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Atomistic tight-binding calculations show that two-dimensional topological insulators can be obtained using
Ge or Ge/Si nanotechnologies. The strong quantum confinement is used to open energy gaps in the valence
band of artificial graphene made of Ge. These gaps are topologically nontrivial due to the combination of the
honeycomb nanogeometry and the spin-orbit coupling. Gap widths above 10 meV can be obtained using realistic
structures. With light effective masses, a strong spin-orbit coupling, and a high compatibility with microelectronic
processes, Ge is an excellent substrate for the fabrication of spintronic devices based on topological insulator
states.
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I. INTRODUCTION

Topological insulators (TIs) are of considerable interest
for their potential applications in spintronics and quantum
computation because their boundaries are characterized by
topologically protected gap states with helical spin polarization
[1,2]. These edge states carry dissipationless spin currents,
leading in two-dimensional (2D) systems to the quantum spin
Hall (QSH) effect which is realized by the spin-orbit (SO)
coupling instead of a magnetic field in the QH effect. The
QSH effect was initially predicted for graphene [3] but the
SO coupling is too small to give measurable effects [4]. Soon
after, the prediction of the QSH effect in HgTe quantum wells
[5] led to the first observation of a 2D TI state of matter [6].
Nowadays, many other 2D TIs are investigated, such as thin
films of Bi [7], Sn [8,9], or Ge(BixSb1−x)2Te4 [10], silicene
and its Ge analog [11], GaAs/Ge/GaAs quantum wells [12],
and inverted InAs/GaSb quantum wells [13,14]. It was also
shown that 2D TIs could be made from semiconductors on
which a potential with hexagonal symmetry is superimposed
[15]. Very recently, TI properties have been predicted in
honeycomb superlattices of CdSe nanocrystals [16]. However,
the applications in spintronics of 2D TIs are still being awaited
even if sophisticated devices have been recently made from
HgTe quantum wells [17]. One likely reason for the small
number of applications is the lack of 2D TIs compatible with
standard Si microelectronic technology which could foster the
fabrication of devices.

The present work demonstrates that 2D TIs with non-
trivial gap widths above 10 meV can be made using Ge or
Ge/Si nanotechnologies. The strategy is to realize artificial
graphene [18,19] in which the carbon atoms are replaced by
semiconductor materials with strong SO coupling [15,16]. Ge
is a material of choice with a SO splitting of 296 meV at
the top of its valence band. I present atomistic tight-binding
calculations of the electronic structure of thin Ge and Ge/Si
sheets with honeycomb nanogeometry. In the case of Ge/Si
materials, the effects of strains on the electronic structure
are included. It is shown that the valence band of these
superlattices is composed of minibands and the gap between
the two highest minibands is topologically nontrivial in a wide
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range of geometrical configurations. The presence of a second
nontrivial gap is also possible depending on geometrical
factors. The topological properties are assessed by calculations
of the Z2 topological invariant (hereafter D) [3,20]. This is
confirmed by the presence of helical edge states in ribbons
built from the superlattices. In a context where Ge and Ge/Si
technologies receive growing attention [21], the present work
demonstrates their interest for nonconventional applications
based on TI properties.

II. METHODOLOGY

A. Geometry of the superlattices

Two types of honeycomb superlattices have been studied
(Fig. 1). The first one is a direct analog of graphene in which
each carbon atom is replaced by a spherical Ge nanocrystal.
The diameter d of the spheres is equal to the honeycomb lattice
spacing a; i.e., neighbor spheres are tangential. Each pair of
neighbors is connected by a horizontal cylinder of Ge whose
diameter is a fraction of the sphere diameter (30%–100%).
All Ge atoms contained in the spheres and the cylinders are
included in the structure and are positioned at the same atomic
sites as in bulk Ge. Depending on the size, it results in slightly
faceted shapes. The cylinders are barely visible in Fig. 1(a)
because neighbor spheres are tangential but these cylinders
play an important role by determining the coupling between
nanocrystals. The free surfaces are passivated by hydrogen
(not shown). We will see in the following that these structures
exhibit very interesting 2D TI properties.

Inspired by this model system, I consider a second type of
superlattice which could be fabricated using microelectronic
Ge/Si technology including nanoscale lithography. These
superlattices can be seen as assemblies of parallel Ge cylinders
organized on a honeycomb lattice [Fig. 1(b)]. The axes of
the cylinders are perpendicular to the 2D lattice. The space
between the cylinders is filled with Si atoms. The length of
the vertical cylinders determines the thickness t of the active
material. A small passivating layer of Si is also added on each
side of the sheet (typically 0.6 nm). The Ge components of
the superlattices are thus fully surrounded by Si. The atomic
structure of the supercells is relaxed using Keating’s valence
force field model [22] as described in Ref. [23] to account
for the important lattice mismatch between Si and Ge (4%).
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FIG. 1. (Color online) Top view of honeycomb superlattices con-
sidered in this work (Ge atoms in yellow, Si ones in pink, a is the
lattice spacing). (a) First type: Assembly of Ge spheres (diameter
d = a = 4.4 nm) connected by horizontal Ge cylinders (diameter
dcyl = 0.5d). (b) Second type: Assembly of vertical Ge cylinders
(d = 1.1a = 6.6 nm, length = sheet thickness t = 4.8 nm), the space
between them being filled by Si. The bottom and top sides of the sheet
are covered by approximately 0.6 nm of Si (not shown for clarity).
For both types of superlattices, the vertical axis corresponds to the
〈111〉 axis of the zinc-blende crystal. The in-plane orthogonal 〈1̄10〉
and 〈11̄0〉 axes sustain the superlattice vectors.

The description of strain effects is required to predict band
structures with accuracy. However, the nontrivial topology of
the bands is not determined by these effects.

B. Tight-binding calculations

The electronic structure of the two types of superlattices is
computed using an atomistic tight-binding method. Each Ge
or Si atom is described by a double set of sp3d5s∗ atomic
orbitals including the spin degree of freedom. The orbitals are
assumed to be orthogonal and the matrix elements between
two orbitals are restricted to first nearest-neighbor interactions.
The Hamiltonian matrix is calculated using the tight-binding
parameters derived in Ref. [23] to describe electronic bands,
effective masses, and deformation potentials of bulk Si and
Ge. There is no free parameter in the calculations. As usual in
tight binding [24], the SO coupling is described by intra-atomic
Hamiltonian matrix elements in the p sector [23,25].

Due to the nanoscale geometry, the unit cell of the
superlattices contains a large number of atoms. For example,

there are 29 744 Ge (Si) atoms in the structure of Fig. 1(b),
meaning that its valence band is in fact composed of 4×29 744
filled bands (minibands). The nanogeometry induces periodic
scattering of the electronic waves, opening gaps at the center
and at the edges of the superlattice Brillouin zone [16,26,27],
but these gaps are only visible near the top of the valence bands
or the bottom of the conduction bands, where the effects of the
confinement are the stronger. In practice, only the minibands
in these regions close to valence/conduction band edges are
calculated using the numerical methods described in Ref. [28].

The Z2 topological invariant for the bands of interest is
calculated following the methodology proposed in Ref. [29].
D is given by a sum of terms calculated on a regular lattice in
the Brillouin zone. In any case, I have checked that the results
are converged for a mesh denser than 101×101 k vectors.
This approach works even for systems without inversion
symmetry, which is the case for the superlattices investigated
here. Experimentally, the realization of structures presenting
inversion symmetry is unlikely since it would require control
of the geometry at the atomic level.

In the present work, only the results concerning the valence
bands of the superlattices are presented since the conduction
bands which are weakly influenced by the SO coupling have
a trivial topology. In the case of Ge/Si superlattices, the Si
component forms a large energy barrier (0.68 eV) for the
holes which are therefore localized in the Ge component. By
convention, in the following, the zero of energy is fixed at the
top of the valence band of bulk Si.

III. SUPERLATTICES OF Ge NANOCRYSTALS

A. Band structure and topological properties

Typical results for honeycomb superlattices of Ge nanocrys-
tals are shown in Fig. 2. As discussed above, the electronic
structure is characterized by multiple minibands but only
the highest valence minibands are presented [Fig. 2(a)]. The
minimum of the conduction bands (not shown) is at 1.70 eV, the
quantum confinement opening a large energy gap of 1.18 eV.
The two highest valence minibands, denoted band 1 and band
2 in Fig. 2(a), are in fact doublets of quasidegenerate bands.
The origin of this almost invisible splitting within each doublet
will be discussed in Sec. III B. The band 1 is characterized by
a unitary Z2 topological invariant, meaning that the minigap
below (hereafter first gap) is topologically nontrivial. The gap
(hereafter second gap) between bands 2 and 3 of Fig. 2(a) is
also nontrivial as the Z2 topological invariant for the ensemble
of bands 1–2 is once again unitary.

The nontrivial character of the gaps between bands 1,
2, and 3 is confirmed by Fig. 2(b) showing the band
structure of armchair and zigzag ribbons made from the same
superlattice. The wave vector k is along the direction of the
ribbon. The manifolds of bands situated in the energy regions
corresponding to bands 1, 2, and 3 of the 2D superlattice
[Fig. 2(a)] basically come from the folding of the 2D bands
into the 1D Brillouin zone. In the gaps, there are topologically
protected edge states, as found for graphene with SO coupling
[3,30]. The wave functions corresponding to these states are
localized on the nanocrystals at the edges (Fig. 3) and their
spin component is mainly oriented perpendicular to the lattice
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FIG. 2. (Color online) Results for honeycomb superlattices of spherical Ge nanocrystals. (a) Highest valence bands for the superlattice
described in Fig. 1(a) versus k along the path shown in the inset. (b) Highest valence bands in a ribbon made from the same superlattice
(left, blue: 20 nanocrystals per unit cell, armchair edge geometry; right, red: 12 nanocrystals per unit cell, zigzag edge). l is the length of the
supercell. (c) Solid lines: Width of the first gap between bands 1 and 2 as a function of the nanocrystal diameter d for dcyl = 0.3d (+, red),
0.4d (×, blue), 0.6d (�, magenta). Dotted lines: Same for the second gap between bands 2 and 3. (d) Width of the first (red solid line, +) and
second (blue dotted line, ×) gap versus dcyl/d .

(>97%), the direction of the spin being inverted for motions
in opposite directions (k → −k) [16].

The small splitting between the edge states in the case of
the zigzag ribbon [Fig. 2(b)] is induced by a small anisotropy
between the left and right sides of the ribbon (the armchair
ribbon is built symmetric). This anisotropy was introduced on
purpose; atoms were removed from nanocrystals at one side of
the ribbon. This shows that edge states are obtained whatever
the situation, thanks to their topological protection. The wave
function shown in Fig. 3 is localized on one side of the ribbon
due to the asymmetry. In the symmetric case (not shown),
it is equally shared between left and right sides (see also
Ref. [16]).

Figure 2(c) shows that a width of the first gap above 10 meV
can be obtained for realistic sizes. The width of second gap
is slightly smaller. When the diameter dcyl of the connecting
cylinders is changed, the width of the first gap saturates at a
maximum for dcyl/d ≈ 70%–90% [Fig. 2(d)].

B. Origin of the nontrivial topology

In bulk Ge, the electronic bands at the top of the valence
band are derived from Bloch states of Ge p orbitals. They
form heavy-hole, light-hole, and split-off bands, the splitting
between the latter and the two others being induced by the SO
coupling. In superlattices, the nanogeometry induces complex

FIG. 3. (Color online) 2D plots of the wave function of a edge state calculated at k = 0.4×2π/l for the zigzag ribbon considered in Fig. 2(b)
(energy of the state equaling approximately 0.49 eV). The plot is restricted to a single unit cell of the ribbon. The vertical axis corresponds to
the direction of the ribbon. The white dots indicate the atoms.
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FIG. 4. (Color online) Superlattice of Ge nanocrystals described in Fig. 1(a): Highest valence bands calculated for a varying percentage of
the nominal SO coupling on the Ge atoms: 0% (a), 10% (b), 50% (c), 100% [Fig. 2(a)].

mixing between these bands. In order to understand the origin
of the nontrivial gaps in a simple manner, it is instructive to
look at the variations of the band structure of superlattices
when the SO coupling on each Ge atom is tuned between zero
and its nominal value (its value derived for bulk Ge). In the
following, we consider successively the situations of vanishing
(Sec. III B 1), weak (Sec. III B 2), or strong (Sec. III B 3) SO
coupling. Results are discussed in Sec. III B 4.

1. Superlattice band structure without SO coupling

In the absence of SO coupling [Fig. 4(a)], there is no more
gap between the minibands. There are several Dirac cones at
the K points. The highest band (1) is almost totally flat and is
connected to the second one (2) just at �. This unusual behavior
can be understood from the electronic structure of individual
Ge nanocrystals which, in the absence of SO coupling, is
composed of two sets of sixfold-degenerate (including spin)
states with S and P envelope wave functions. It is recalled that,
in semiconductor nanocrystals, the eigenstates near band edges
can be approximately written as products of periodic Bloch
states (here of p character) by envelope wave functions (here
of S or P character) [25]. For a nanocrystal diameter of 4.4 nm,
the P level is about 10 meV below the S level. In superlattices,
due to the coupling between neighbor nanocrystals, S and P

bands are formed and their respective energy positions are
shifted in such a manner that the bands shown in Fig. 4(a) are
mainly the P ones.

The results of Fig. 4(a) are well described by a twelve-band
effective tight-binding model in which each nanocrystal is
treated as one site on a honeycomb lattice and in which
there are three spin-degenerate P states per nanocrystal
(Appendix A) [16,31,32]. We deduce from this effective model
that bands 1–3 [Fig. 4(a)] are derived from the Px,y states
where xy is the lattice plane. Band 1 is flat due to destructive
interferences of electron hopping induced by the honeycomb
geometry [31,32]. The two bands characterized by a Dirac
cone at ∼0.38 eV are formed by the Pz states perpendicular to
the lattice.

2. Superlattice band structure for weak SO coupling

When a small amount of SO coupling is introduced in the
atomistic tight-binding calculation, e.g., 10% of the nominal
value on each Ge atom [Fig. 4(b)], gaps are formed, at �

between bands 1 and 2, and at the Dirac cones at K . The

SO coupling also induces avoiding crossings between Px,y

and Pz bands. Calculations of the Z2 topological invariant
show that the gaps between bands 1, 2, and 3 are nontrivial.
Interestingly, topological gaps are found for even smaller
percentages of the SO coupling. This can be explained as
follows. Appendix A shows that band structures obtained
using the atomistic approach are very well reproduced by
the effective tight-binding model in which an effective SO
coupling λL · S is introduced. L (S) is the P orbital (spin)
angular momentum. λ does not coincide with its atomic value
on Ge p orbitals but is an effective value influenced by the
quantum confinement and band mixing. Recently, Zhang et al.
[33] have performed a deep theoretical investigation of the
model system of Px,y orbitals on a honeycomb lattice with SO
coupling. In agreement with our findings, they demonstrate the
nontrivial topology of the highest bands whatever the intensity
of the SO coupling. The reason is that the gaps at � and K are
entirely due to the SO interaction, at least in the absence of
sublattice asymmetry, which is the case here.

3. Superlattice band structure for strong SO coupling

When the SO coupling is increased in the atomistic tight-
binding calculation [50% in Fig. 4(c), 100% in Fig. 2(a)], the
band structure is modified in such a manner that it cannot
be described by the effective model. However, gaps remain
between bands 1 and 2, as well as between bands 2 and 3.
Therefore, when the SO coupling varies from 0% to 100%
(excluding 0%), the topology of bands 1 and 2 is preserved.

4. Conclusions on the origin of the nontrivial topology

All these results show that the nontrivial topology of the
bands in superlattices of Ge nanocrystals comes from the
combined effect of three factors [15]: (1) the p character of Ge
valence bands combined with the P character of nanocrystal
envelope wave functions involved in the highest bands; (2)
the honeycomb lattice giving situations where the minibands
are in contact at single points, at K or �; (3) the opening
of gaps at these points by the SO coupling encoded as an
effective on-site term in the P sector [16,33]. Figures 2(c)–2(d)
show that the width of the nontrivial gaps strongly depends
on size and geometry. Indeed, the effective SO coupling (λ)
results from the subtle mixing of the light-hole, heavy-hole,
and split-off band states induced by the strong confinement in
the honyecomb lattice [15].
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Another consequence of the SO interaction is the Rashba
effect [34] induced by a small asymmetry of the superlattices
in the perpendicular direction (z) that coincides with the 〈111〉
axis of the zinc-blende crystal. This leads to a splitting of
the levels which are otherwise twofold degenerate, for each k
vector, except at �, K , and M [3,30]. However, this splitting
is found to be very small, always below 1 meV.

Appendix B explains the formation of the band structure
from another limit, when the nanocrystals are uncoupled but
the SO coupling is considered. All these descriptions of the
band structures in an effective tight-binding approach work
well because the electronic waves of the highest valence bands
(or lowest conduction bands) are strongly confined in Ge
spheres (see Ref. [16] for CdSe). In contrast, the nearly free
electron description of Ref. [15] applies when the honeycomb
pattern is induced by a weak, slowly variable potential that can
be treated in perturbation in a k · p framework.

An important prediction of the calculations is that the
nontrivial gaps are much larger in Ge than in CdSe super-
lattices [16]. The lighter effective masses for holes in Ge
imply enhanced confinement effects. Ge, characterized by
remarkably light effective masses [21] and strong SO coupling
in the valence band, is certainly one of the best conventional
semiconductors to get strong TI effects using nanostructural
engineering. Another interesting result is that band 2 [Fig. 2(a)]
is quite flat for this type of honeycomb nanogeometry. Flat
bands and nontrivial topology are key ingredients to realize
the fractional QH effect [35,36].

IV. Ge/Si SUPERLATTICES

These inspiring results motivated the study of the second
type of superlattices which could be made using Ge/Si nan-
otechnology. Results of atomistic tight-binding calculations
are presented in Fig. 5. In all the investigated configurations,
there is a well-defined nontrivial gap between the two
highest bands (1 and 2), exactly like for superlattices of Ge
nanocrystals. Once again, the nontrivial topology of the bands
is confirmed by a unitary D and by the presence of helical
edge states in the gaps of the ribbons. The second gap, between
bands 2 and 3, has a nonzero width when the thickness t of
the layer, i.e., the height of the cylinders, is small compared to
the diameter d of the Ge cylinders. A typical example of band
structure in this configuration is displayed in Fig. 5(a). In the
opposite case (t > d), the band 2 becomes very dispersive and
the second energy gap vanishes [Fig. 5(b)]. The variations of
the gaps with d and t [Fig. 5(c) and Fig. 5(d), respectively]
support this analysis.

The great similarity between the results obtained for the two
types of superlattices suggests that there is some flexibility in
the choice of the geometry of the Ge components, provided
that the honeycomb lattice is defined and there is a sufficient
coupling between neighbor Ge islands. It also shows that
strains do not have an important influence on the topology
of the bands if the gaps are preserved.

The width of the first gap is maximum when t ≈ d and
tends to increase with decreasing size (Fig. 5). However, a
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FIG. 5. (Color online) Results for Ge/Si superlattices as described in Fig. 1(b). (a) Highest valence bands for the superlattice characterized
by d = 1.1a = 6.6 nm, t = 3 nm. (b) Same but for t = 13.2 nm. (c) Width of the nontrivial gaps as a function of the diameter d of the cylinders
for t = 4.8 nm (+, red) and t = 7.2 nm (•, blue): gap between bands 1 and 2 (solid line), between bands 2 and 3 (dotted line). (d) Same but as
a function of the thickness t of the sheet for d = 6.6 nm (•, red) and d = 10.2 nm (�, blue).
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nontrivial gap of ≈10 meV can be obtained using feature size
of the order of 10 nm.

V. PROPOSITIONS FOR THE PRACTICAL REALIZATION
OF THE STRUCTURES

The realization of ten-nanometer size patterns in Ge or Si
using electronic lithography is challenging but possible. Hon-
eycomb superlattices of Ge could be obtained by patterning
thin Ge layers, for example using Ge-on-insulator technology
[21,37–39]. In addition, considerable progress has been made
in the formation of high-quality gate dielectrics on Ge to isolate
the structures [21].

Another approach would be to use a Ge/Si technology, for
example to start from a Si (or SixGe1−x) sample, to pattern
it, and to grow Ge in the cavities. Since Si and Ge have a
lattice mismatch of 4.2%, the growth of defect-free 2D layers is
problematic. However, the growth of nanostructured materials
with lower dimensionality is much more favorable because
the lattice misfit can be more easily accommodated due to the
new boundary conditions [40], as shown for Si/Ge nanowires
[41]. Another interesting approach would be to use the lateral
epitaxial growth of Ge on Si/SiO2 structures [42–44].

In order to observe the topological edge states using
transport measurements, the positioning of the Fermi level
in the first gap is required by filling the highest band with two
holes per unit cell (four holes for the second gap). A main
advantage of ordinary semiconductors is the ability to control
the carrier concentration with a high precision, allowing for
example to position the Fermi level between two Landau levels
and to observe the QH effect (another topological state) [1,45].

Two holes per unit cell correspond to a density of
≈1018 cm−3 for a = 10 nm and t = 7.2 nm, easily achievable
using electrostatic gating or doping [46]. Another possibility
is to use modulation-doped superlattices, as already demon-
strated for Ge quantum wells [47,48], for example starting
from a doped Si (SixGe1−x) layer. The generation of a hole
density of 1018 cm−3 is also possible using optical pumping
[49]. Finally, the edge states could be revealed using near-field
microscopy approaches [50], avoiding the need to position the
Fermi level in the gaps.

VI. CONCLUSION

In conclusion, it was shown that 2D TIs could be artificially
fabricated using Ge or Ge/Si nanotechnology. Honeycomb
superlattices of Ge with nanoscale geometry exhibit nontrivial
gaps in the valence band due to the quantum confinement
and the SO coupling. Ge/Si nanotechnology was already
considered as a promising way to manipulate the spin of holes
[51]. It should be a very interesting approach for the realization
of spintronic devices exploiting TI properties.
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APPENDIX A: HONEYCOMB LATTICE OF p ORBITALS
WITH SPIN-ORBIT COUPLING

This section describes the twelve-band effective tight-
binding model in which each nanocrystal of a superlattice
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FIG. 6. (Color online) Band structure for a model of p orbitals on
a honeycomb lattice with (blue solid line, λ = 6 meV) or without (red
dotted line, λ = 0) SO coupling. Parameters: Epx

= Epy
= 0.40 eV,

Epz
= 0.38 eV, Vppσ = 30 meV, Vppπ = −1 meV.

is seen as an “artificial” atom, as one site on a honeycomb
lattice. A similar model was investigated in depth in Ref. [33].
Figure 6 shows band structures calculated using this model
including three P orbitals (Px , Py , Pz) per site and for each
spin, P denoting the angular momentum of the envelope wave
function. The on-site energies in the tight-binding Hamiltonian
are Epx

(=Epy
) and Epz

, that are not equal because the Pz states
perpendicular to the lattice are not equivalent to the Px,y states.
All hopping terms, i.e., nearest-neighbor interactions, can be
written in the two-center approximation as functions of two
parameters (Vppσ , Vppπ ) plus geometrical factors, following
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FIG. 7. (Color online) Highest valence bands calculated for su-
perlattices of Ge nanocrystals (d = a = 4.4 nm), for dcyl = 0.05d (a)
and dcyl = 0.2d (b).
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Slater and Koster [52]. The SO interaction, written in the
subspace of the P orbitals, leads to an effective coupling
λL · S. The problem for the Pz bands is separable from the
others in the absence of SO coupling.

The red dotted lines in Fig. 6 depict a band structure
calculated with λ = 0. For reasonable values of the parameters,
the model describes very well the highest minibands of
Fig. 4(a) for a superlattice of Ge nanocrystals in the absence of
SO coupling. The Pz bands, centered around a Dirac cone at
0.38 eV, are not very dispersive due to weak ppπ interactions.
The other bands, derived from the Px,y states, exhibit another
Dirac cone at 0.40 eV and two flat bands that touch the other
bands just at �.

A nonzero effective SO coupling in the tight-binding model
opens nontrivial gaps at � and K (blue solid lines in Fig. 6)
[33]. It also couples Pz and Px,y bands, leading to avoiding
crossings. The model explains the behavior of the highest
minibands calculated using the atomistic approach [Fig. 4(b)]
for weak SO coupling, confirming that the gaps are induced
by the SO interaction and explaining the nontrivial topology
of the bands.

There are differences between the band structures calcu-
lated using the atomistic tight-binding calculations (Fig. 4)
and the effective model (Fig. 6) due to couplings with other
bands that are not included in the model, such as S and D states.

For the same reason, the model is not able to explain the band
structure for larger values of the SO coupling [Fig. 4(c)] that
induce complex mixing of the bands.

APPENDIX B: BAND STRUCTURES
IN THE WEAK-COUPLING LIMIT

It is also instructive to look at the band structure of
superlattices of Ge nanocrystals from another perspective.
Figure 7(a) presents the highest minibands calculated for the
same nanocrystals as in Fig. 2(a) but for a very small coupling
between neighbor nanocrystals (dcyl = 0.05d). Two manifolds
of four (twofold degenerate) bands are found at energies
which coincide with the S3/2 and P3/2 levels predicted for the
individual nanocrystals. These states can be roughly described
as products of a p-like Bloch function with a total momentum
J = 3/2 and an envelope wave function of S or P character,
respectively.

When the coupling between neighbor nanocrystals is
increased, for example for dcyl = 0.2d [Fig. 7(b)], the width
of the bands obviously increases. At the same time, gaps are
formed between the bands and we recover a situation already
close to the one found for dcyl = 0.5d [Fig. 2(a)]. It nicely
shows that the effective SO coupling, at the origin of the gaps,
depends on the couplings between the nanocrystals.
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