plane mode F,™ in-
creases, as opposed to F which does not depend on
oq. Fy, tends to infinity for 100% opened diaphragms
(homogeneous lattice). For an almost homogeneous
lattice with an open area of the diaphragms that
represents 80% of Sy (that is o4 = 0.8), F,~ is sit-
uated above the maximum frequency under study
Friae = 3500 Hz. Below Fj,., the system has no
stop band. It exhibits two propagating eignemodes
within [F.F; Fpna.) (indicated with black filled mark-
ers on Fig.4), as for a homogeneous lattice (dashed
and dash-dot lines). But contrary to a homogeneous
lattice, even with diaphragms almost totally opened
(04 = 0.8), the plane mode (marker o) is dispersive:
¢o/ve(w) not is constant, see Fig.4 (right). The prop-
agation constant and the relative phase velocity of
the plane mode and the flute mode (marker ) are
not close to each other. As a consequence, the reso-
nant attenuation peaks of the insertion loss above F
observed for the homogeneous lattice (Fig.6 dash-dot
line), due the longitudinal interference of two similar
eigenmodes, are strongly reduced in the case of the
almost homogeneous lattice (thick line).

6. Conclusion

The particular type of inhomogeneity (diaphragms)
used here strongly affects the phase velocity of the
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plane eigenmode, and also modifies the stop band and
two-modes band of the infinite lattice.

From a practical point of view, this approach il-
lustrates how the inhomogeneity of the infinite lat-
tice modifies the insertion loss of the lattice of finite
length. It appears that globally, the insertion loss of
both homogeneous lattice and branched Helmholtz
resonators, is lowered when diaphragms are intro-
duced.

As a consequence, even though diaphragms was a
simple way to introduce parametrically the inhomo-
geneity within the lattice, it may not be a practi-
cal way to improve the performance of the lattice as
an acoustic treatment. Nevertheless, lattice configu-
rations including other types of inhomogeneity like
for instance porous materials (described as equivalent
viscothermal fluid) are in the scope of the method.
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