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Abstract

The Voronoi Covariance Measure of a compact set K of Rd is a tensor-valued measure

that encodes geometrical information on K and which is known to be resilient to Hausdorff

noise but sensitive to outliers. In this article, we generalize this notion to any distance-

like function δ and define the δ-VCM. We show that the δ-VCM is resilient to Hausdorff

noise and to outliers, thus providing a tool to estimate robustly normals from a point

cloud approximation. We present experiments showing the robustness of our approach for

normal and curvature estimation and sharp feature detection.

Keywords: Geometric Inference, Normal estimation, Curvature estimation, Distance to a
measure, Voronoi Covariance Measure, Power Diagram.

1 Introduction

The estimation of normals and other differential quantities such as principal curvature directions
and direction of sharp features, has many application in computer graphics, geometry processing
or computational geometry. The output of most acquisition devices is a raw point cloud, often
corrupted with noise. For applications such as surface reconstruction, it is therefore very
useful to be able to perform these estimations directly on such data. Many methods have
been proposed for estimating normal and curvature directions directly from a point cloud,
such as principal component analysis [12], local fitting of polynomials quantities [5], integral
estimates [14], moving least squares [10], statistical normal clustering [4], to name but a few.
Our work is in direct lineage with Voronoi-based methods for normal estimations, which have
been introduced in [3] and refined by many authors [9, 2, 13]. These methods are robust to
Hausdorff noise but not outliers. Our contribution is to generalize the Voronoi-based approach,
and combine it to the notion of distance to a measure [7, 11] so as to gain resilience to outliers.

Voronoi-based estimation Classical principal component analysis methods try to estimate
normals by fitting a tangent plane. In contrast, Voronoi-based methods try to fit the normal
cones to the underlying shape, either geometrically [3, 9] or using covariance matrices of Voronoi
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cells [2, 13]. In [2], the authors estimate the normal at a data point in two steps. They start by
considering the covariance matrix of the union of Voronoi cells of nearby points, with respect
to the center of mass of this union. Then, the normal estimation is given by the the eigenvector
corresponding to the largest eigenvalue of this matrix. In [13], the authors improved this method
by changing the domain of integration and the averaging process. The authors showed that it
is possible to associate to any compact set K a tensor-valued measure, which they called the
Voronoi Covariance Measure of K (VCM). Then, they proved that this notion is Hausdorff-
stable, in the sense that if two compact sets are close in the Hausdorff sense, their VCM are
also close to each other. The VCM of a smooth surface encodes the normal vector field to this
surface; this stability result therefore ensures that this information is kept in the VCM of a
point cloud which is Hausdorff-close to the surface.

Distance to a measure All the aforementioned Voronoi-based methods for normal esti-
mation rely directly or indirectly on the notion of distance function. Recall that the dis-
tance function to a compact subset K of R

d is the function on R
d defined by the formula

dK(x) = minp∈K ‖p− x‖. The stability properties of geometric inference methods based on
the distance function is derived from the stability property of the distance function, namely that
if K and L are Hausdorff-close, then dK and dL are uniformly close. Unfortunately, geometric
data is usually corrupted with outliers, and the hypothesis of Hausdorff noise is not realistic
in practice. To make things worse, even the addition of a single outlier to a point cloud can
perturb the distance function to that point cloud drastically. To counter this difficulty a robust
variant of the notion of distance function to a compact set, called the distance to the measure,
was proposed in [7]. This new definition of distance is able to cope with the presence of some
outliers. Moreover, the distance to a measure is distance-like: this means that it possesses
the regularity properties of distance functions to compact sets which makes them amenable to
geometric inference.

Contributions

• We extend the definition of Voronoi covariance measure of a compact set. More precisely,
we associate to any distance-like function δ, a family of tensor-valued measures called the
δ-Voronoi covariance measure (δ-VCM).

• We show the stability of the δ-VCM. Our main general theorem (Theorem 2.1) asserts
that if a distance-like function δ well approximates the distance function to a compact
set K, then the δ-VCM is close to the VCM of K. When applied to a point cloud P
approximating a surface S of R3, this implies that one can recover the normals of S very
accurately (Proposition 3.1). This estimation is Hausdorff stable and robust to outliers.

• The distance to a measure of a point cloud being not computable in practice, we replace it
by the witnessed k-distance [11]. We show that the associated VCM still well approximates
the VCM of the underlying surface (Proposition 4.1), which opens the door to practical
computations.

• We show on various examples that the δ-VCM provides a robust normal estimator resilient
to Hausdorff noise and to outliers. We also use it to estimate curvatures and sharp
features. Our estimators improve the results based on the VCM [13] or on the Jet Fitting
[5], even when there are no outliers. They are also compared favorably to the normal
classifier of Boulch et al. [4].
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Notation In the following we denote by ‖.‖ the Euclidean norm of Rd. We will call tensor a
square matrix. The tensor product v⊗w of two vectors v,w is the d× d matrix whose entries
are defined by (v⊗w)ij = viwj . The d-dimensional ball of center x and radius r is denoted by
B(x, r).

Acknowledgements This research has been supported in part by the ANR grants Digi-
talSnow (ANR-11-BS02-009), KIDICO (ANR-2010-BLAN-0205) and TopData (ANR-13-BS01-
0008).

2 δ-Voronoi Covariance Measure

As remarked in [7], many inference results rely only on two properties of the distance function to
a compact set. Any functions satisfying these properties is called distance-like; in particular, the
usual distance function to a compact set is distance-like. The goal of this section is to extend the
definition of Voronoi Covariance Measure of a compact set, introduced in [13] for the purpose
of geometric inference. We associate to any distance-like function δ a tensor-valued measure
called the δ-Voronoi covariance measure or δ-VCM. Our main theoretical result is Theorem 2.1,
which asserts in a quantitative way that if a distance-like function δ is uniformly close to the
distance function to a compact set, then the δ-VCM is close to the VCM of this compact set.
Informally, this theorem shows that one can recover geometric information about a compact
set using an approximation of its distance function by a distance-like function.

2.1 δ-Voronoi Covariance Measure

In this paragraph, we introduce the definitions necessary for the precise statement of the main
theorem. We start by the definition of distance-like function, following [7]. Note that we used
the remark following Proposition 3.1 in [7] to drop the 1-Lipschitz assumption, which follows
from the two other assumptions.

Definition 2.1 (Distance-like function). A function δ : Rd → R
+ is called distance-like if

• δ is proper, i.e. lim‖x‖→∞ δ(x) =∞.

• δ2 is 1-semiconcave, that is ‖.‖2 − δ2(.) is convex.

The typical example of distance-like functions that we will consider are power distances.
Given a point cloud P and a family of non-negative weights (ωp)p∈P , we call power distance to
P the distance like function δP defined by

δP (x) :=

(

min
p∈P

(

‖x− p‖2 + ωp

)

)1/2

. (1)

Note that when the weights are all zero, the power distance is nothing but the distance function
to the point cloud P .

Definition 2.2 (δ-VCM). The δ-Voronoi Covariance Measure is a tensor-valued measure.
Given any non-negative probe function that is any integrable function χ on R

d, we associate a
positive semi-definite matrix defined by

Vδ,R(χ) :=
∫

δR
nδ(x)⊗ nδ(x).χ (nδ(x)− x) dx, (2)
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where δR := δ−1((−∞, R]) and where nδ(x) :=
1
2∇δ2(x). Note that this vector field is defined

at almost every point in R
d by the 1-concavity property of distance-like functions.

Example 2.1 (δ-VCM of a distance function). When considering the distance function to a
compact set K, the set dRK coincides with the offset of K with radius R, thus explaining our
choice of notation. Moreover, the vector field ndK

has an explicit expression in term of the
projection function pK on K, that is the application that maps a point to its closest neighbor
in K:

ndK
(x) = x− pK(x). (3)

Comparing Eq. (2) to Eq. (4.2) in [13] and using this remark, one sees that the dK-VCM defined
here matches the original definition of the VCM of K.

Consider a smooth compact surface S of R3, with exterior unit normal n. If R is chosen
small enough the following expansion holds as r → 0, where ‖.‖op is the operator norm [13]:

∥

∥

∥

∥

VdS ,R(1B(p,r))−
2π

3
R3r2 [n(p)⊗ n(p)]

∥

∥

∥

∥

op

= O(r3). (4)

This equation shows that one can recover local information about differential quantities from
the VCM of a surface. Note that curvature information is also present in the matrix.

Example 2.2 (δ-VCM of a power distance). Let us give a closed form expression for the VCM
of a power distance, which we will use in the computations. Each power distance defines a
decomposition of the space into a family of convex polyhedra, called power cells, on which the
function δ2P is quadratic. The power cell of the point p in P is defined by

PowP (p) = {x ∈ R
d; ∀q ∈ P, ‖x− p‖2 + ωp ≤ ‖x− q‖2 + ωq}. (5)

When the weight vector ω vanishes, we recover the notion of Voronoi cell. The following Lemma
generalizes Eq. (2.1) in [13], and shows that computing the VCM of a power distance amounts
to computing the covariance matrix of the intersection of each power cell with a ball (see also
Algorithm 1).

Lemma 2.1. Let (P, ω) be a weighted point cloud. Given a probe function χ,

VδP ,R(χ) =
∑

p∈P

χ(p) Mp, (6)

where Mp is the covariance matrix of Cp := PowP (p) ∩ B(p, (R2 − ωp)
1/2),

Mp :=

∫

Cp

(x− p)⊗ (x− p)dx. (7)

Proof. Since for every point x in the interior of the power cell PowP (p), nδP (x) = x− p, hence
χ(nδP (x)− x) = χ(p) is constant and one can decompose the integral over power cells

VδP ,R(χ) =
∑

p∈P

χ(p)

∫

PowP (p)∩δR
P

(x− p)⊗ (x− p)dx.

Furthermore a computation gives PowP (p)∩δRP = PowP (p)∩B
(

p, (R2 − ωp)
1/2
)

, if we consider
that R2 − ωp < 0 defines the empty ball.
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Figure 1: Integration domain of δP -VCM. The weighted point cloud P is represented by a union
of circles whose radius are the weights. We suppose χ to be the indicatrix of the ball B(y, r) of
center y and radius r. The number of power cells is less than the cardinal of the point cloud
since one cell is empty.

2.2 Stability of the δ-VCM

We are now able to state our main theorem, which is a generalization of the stability theorem
for VCM proven in [13]. Our theorem asserts that if the distance function to a compact set K is
well approximated by a distance-like function δ, then the VCM of K is also well approximated
by the δ-VCM. The hypothesis of this theorem is satisfied for instance under the sampling
model considered in [11].

The uniform norm of a function f on R
d is denoted ‖f‖∞ = sup

Rd |f |. Given a Lipschitz
function f with Lipschitz constant Lip(f), we introduce its bounded-Lipschitz norm ‖f‖BL =
‖f‖∞ + Lip(f).

Theorem 2.1. Let K be a compact set and δ a distance-like function. For any bounded Lipchitz
function χ : Rd −→ R

+, one has

‖Vδ,R(χ)− VdK ,R(χ)‖op ≤ C1 ‖χ‖BL ‖δ − dK‖
1

2

∞ ,

where C1 is a constant that only depends on R, d and diam(K).

In practice choosing a probe function χ supported in a small ball allows one to recover local
information from the δ-VCM.

Remark 1. A notable feature of this theorem is that the constant in the upper bound depends
only on the diameter of K and not on its local geometry or on its regularity.

Remark 2. When the compact set K is a smooth surface S and χr
p is the indicatrix of a

ball centered at a point p of S, Equation (4) indicates that the eigenvector associated to the
highest eigenvalue of VdK ,R(χ

r
p) gives an estimation of the normal vector to S at p. By Davis-

Kahan theorem [8] and under reasonable assumptions, this eigenvector is close to the eigenvector
associated to the highest eigenvalue of Vδ,R(χr

p). Hence the diagonalization of Vδ,R(χr
p) defines

an estimator of the normal direction to S at p.

2.3 Stability of gradients of distance-like functions

We mention in this subsection an intermediary result, Corollary 2.1, that guarantees the L1-
stability of gradients of distance-like functions. It is a consequence of Theorem 3.5 of [6] which
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gives the stability of gradients of convex functions. For any function f : Rd → R
k and any set

E of Rd, we put

‖f‖1,E =

∫

E

‖f(x)‖dx and ‖f‖∞,E = sup
x∈E
‖f(x)‖.

If E is rectifiable, we denote by Hn(E) its n-dimensional Hausdorff measure. We first recall
the following theorem.

Theorem 2.2 (Theorem 3.5 of [6]). Let E be an open subset of Rd with rectifiable boundary,
and f , g be two convex functions from E to R such that diam(∇f(E) ∪∇g(E)) ≤ D. Then

‖∇f −∇g‖1,E ≤ C2 ×
(

Hd(E) + (D + ‖f − g‖
1

2

∞,E)Hd−1(∂E)
)

‖f − g‖
1

2

∞,E ,

where C2 is a constant that only depends on the dimension d.

Corollary 2.1. Let E be a set of Rd with rectifiable boundary and ε > 0. For any distance-like
functions δ and δ′ such that ‖δ − δ′‖∞,E ≤ ε, one has

‖nδ′ − nδ‖1,E ≤ C3 × [Hd(E) + (2diam(E) + 4R+
√
2Rε)×Hd−1(∂E)]×

√
2Rε,

where R = max(‖δ‖∞,E , ‖δ′‖∞,E) and C3 is a constant depending only on d.

We introduce ψδ(x) = ‖x‖2− δ2(x) and ψδ′(x) = ‖x‖2− δ′2(x). For almost every x, one has

nδ′(x)− nδ(x) =
1

2
(∇δ′2(x)−∇δ2(x)) = 1

2
(∇ψδ(x)−∇ψδ′(x)).

Using the convexity of ψδ and ψδ′ and Theorem 2.2, Corollary 2.1 follows from the following
lemma.

Lemma 2.2. Under the assumptions of Corollary 2.1, one has

(i) ∀x ∈ E, |ψδ(x)− ψδ′(x)| ≤ 2Rε

(ii) diam(∇ψδ(E) ∪∇ψδ′(E)) ≤ 2diam(E) + 4R.

Proof. For every point x in E, one has

|ψδ(x)− ψδ′(x)| = |δ2(x)− δ′2(x)|
= |δ(x)− δ′(x)| × |δ(x) + δ′(x)|
≤ 2Rε.

Let now X and X ′ be points in ∇ψδ(E) and ∇ψδ′(E) respectively. There exist x, x′ in E such
that X = 2x− 2δ(x)∇δ(x) and X ′ = 2x′ − 2δ′(x′)∇δ′(x′). Then

‖X −X ′|| ≤ ‖2x− 2x′‖+ ‖2δ′(x′).∇δ′(x′)− 2δ(x).∇δ(x)‖
≤ 2 diam(E) + 2R× ‖∇δ‖∞,E + 2R× ‖∇δ′‖∞,E

≤ 2 diam(E) + 4R.

In the last inequality, we used the fact that a distance-like function is 1-Lipschitz (see Propo-
sition 3.1 in [7]). The result still holds if X,X ′ both belong to ∇ψδ(E) or to ∇ψδ′(E).
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2.4 Proof of Theorem 2.1

This proof follows the proof of the stability theorem in [13]. The idea is to compare the two
integrals on the common set E = KR−ε with ε = ‖δ − dK‖∞,E and to show that remaining

parts are negligible. By Proposition 4.2 of [6], the set ∂E is rectifiable. For every R ∈ R
+,

we denote by N (∂K,R) the covering number of ∂K with a radius parameter R, namely the
minimal number of balls of radius R needed to cover ∂K. Let us first suppose that ε < R

2 . We
have

VdK ,R(χ) =

∫

E

ndK
(x)⊗ ndK

(x)χ(ndK
(x)− x)dx

+

∫

KR\E

ndK
(x)⊗ ndK

(x)χ(ndK
(x)− x)dx.

For every x ∈ KR, one has ‖ndK
(x)‖ = ‖x−pK(x)‖ ≤ R. The fact that ‖χ‖∞ ≤ ‖χ‖BL implies

∥

∥

∥

∥

VdK ,R(χ)−
∫

E

ndK
(x)⊗ ndK

(x)χ(ndK
(x)− x)dx

∥

∥

∥

∥

op

≤ R2 · ‖χ‖BL · Hd(KR\KR−ε). (8)

We proceed similarly for the δ-VCM. By definition, we have ‖nδ(x)‖ = ‖δ(x)∇δ(x)‖ ≤ |δ(x)| ≤
R. Moreover, one has KR−ε ⊂ δR ⊂ KR+ε. Hence, the volume of δR \KR−ε is less than the
volume of KR+ε\KR−ε and

∥

∥

∥

∥

Vδ,R(χ)−
∫

E

nδ(x)⊗ nδ(x)χ(nδ(x)− x)dx
∥

∥

∥

∥

op

≤ R2 · ‖χ‖BL · Hd(KR+ε\KR−ε). (9)

We now bound the volume of KR+ε\KR−ε by using Proposition 4.2 of [6]. We set ωn(t) to be
the volume of the n-dimensional ball of radius t.

Hd(KR+ε\KR−ε) =

∫ R+ε

R−ε

Hd−1(∂Kt) dt

≤
∫ R+ε

R−ε

N (∂K, t) · ωd−1(2t) dt

≤ N (∂K,R− ε) · ωd−1(2(R+ ε)) · 2ε

≤ 2 N (∂K,
R

2
) · ωd−1(3R) ε. (10)

We now need to bound the operator norm of the integral
∫

E
[AdK

(x)−Aδ(x)]dx, where

AdK
(x) := ndK

(x)⊗ ndK
(x)χ(ndK

(x)− x),

and Aδ is defined similarly. The difference of these two terms is decomposed as:

AdK
(x)−Aδ(x) = χ(ndK

(x)− x)(ndK
(x)⊗ ndK

(x)− nδ(x)⊗ nδ(x))

+ [χ(ndK
(x)− x)− χ(nδ(x)− x)]nδ(x)⊗ nδ(x)

From the facts that

‖ndK
(x)⊗ ndK

(x)− nδ(x)⊗ nδ(x)‖
≤ ‖ndK

(x)⊗ (ndK
(x)− nδ(x))‖+ ‖(nδ(x)− ndK

(x))⊗ nδ(x)‖
≤ 2R ‖ndK

(x)− nδ(x)‖,
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and also

‖[χ(ndK
(x)− x)− χ(nδ(x)− x)]nδ(x)⊗ nδ(x)‖ ≤ Lip(χ) ‖ndK

(x)− nδ(x)‖ R2

one has
‖AdK

(x)−Aδ(x)‖op ≤ ‖χ‖BL (R
2 + 2R)‖ndK

(x)− nδ(x)‖,
which by integration leads to

∥

∥

∥

∥

∫

E

[AdK
(x)−Aδ(x)]dx

∥

∥

∥

∥

op

≤ ‖χ‖BL (R
2 + 2R)‖ndK

− nδ‖1,E .

Corollary 2.1 implies that the norm ‖ndK
− nδ‖1,E is bounded by

C2 × [Hd(E) + (2diam(E) + 4R+
√
2Rε)×Hd−1(∂E)]×

√
2Rε.

Since diam(E) ≤ diam(K) + 2R and ε ≤ R
2 , the two last equations imply

∥

∥

∥

∥

∫

E

[AdK
(x)−Aδ(x)]dx

∥

∥

∥

∥

op

(11)

≤ C2 ‖χ‖BL (R
2 + 2R)[Hd(KR) + (2diam(K) + 9R)Hd−1(∂KR−ε)]

√
2R
√
ε.

Again by Proposition 4.2 of [6], we boundHd−1(∂KR−ε) byN (∂K, R2 )·ωd−1(3R). Furthermore,
since the diameter of KR is less than diam(K) + 2R, its volume Hd(KR) is bounded by a
constant involving diam(K), R and d. Remark that N (∂K, R2 ) is also bounded by a constant
depending on the same quantities. Hence, the constants involved in Equations (11) and (10)
also depend solely on diam(K), R and d. We conclude the proof of Theorem 2.1 by combining
(11) with (8) and (9).

The case where ε ≥ R
2 is trivial (and not interesting in practice) since both Vδ,R(χ) and

VdK ,R(χ) can be upper bounded by a quantity depending on diam(K), R and d, which can be
put into the constant C1 of the Theorem.

3 VCM using the distance to a measure

The distance to a measure is a distance-like function that is known to be resilient to outliers.
It is therefore natural to consider the δ-VCM in the particular case where δ is a distance to a
measure. First we recall the definition and some stability results of the distance to a measure.
Then we study the δ-VCM when δ is a distance to a measure.

3.1 Distance to a measure

The distance to a measure has been introduced in [7] and is defined for any probability measure
µ on R

d. We denote in the following supp(µ) the support of µ.

Definition 3.1. Let µ be a probability measure on R
d and m0 a regularization parameter in

(0, 1). The distance function to the measure µ is defined for every point x in R
d by

dµ,m0
(x) :=

(

1

m0

∫ m0

0

δ2µ,m(x)dm

)1/2

, (12)

where δµ,m(x) = inf{r ≥ 0, µ(B(x, r)) ≥ m}.
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Figure 2: Distance to a measure. We suppose here that the measure µ is supported on a
compact set K. The quantity δµ,m(x) is the minimal radius r such that B(x, r)∩K has a mass
m.

Figure 3: Level sets of distance functions of a noisy point cloud. From left to right: usual
distance function to the point cloud; k-distance; witnessed-k-distance; median-witnessed-k-
distance

The formula defining the function δµ,m mimicks a similar formula for the distance function
to a set K: dK(x) = inf{r ≥ 0, K ∩ B(x, r) 6= ∅}, as shown on Figure 2. However it turns
out that the function δµ,m is not distance-like [7], while the regularization defined by Eq. (12)
is distance-like. Furthermore, the distance to the measure has been shown to be resilient to
outliers, and more precisely, Theorem 3.5 of [7] states that

‖dµ,m0
− dµ′,m0

‖∞ ≤
1√
m0

W2(µ, µ
′),

where W2 is the 2-Wasserstein distance between measures. For more details on Wasserstein
distances, which are also known under the name Earthmover distances in image retrieval and
computer science, one can refer to [15]. To give an intuition, when µK and µK′ are uniform
probability measures on two point clouds K and K ′ with the same number of points, the
distance W2(µK , µK′) is the square root of the cost of a least square assignment between K
and K ′.

Point cloud case Let P ⊂ R
d be a finite point set with n points, k ∈ (0, n) a real number

and m0 = k/n. Following [11], we call k-distance to P and denote dP,k the distance to the
measure for the uniform measure on P for the parameter m0. In the particular case where k is
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an integer, a simple calculation [7] shows that for every point x in R
d,

d2P,k(x) =
1

k

∑

pi∈NP,k(x)

‖x− pi‖2 ,

where NP,k(x) are the k nearest neighbors of x in P . Furthermore, the k-distance dP,k is a power
distance [11, Proposition 3.1]. More precisely, if we denote BaryP,k the set of isobarycenters of
k distinct points in P , one has

∀x ∈ R
d d2P,k(x) = min

b∈BaryP,k

(

‖x− b‖2 + ωb

)

,

where the weight ωb = 1
k

∑

pi∈NP,k(b)
‖b − pi‖2. Figure 3 illustrates the stability of the k-

distance of a point cloud with respect to outliers. Remark that the level sets of the k-distance
(second picture), are much smoother and faithful than the level sets of the distance function
(first picture).

3.2 Stability

Let S be a two dimensional surface and µS denote the uniform probability measure on S. An
application of Günther-Bishop theorem which can be found explicitely on page 749 of [7] is that
there exists a constant αS > 0 such that

∀p ∈ S, ∀r ≤ diam(S), µS(B(p, r)) ≥ αSr
2. (13)

Proposition 3.1. Let P be a point cloud of cardinal n, S a surface of R3 and let µP and µS be
the uniform probability measures on P and S respectively. If we define k = W2(µS , µP )

√
αSn,

then we have

‖VdP,k,R(χ)− VdS ,R(χ)‖op ≤ C4 α
−1/8
S ‖χ‖BL W2(µS , µP )

1

4 ,

where the constant C4 depends on diam(S) and R.

Proof. Let k ∈ (0, n) and m0 = k/n. By Theorem 4.2 of [11], one has

‖dP,k − dK‖∞ ≤ m− 1

2

0 W2(µS , µP ) + α
− 1

2

S m
1

2

0 .

The right hand-side is minimal when m0 satisfies m
− 1

2

0 W2(µS , µP ) = α
− 1

2

µ m
1

2

0 , namely m0 =
W2(µS , µP )

√
αS . If k = W2(µS , µP )

√
αµn, the bound in the previous equation becomes

W2(µS , µP )
1

2α
−1/4
S . We conclude by Theorem 2.1.

This result can be extended to any dimension d and also to the case where S is a compact
set with a dimension at most l (i.e. there exists a constant αS such that µS(B(p, r)) ≥ αSr

l).

4 Tractable variants for the dP,k-VCM

We have seen in the previous section that the dP,k-VCM is resilient to outliers. Unfortunately,
it is not practically computable, because the computation of the k-distance is not. We therefore
study in this section variants of the dP,k-VCM, by using variants of the k-distance. In Section
4.1, we propose an efficient relaxation of the dP,k-VCM for which we have a stability result. In
Section 4.2, we investigate another δ-VCM interesting for its resilience to outliers.
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4.1 Witnessed-k-distance and dwP,k-VCM

Let P ⊂ R
d be a point cloud, k an integer. We have seen in the previous section that the

k-distance is a power distance on the set BaryP,k of k points of P . Lemma 2.1 then allows us
in theory to calculate the dP,k-VCM. Unfortunately, it is not computable in practice. The set
BaryP,k is indeed huge since its cardinal is of the order of

(

n
k

)

, if n is the cardinal of P . To
overcome this problem, we use the witnessed k-distance that was introduced in [11].

Relaxation with the witnessed k-distance A point is said to be a k witness of P if it is
the barycenter of k points p1, . . . , pk of P such that p2, . . . , pk are the (k−1)-nearest neighboors
of p1 in P \ {p1}. We denote by BarywP,k this set of points. The witnessed k-distance is then
defined as the following power distance

dwP,k(x) :=

(

min
b∈Baryw

P,k

‖x− b‖2 + ωb

)1/2

,

where ωb =
1
k

∑

pi∈NP,k(b)
‖b− pi‖2. We then use Lemma 2.1 for the computation of its VCM.

Note that the number of cells in the power diagram is bounded by the number of points in P ,
and can therefore be computed efficiently using e.g. CGAL [1]. We also have a stability result.

Proposition 4.1. Let µS be the uniform measure on a surface S ⊂ R
3 and µP denotes the

uniform probability measure on a point cloud P . Let k = W2(µP , µS)
√
αSn/4, where n is the

number of points of P . Then for any bounded Lipschitz function χ : Rd → R
+

‖Vdw

P,k
,R(χ)− VS,R(χ)‖op ≤ C5 α

−1/8
S ‖χ‖BL W2(µP , µS)

1

4 ,

where the constant C5 depends on diam(S) and R.

The proof of this proposition is similar to the one of Proposition 3.1, and is using Theorem
4 of [11].

4.2 Median-k-distance and dmP,k-VCM

We introduce here the median-k-distance which is a distance-like function derived from the
witnessed-k-distance. We do not have yet stability results for this function, but it is very
robust in practice (see Figure ??). Numerical experiments in the next section show that the
corresponding δ-VCM is very stable in practice. Let P be a point cloud and k > 1 be an
integer. A point is said to be a median k-witness of P if it is the geometric median of k points
p1, . . . , pk of P such that p2, . . . , pk are the (k − 1)-nearest neightbors of p1 in P \ {p1}. We
denote by BarymP,k this set of points.

Definition 4.1. The median-k-distance is the power distance defined by

dmP,k(x) :=

(

min
b∈Barym

P,k

‖x− b‖2 + ωb

)1/2

,

where ωb =
1
k

∑

pi∈NP,k(b)
‖b− pi‖2.

The key idea is to replace the barycenter of k points involved in the witnessed-k-distance
by the geometric median. This can be seen as replacing the L2-norm by the L1-norm. Indeed,
it is well-known that the barycenter of p1, . . . , pk is the point b that minimizes

∑d
i=1 ‖b− pi‖2.

Similarly, a geometric median is a point b that minimizes
∑d

i=1 ‖b−pi‖. Note that the geometric
median is unique when the k points are not colinear.

As for the witnessed-k-distance, one can compute the dmP,k-VCM by using Lemma 2.1.
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5 Computation and Experiments

5.1 Computation of the VCM for a power distance

We describe here our algorithm to compute an approximation of the VCM of a power distance.
Let thus (P, ω) be a weighted point cloud that defines a distance-like function δP . For the
purpose of normal and curvature estimation, we have to compute for each point q in P the
covariance matrix VδP ,R(χ

r
q), where χ

r
q is the indicatrix of the ball B(q, r). Using Lemma 2.1,

we have
VδP ,R(χ

r
q) =

∑

p∈P∩B(q,r)

Mp,

where the matrix Mp is defined by

Cp = PowP (p) ∩ B

(

p, (R2 − ωp)
1/2
)

Mp =

∫

Cp

(x− p)⊗ (x− p)dx

The main difficulty is to compute these covariance matrices, and in practice we approach it by
replacing the ball in the definition of Cp by a convex polyhedron. The input of our algorithm
(summarized in Algorithm 1) is a weighted point cloud, a radius R and an approximation of
the unit ball by a convex polyhedron B. In all examples, the polyhedron B was a dodecahedron
circumscribed to the unit ball. To compute the approximate covariance matrices (MB

p )p∈P , we
first build the power diagram of the the weighted point cloud. Then, we proceed in two steps
for each point:

5.1.1 Intersection

We compute an approximation of the cell Cp by

CB
p := PowP (p) ∩ (p+ (R2 − ωp)

1/2B) (14)

To perform this computation, we gather the half-spaces defining both polyhedra and we compute
their intersection. By duality, this is equivalent to the computation of a convex hull.

5.1.2 Integration

The boundary of the polyhedron CB
p is decomposed as a union of triangles, and we consider

the tetrahedron ∆1
p, . . . ,∆

kp
p joining these triangles to the centroid of Cp. We compute

MB
p =

∫

CB
p

(x− p)⊗ (x− p)dx (15)

by summing the signed contribution of each tetrahedron, which can be evaluated exactly using
the same formulas as in [2]. We implemented this algorithm using CGAL [1] for the power
diagram calculation and the intersection step. We report in Table 1 some running times for the
witnessed-k-distance and the median-k-distance.
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Algorithm 1 Computation of VδP ,R.

Require: P ⊆ R
d point cloud, R > 0, B = approximation of B(0, 1)

Computation of the power diagram (PowP (p))p∈P

for all p ∈ P do

CB
p ← PowP (p) ∩ (p+ (R2 − ωp)

1/2B) {§5.1.1}
∆1

p, . . . ,∆
kp
p ← decomposition of CB

p into tetrahedra {§5.1.2}
MB

p ←
∑kp

i=1

∫

∆i
p
(x− p)⊗ (x− p)dx {§5.1.2}

end for

return (MB
p )p∈P .

shapes number of points dwP,k-VCM dmP,k-VCM

ellipsoid 10K 3.31 s 3.44 s
hand 36K 12.31s 13.86s
bimba 74K 25.98 s 29.08 s
ceasar 387K 175.16 s 201.20 s

Table 1: Computation times of (MB
p )p∈P for the dwP,k-VCM and the dmP,k-VCM (with a 4 ×

2.5Ghz CPU)

5.2 dwP,k-VCM evaluation

We show in this section that the dwP,k-VCM provides in practice a robust estimator for normals,
curvatures and for feature detection, which is resilient to both Hausdorff noise and outliers.
Note that in our experiments, the point cloud P is the set of vertices of a mesh. The mesh itself
is only used for the visualisation, our algorithm being only based on the point cloud P . The
diameter of the point cloud in all our examples is 2. Starting from an initial point cloud P , we
say that the Hausdorff noise is ε if every point p of P can be randomly moved at a distance less
than ε. We will speak about outliers if in addition a certain amount of points can be moved
much further.

5.2.1 Normal estimation

As suggested by Remark 2, we define a normal at each point p of a point cloud P as the
eigenvector associated to the largest eigenvalue of VδP ,R(χ

r
p).

Comparison with other methods We compare the accuracy of our method to the VCM [13],
to the Jet Fitting [5] and to Randomized Hough Transform method[4]. Figure 4 displays the
average angular deviation between the estimated normal and the ground truth in the case of a
noisy ellipsoid with outliers. Our method gives better result.

Sensitivity to parameters To measure the dependence of our method on the different
parameters, we computed the average deviation of the normal on a noisy ellipsoid for different
choices of parameters k and R. As can be seen in Figures 5 and 6, the results are essentially
stable. Figure 5 shows that we should choose k larger when the noise is large. We observe that
the value k = 30 gives good results in both presence and absence of noise. Therefore all our
experiments (except of course the ones of Figure 5) are done with the value k = 30. Note that
the classical VCM method coincides exactly with the dwP,k-VCM method when k = 1.
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Figure 4: Ellipsoid normal estimation. Left: the rendering illustrates the quality of the normal
estimation (parameters: k = 30, R = 0.2, r = 0.2, Hausdorff noise = 0.4). Right: Comparison
of the average normal deviation for Jet Fitting, VCM, dwP,k-VCM and the Randomized Hough
Transform method [4] for different values of Hausdorff noise.

Figure 5: Dependence on the parameter k: we see the influence of the parameter k (in abscissa)
on the average error on the normal estimation using dwP,k-VCM. The experiment is done for
different values of r and R and for two different noisy ellipsoids. Left: Hausdorff noise = 0.2.
Right: Hausdorff noise = 0.4.

Visualisation of normal estimation We test the quality of our normal estimator on stan-
dard shapes, by rendering meshes according to their estimated normals. In Figure 7, we notice
that the rendering done with normals computed with our method is much better than the ren-
dering done with normals induced by the geometry of the underlying mesh, at the same time
robust to noise while keeping intact significant features. In Figure 8, we compare this rendering
with the rendering obtained when the normal is calculated by the Randomized Hough Trans-
form method [4], which is a statistic method known to be resilient to noise and outliers. Our
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Figure 6: Dependence on the parameter R: we see the influence of the parameter R (in abscissa)
on the average error on the normal estimation using dwP,k-VCM. The experiment is done for
different values of r and for two different noisy ellipsoids. Left: Hausdorff noise = 0.2. Right:
Hausdorff noise = 0.4.

Figure 7: Rendering of “caesar” data using triangle normal (top row) and estimated dwP,k-VCM
normal (bottom row) with Phong shading (parameters R = 0.04, r = 0.04, k = 30). From left
to right, the Hausdorff noise is 0.02, 0.04 and 0.06.

method achieves a much smoother rendering.
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Figure 8: Rendering comparison of “hand” data: (left) using our dwP,k-VCM normal estimation
with parameters R = 0.04, r = 0.02, k = 30, and (right) the Randomized Hough Transform
method [4] with standard parameters: neighbors number = 500 and the others equal to default
values. Triangles are displayed with Phong shading and “hand” is perturbated by a Hausdorff
noise equal to 0.04.

5.2.2 Estimation of curvatures and features detection

The covariance matrix also carries curvature information along other eigendirections [13]. We
denote by λ0 ≥ λ1 ≥ λ2 the three eigenvalues of VδP ,R(χ

r
p) at a point p. Up to a multiplicative

constant, λ1 and λ2 correspond to the absolute value of the minimal and maximal curvatures
respectively [13]. We call the corresponding eigenvectors respectively minimal and maximal
principal directions.

We compare our method with the Jet Fitting method [5] in Figure 9. Experiments have been
done for a large choice of different parameters, and we did not find parameters for Jet Fitting
that recover good principal directions, whereas our method is very stable. In the presence of
many outliers, we plot in Figure 10 the minimal principal direction estimation of dwP,k-VCM
projected on the initial mesh.

To illustrate the performance of curvature estimation by dwP,k-VCM, the estimated mean
absolute curvature λ1 + λ2 is displayed for the standard “caesar” and “hand” models. In
Figure 11, we also render the triangulation before any processing to illustrate the amplitude of
noise.

We also detect sharp features, using the same criteria as in [13]: we say that a point p
belongs to a sharp feature if λ1/(λ0 + λ1 + λ2) ≥ T , for a given threshold T . Figure 13 shows
that the dwP,k-VCM robustly detect features (with T = 0.1, corresponding to an angle of ≈ 25◦).

5.3 Comparison with the dmP,k-VCM

Figures 14 and 15 indicate that the dmP,k-VCM gives a better estimation of the normal and
absolute mean curvature than the dmP,k-VCM in the presence of outliers.
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Figure 9: Principal direction estimation on Bimba (no noise). We put a line-segment aligned
at every point to the minimal principal direction. Left: Jet-fitting method (with a polynomial
of degree 4× 4 and k = 100 neighbors for each point). Right: dwP,k-VCM method (parameters
R = 0.04, r = 0.08, k = 30)

Figure 10: Principal direction estimation on Bimba. Left: input data with outliers (80% of the
points are moved at a distance at most 0.02, 10% are moved at a distance between 0.02 and 0.1
and 10% are outliers taken randomly in the bounding box). Right: for every vertex, we project
the minimal principal direction estimation of the dwP,k-VCM on the initial mesh.
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[13] Quentin Mérigot, Maks Ovsjanikov, and Leonidas Guibas, Voronoi-based curvature and

20



feature estimation from point clouds, IEEE Transactions on Visualization and Computer
Graphics 17 (2011), no. 6, 743–756.

[14] Helmut Pottmann, Johannes Wallner, Qi-Xing Huang, and Yong-Liang Yang, Integral
invariants for robust geometry processing, Computer Aided Geometric Design 26 (2009),
no. 1, 37–60.

[15] Cédric Villani, Optimal transport: old and new, vol. 338, Springer, 2008.

21


