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Exponential decay for the damped wave equation in

unbounded domains

Nicolas Burq∗& Romain Joly†

Abstract

We study the decay of the semigroup generated by the damped wave equation in an un-
bounded domain. We first prove under the natural geometric control condition the exponential
decay of the semigroup. Then we prove under a weaker condition the logarithmic decay of
the solutions (assuming that the initial data are smoother). As corollaries, we obtain several
extensions of previous results of stabilisation and control.

On étudie la décroissance du semi-groupe des ondes amorties dans un domaine non borné.
Notre premier résultat est que, sous une hypothèse naturelle de contrôle géométrique, le semi-
groupe décrôıt exponentiellement vite. On démontre ensuite sous une hypothèse plus faible la
décroissance logarithmique des solutions associées à des données initiales plus régulières. On
obtient en corollaire plusieurs généralisations de résultats de stabilisation et de contrôle.

Key words: Damped wave equation, Exponential decay, Uniform stabilisation, Variable
damping, Unbounded domains. Carleman estimates.
AMS subject classification: 35Q99, 93D15, 93B05, 35B41

1 Introduction

In this article we consider the damped wave equation. In the simplest case of constant coefficients
Laplace operator, our main result takes the following form:

Theorem 1.1. Let γ ∈ L∞(Rd) be a non-negative damping. Assume that γ is a uniformly
continuous function and that there exist L, c > 0 such that for any (x0, ξ0) ∈ Rd × Sd−1,∫ L

s=0
γ(x0 + sξ0)dx ≥ c > 0 .

Then, there exist M and λ > 0 such that any solution of

∂2
ttu+ γ(x)∂tu = (∆− Id)u (t, x) ∈ R+ × Rd

satisfies

‖u(t)‖H1(Rd) + ‖∂tu(t)‖L2(Rd) ≤ Me−λt
(
‖u(0)‖H1(Rd) + ‖∂tu(0)‖L2(Rd)

)
.
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1.1 The damped wave equation:

More precisely, our results concern a more general linear damped wave equation in Rd, with d ≥ 1:{
∂2
ttu(x, t) + γ(x)∂tu(x, t) = div(K(x)∇u(x, t))− u(x, t) (t, x) ∈ R+ × Rd ,

(u, ∂tu)(·, 0) = (u0, u1) ∈ H1(Rd)× L2(Rd) (1.1)

where K ∈ C∞(Rd,Md(R)) is a smooth family of real symmetric matrices, which are uniformly
positive in the sense that there exist two positive constants Kinf and Ksup such that

∀ξ ∈ Rd , Ksup|ξ|2 ≥ ξᵀ.K(x).ξ ≥ Kinf |ξ|2 . (1.2)

The damping coefficient γ ∈ L∞(Rd) is assumed to be a bounded and non-negative function. We
set X = H1(Rd)× L2(Rd) and

A =

(
0 Id

(div(K(x)∇)− Id) −γ(x)

)
D(A) = H2(Rd)×H1(Rd) . (1.3)

We equipped H1(Rd) with the scalar product

〈u|v〉H1 =

∫
Rd

(∇u(x))ᵀ.K(x).(∇v(x)) + u(x)v(x) dx . (1.4)

Obviously, this scalar product is equivalent to the classical one and direct computations show
that it satisfies

〈(div(K(x)∇)− Id)u|v〉L2 = −〈u|v〉H1 and Re(〈AU |U〉X) = −
∫
γ(x)|v(x)|2 dx

for any U = (u, v) ∈ D(A). Then, one easily checks that A is a dissipative operator and therefore
generates a semigroup eAt on X.

1.2 Exponential decay and Hamiltonian flow:

The main purpose of this paper is to investigate the exponential decay of the semigroup associated
to (1.1): we ask whether there exist M and λ > 0 such that

∀t ≥ 0 , |||eAt|||L(X) ≤Me−λt . (1.5)

For the damped wave equation in a bounded domain and a continuous damping coefficient,
it is well known that the exponential decay is equivalent to the fact that all the trajectories
of the Hamiltonian flow intersect the support of the damping (see [30], [3], [4]) and [6]. More
precisely, to the Laplacian operator with variable coefficients div(K(x)∇), we associate the symbol
g(x, ξ) = ξᵀ.K(x).ξ and the Hamiltonian flow ϕt(x0, ξ0) = (x(t), ξ(t)) defined on R2d by

ϕ0(x0, ξ0) = (x0, ξ0) and ∂tϕt(x, ξ) = (∂ξg(x(t), ξ(t)),−∂xg(x(t), ξ(t)) . (1.6)

We introduce the mean value of the damping along a ray a length T :

〈γ〉T (x, ξ) =
1

T

∫ T

0
γ(ϕt(x, ξ))dt (1.7)
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where we use the obvious notation γ(x, ξ) := γ(x). We also introduce the set Σ of rays of speed
one, that is

Σ = {(x, ξ) ∈ R2d , ξᵀK(x)ξ = 1} . (1.8)

Some previous works:
If Ω is a bounded manifold, the uniform positivity of 〈γ〉T (x, ξ) in Σ for some T > 0 implies that
the exponential decay (1.5) holds, as shown in the celebrated articles [30], [3] and [4] of Bardos,
Lebeau, Rauch and Taylor. The assumption that there exists T > 0 such that 〈γ〉T (x, ξ) > 0 in
Σ is called the geometric control condition. The article [20] underlines in addition the importance
of the value of min(x,ξ)∈Σ 〈γ〉T (x, ξ) in order to control the rate of decay of the high frequencies.

In the case of an unbounded manifold, two situations have been investigated. First, some
authors have considered the free wave equation (1.1) in an exterior domain (with γ ≡ 0 or γ > 0
only on a compact subset the exterior domain). They have shown that the local energy decays
to zero in the sense that, under suitable assumptions, the energy of any solution escapes away
from any compact set, see [18], [26] and [2] and the references therein. Secondly, several works
have studied the damped wave equation in an unbounded manifold and with a non-linearity, but
assuming that the damping satisfies γ(x) ≥ α > 0 outside a compact set, see [33], [10], [9] and
[16].

Considering these previous works, it appears that one natural case has not been studied:
the exponential decay of the semigroup eAt generated by the damped wave equation on a whole
unbounded manifold, with the geometric control condition only, that is without assuming that
γ ≥ α > 0 outside a compact set. To our knowledge, this case is surprisingly missing in the
literature. The main purpose of this article is to settle this natural problem.

Main results:
We denote by Ckb (Rd) the set of functions in Ck(Rd) which are bounded, as well as their k first
derivatives. If k = ∞, the bound is not assumed to be uniform with respect to the derivatives.
We recall that 〈γ〉T and Σ have been defined in (1.7) and (1.8). Our main result is as follows.

Theorem 1.2. We assume that the metric K belongs to C∞b (Rd,Md(R)) and that the bounded
non-negative damping γ is uniformly continuous and satisfies

(GCC) there exist T, α > 0 such that 〈γ〉T (x, ξ) ≥ α > 0 , for all (x, ξ) ∈ Σ .

Then, the semigroup generated by the damped wave equation (1.1) is exponentially decreasing
that is that there exist M and λ > 0 such that

∀t ≥ 0 , |||eAt|||L(X) ≤Me−λt . (1.9)

Assume now that the geometric control condition (GCC) is violated but the damping is still
efficient on a network of balls. The Lasalle invariance principle ensures that, for any initial data,
the energy of the solution goes to 0 when t → +∞. Since the geometric control condition does
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not hold, it is classical that the convergence to 0 can be arbitrarily slow:

∀T > 0, sup
(u0,u1)∈H1×L2

‖(u(T ), ∂tu(T ))‖H1×L2

‖(u0, u1)‖H1×L2

= 1.

Our second result extends to the non compact setting a similar result by Lebeau proved on
compact manifolds [20] (see also [21]) and gives an upper bound for the rate of decay when the
initial data are smoother (see [22, Definition 1.1 and Section 3.1] for a similar geometric setting
developped independently).

Theorem 1.3. We assume that the metric K belongs to C∞b (Rd,Md(R)) and that γ ∈ L∞(Rd)
satisfies

(NCC) there exist L, r, a > 0 and a sequence (xn) ⊂ Rd such that

γ(x) ≥ a > 0 on ∪n B(xn, r) and ∀x ∈ Rd , d(x,∪n{xn}) ≤ L .

Then, for any k > 0, there exists Ck > 0 such that for any (u0, u1) ∈ Hk+1(Rd)×Hk(Rd),

‖(u(T ), ∂tu(T ))‖H1×L2 ≤
Ck

log(2 + t)k
‖(u0, u1)‖Hk+1×Hk .

Some extensions and applications:

i) A contradiction argument shows very easily that, as soon as the exponential decay holds for a
damping coefficient 0 ≤ γ, it holds (with different constants, possibly worse) for any damping
coefficient γ̃ ∈ L∞(Rd) satisfying γ̃ ≥ γ (see the arguments of the second step of Section 2).
Consequently, Theorem 1.2 also holds for any damping γ ∈ L∞(Rd) for which there exists γ
with 0 ≤ γ ≤ γ satisfying (GCC) and being uniformly continuous. Notice that the existence of
γ uniformly continuous satisfying (NCC) and 0 ≤ γ ≤ γ is automatic in the case of Theorem
1.3. That is why, the uniform continuity can be omitted in its statement.

ii) Theorem 1.2 concerns solutions of (1.1) with finite energy. It is possible to consider solutions of
(1.1) with infinite energy in the framework of uniformly local Sobolev spaces. The stabilisation
in this case is a straightforward corollary of Theorem 1.2, see Section 6.

iii) The ideas of the proof of Theorems 1.2 and 1.3 may apply to other geometric situations. For
example, if we consider an unbounded manifold without boundary as a cylinder instead of Rd,
then Theorems 1.2 and 1.3 will also hold with the obvious modifications of their statements.

iv) The smoothness assumptions on the coefficients K(x) could be relaxed (probably up to C2,
see [5]). To keep the paper short, we chose not to develop this issue here.

v) The exponential decay of the linear semigroup has important applications in the control theory
and the study of dynamics for the wave equations. Some new results are obtained as corollaries
of Theorem 1.2 as explained in Section 6.

Remarks:
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i) The simplest applications of Theorem 1.2 are the periodic frameworks satisfying the geometric
control condition, see for example Figure 1.a). To our knowledge, the exponential decay of
the semigroup was not known in this simple case (notice that one cannot directly use the
framework of the torus since the initial data (u0, u1) are not periodic).

ii) The proof of Theorem 1.2 follows the lines of the proofs of the results on compact manifolds
(see [3], [4], [34]. . . ). It also uses classical properties of pseudo-differential calculus (see e.g. [1],
[24] or [19]). The main point in the analysis is to be careful when using the classical arguments
to deal with the infinity (in space). In particular this forbids the use of tools as the defect
measure, which only yields informations on a compact subset of the domain. As usual, the
proof of the stabilisation stated in Theorem 1.2 splits into two parts. The first is the control
of the high frequencies, where we fully use the geometric control condition (GCC). This part
is contained in Section 3, where we have to return to the semiclassical analysis behind the
classical defect measure arguments. The second part is the control of the low frequencies by
using a Carleman estimate as shown in Section 4. In this section, we do not use (GCC) but
the weaker hypothesis (NCC), which is a uniform control of the damping on a network of balls
stated in Theorem 1.3.

iii) In a first version of this article by the second author alone, it was shown that Theorem 1.2
can be obtained in dimension one by multipliers techniques following the ideas of [23] and [32].
In some simple geometrical situation in higher dimension, the multipliers techniques should
also apply. The interest of this kind of proofs is to provide explicit constants M and λ, but
the geometrical assumptions cannot be as general as the ones of the main result of this paper,
except in dimension one.

iv) Of course, our theorem also hold when the operator div(K(x)∇) − Id is replaced by the
operator div(K(x)∇) − εId with ε > 0. However, when ε = 0, that is when the right-hand-
side is not a negative operator but only a non-positive one, it is known that one cannot hope
an exponential decay of the solutions. Indeed, it has been established since a long time (see
[25]) that the solutions of ∂2

ttu+∂tu = ∆u in Rd asymptotically behave as the ones of ∂tv = ∆v
(see for example [27], [29] and the references therein). It is shown in [8] that if u is solution
of ∂2

ttu + ∂tu = ∆u in Rd, with initial data (u0, u1) ∈ H1(Rd) × L2(Rd) and v is solution of
∂tv = ∆v in Rd, with initial data u0 + u1, then ‖(u − v)(t)‖H1 ≤ C/t. In particular, u is
generally decaying not faster than C/td/4 for d ≤ 3.

v) The uniform continuity assumption on γ in Theorem 1.2 ensures that it can be regularised into
a smooth damping coefficient γ satisfying γ ≤ γ and belonging to C∞b (Rd,R). In particular,
the fact that the derivative of γ can be taken uniformly bounded will be important in our
proof order to apply the pseudo-differential calculus (notice that these uniform bounds would
also be required if we used the multipliers techniques, at least for the first derivative). Of
course, in the usual compact case, this assumption is automatically satisfied. In Figures 1.b)
and 1.c), we show examples where all the Hypotheses of Theorem 1.2 apply, if one neglects
the regularity hypothesis. In these cases, it would be natural to expect the exponential decay
of the semigroup, but this is still an open problem. Notice that the simple requirement that γ
belongs to L∞ is not sufficient to define properly the mean value 〈γ〉T (x, ξ) everywhere. This
could be a hint that the regularisation assumption is not just a technical one.

Acknowledgements: The authors thank Jean-François Bony, Yves Colin de Verdière, Julien
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Royer and Patrick Gérard for fruitful discussions. The first author is partially supported by the
Agence Nationale de la Recherche through ANR-13-BS01-0010-03 (ANAÉ) and ANR-201-BS01-
019-01 (NOSEVOL).

2 Proof of Theorem 1.2

In this section, we outline the proof of Theorem 1.2. The real technical parts of its proof will be
detailed in Sections 3 and 4.

There exist several ways to obtain the exponential decay (1.9) of the semigroup eAt. The
most classical one is to argue by contradiction to establish the observation inequality E(v(0)) ≤
C
∫ T

0 γ|∂tv|2dt for some T > 0 and any solution v of the free wave equation (see for example
[14] for the relation between this observation estimate and the exponential decay of the damped
semigroup). A less usual method consists in uniformly estimating the resolvent (A − λId)−1 on
the imaginary axis (see for example chapter 5 of [34]). We use here this last method as a direct
corollary of the results of [12], [28] and [15].

• First step: a characterisation in terms of resolvent estimates.
To study the exponential decay, we use here the characterisation given by Theorem 3 of [15].

Theorem 2.1 (Gearhart-Prüss-Huang). Let eAt be a C0−semigroup in a Hilbert space X and
assume that there exists a positive constant M > 0 such that |||eAt||| ≤ M for all t ≥ 0. Then
eAt is exponentially stable if and only if iR ⊂ ρ(A) and

sup
µ∈R
|||(A− iµId)−1|||L(X) < +∞ . (2.1)

Since the linear operator A associated to the damped wave equation is dissipative, we have
|||eAt||| ≤ 1 for all t ≥ 0. To prove Theorem 1.2, it remains to show that (2.1) holds. We
argue by contradiction and assume that there exist two sequences (Un) = (un, vn) ⊂ D(A) =
H2(Rd)×H1(Rd) and (µn) ⊂ R such that

‖Un‖2X = ‖un‖2H1 + ‖vn‖2L2 = 1 and (A− iµn)Un −−−−−−−→
n−→+∞

0 in X . (2.2)

Notice that, here, un and vn are complex valued functions.

• Second step: replacing γ by a smooth damping.
We recall that H1(Rd) is equipped with the convenient scalar product (1.4). Let us denote the
operator div(K(x)∇) by ∆K . We have

(A− iµnId)Un =

(
vn − iµnun

(∆K − Id)un − γ(x)vn − iµnvn

)
and

Re(〈(A− iµn)Un|Un〉X) = −
∫
γ(x)|vn(x)|2 dx .

Thus, (2.2) implies that
∫
γ(x)|vn(x)|2 dx goes to zero. Therefore, we can replace γ by any smooth

damping γ satisfying 0 ≤ γ ≤ γ without changing (2.2). Let us show that we can construct such
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a damping γ ∈ C∞b (Rd). First choose θ = max(0, γ − ε). For a small enough ε > 0, the damping
θ still satisfies that its mean value 〈θ〉T (x, ξ) is uniformly bounded away from 0. Moreover, since
γ is uniformly continuous, the support of θ stays at a uniform distance δ > 0 of the set where γ
vanishes. Now, mollify θ into θ∗ρδ where ρδ is a C∞ regularisation kernel with support in B(0, δ).
We obtain a smooth damping γ with a support included in the one of γ. Thus, one can use this

new damping without changing (2.2). Moreover, this new damping γ belongs to C∞b (Rd), which
ensures that the multiplication by γ is a pseudo-differential operator of order 0. In the remaining

part of this proof, to simplify the notations, we will assume that γ itself belongs to C∞b (Rd).

• Third step: separation between high and low frequencies.
We now work with a smooth damping γ with bounded derivatives. To obtain a contradiction
from (2.2), we consider two cases.

→ High frequencies: assume that |µn| goes to +∞. Since A is a real operator, by symmetry,
we can assume that µn > 0 and we set hn = 1/µn. We have to show that one cannot have
‖Un‖X = 1 and (A − i/hn)Un −→ 0. This will be shown in Section 3 by semiclassical
pseudo-differential arguments, using the geometric control condition of Theorem 1.2.

→ Low frequencies: assume that (µn) has a bounded subsequence. Then, up to extracting
a subsequence, one can assume that (µn) converges to a real number µ. Then (2.2) is
equivalent to have a sequence (Un) with ‖Un‖X = 1 and (A− iµ)Un −→ 0. In Section 4, we
will show that this is not possible by using a global Carleman estimate. In this part, it is in
fact sufficient to replace the geometric control condition by the network control condition
(NCC) stated in Theorem 1.3. A similar argument was developped independently by Le
Rousseau and Moyano for the study of the Kolmogorov equation.

Since Sections 3 and 4 provide a contradiction in both cases, Theorem 2.1 yields the proof of
Theorem 1.2.

3 Proof of Theorem 1.2: high frequencies

The purpose of this section is to obtain a contradiction from the existence of sequences (Un) with
‖Un‖X = 1 and (hn) with hn → 0 satisfying (A − i/hn)Un −→ 0. To simplify the notations, we
may forget the index n for the remaining part of this section and set Un = Uh = (uh, vh). We
have {

vh − i
huh = oH1(1)

(∆K − id)uh − γ(x)vh − i
hvh = oL2(1)

and thus {
vh − i

huh = oH1(1)
h2(∆K − Id)uh − ihγ(x)uh + uh = oL2(h2) + oH1(h)

(3.1)

To obtain a contradiction between (3.1) and Hypothesis (GCC) of Theorem 1.2, we will use the
semiclassical microlocal analysis and follow the ideas of the chapter 5 of [34]. Notice that the
usual way to deal with high frequencies is to use semiclassical defect measures (see for example
[34]). However, this is not possible in our case since we work in an unbounded domain and the
semiclassical defect measure will only tell us what happens in compact subsets.
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Lemma 3.1. Assume that the operator Ph = h2(∆K−Id)−ihγ(x)+Id has a resolvent in L2(Rd)
satisfying

‖(Ph)−1f‖L2 ≤
C

h
‖f‖L2 . (3.2)

Then Ph has a resolvent in H1(Rd) also satisfying

‖(Ph)−1f‖H1 ≤
C

h
‖f‖H1 .

Proof: We argue by contradiction. Assume that there exists a sequence (uh) with ‖uh‖H1 = 1
and Phuh = oH1(h). Multiplying by uh and integrating, we get that

−h2‖uh‖2H1 − ih
∫
Rd

γ(x)|uh|2 + ‖uh‖2L2 = o(h)‖uh‖L2 .

Taking the real part and solving the equation in ‖uh‖L2 , we get

‖uh‖L2 =
1

2

(
o(h) +

√
o(h2) + 4h2‖uh‖2H1

)
∼ h .

We introduce the operator ∇K = (−∆K + Id)1/2. It is the particular case h = 1 of the semi-
classical operator (−h2∆K + Id)1/2, which has for principal symbol

√
ξᵀ.K(x).ξ + 1 (see Section

A in Appendix for a brief recall about pseudo-differential semiclassical calculus). Obviously, it
commutes with any polynomial of ∆K . Moreover, applying i) of Corollary A.2 of the Appendix,
with h = 1 fixed, we get that the commutator [∇K , γ(x)·] is bounded in L2(Rd). Thus, since
uh = OL2(h),

∇K(Phuh) = Ph(∇Kuh)− ih[∇K , γ(x)]uh = Ph(∇Kuh) +OL2(h2) .

Since Phuh = oH1(h), we obtain that Ph(∇Kuh) = oL2(h). Using the assumption on the resolvent
of Ph, we obtain that ∇Kuh goes to 0 in L2(Rd) when h goes to 0. However, ‖∇Kuh‖L2 is
equivalent to ‖uh‖H1 and we obtain a contradiction with the assumption ‖uh‖H1 = 1. �

Proposition 3.2. If the operator Ph = h2(∆K − Id) − ihγ(x) + Id has a resolvent in L2(Rd)
satisfying (3.2), then (3.1) cannot hold.

Proof: We argue by contradiction again. Assume that Ph satisfies (3.2) and assume that there
exists Uh = (uh, vh) with ‖Uh‖X = 1 such that (3.1) holds. As in the beginning of the proof of
Lemma 3.1, multiplying the second equation of (3.1) by uh, integrating, taking the real part and
solving the equation of second degree in ‖uh‖L2 , we get that

‖uh‖L2 =
1

2

(
o(h) +

√
o(h2) + 4h2‖uh‖2H1

)
.

Due to the first equation of (3.1) and since ‖Uh‖X = 1, we must have ‖uh‖H1 ∼ 1/
√

2, ‖uh‖L2 ∼
h/
√

2 and ‖vh‖L2 ∼ 1/
√

2.
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We introduce wh = P−1
h (fh) where fh is the term oH1(h) in the second equation of (3.1).

By assumption and by Lemma 3.1, we have that wh = oH1(1). By the same straightforward
computation than the one just above, we also have wh = oL2(h). Then, uh − wh solves Ph(uh −
wh) = oL2(h2) and by assumption, we get that uh − wh = oL2(h) and thus that uh = oL2(h).
This is a contradiction with the fact that ‖uh‖L2 ∼ h/

√
2, which was proved above. �

Due to Proposition 3.2, to obtain a contradiction from (3.1), it remains to show the L2-
resolvent estimate (3.2). Obtaining this estimate is the central argument for controlling the high
frequencies. Here, we will use pseudo-differential calculus and we will see the importance of
Hypothesis (GCC) of Theorem 1.2. The remaining part of this section is thus devoted to the
proof of the following result.

Proposition 3.3. The operator

Ph = h2(∆K − Id)− ihγ(x) + Id

has a resolvent in L2(Rd) satisfying

‖(Ph)−1f‖L2 ≤
C

h
‖f‖L2 .

Proof: As usual, we argue by contradiction and assume that there exists a sequence (hn) going
to zero and functions (un) ⊂ H2(Rd) such that ‖un‖L2 = 1 and Phnun = oL2(hn). Once again,
we may forget the indices and assume that ‖uh‖L2 = 1 and

h2(∆K − Id)uh − ihγ(x)uh + uh = oL2(h) . (3.3)

In what follows, we will use the notations and the results of the pseudo-differential semiclassical
calculus recalled in Section A. Our proof follows the lines of Chapter 5 of [34], omitting the
notion of defect measures, which is not convenient in the case of unbounded domains.

• First step: uh is concentrating along the radial speeds ξᵀK(x)ξ = 1/h2.
First notice that the main part of Ph is h2∆K + Id in the sense that (h2∆K + Id)uh = oL2(1).
As explained in Appendix, up to an error term OL2(h2), this main part is a pseudo-differential
semiclassical operator Oph(−ξᵀK(x)ξ + 1). Let χ(x, ξ) ∈ C∞(Rd,R+) be a smooth cutting func-
tion which is equal to one in a neighbourhood of the sphere Σ = {(x, ξ), ξᵀK(x)ξ = 1} and equal
to 0 outside the annulus 1/2Ksup ≤ |ξ| ≤ 2/Kinf . Also assume that χ and its derivatives are
bounded, which implies that χ(x, ξ) is a symbol of order 0. We claim that uh is concentrating on
the microlocal set {(x, ξ), ξᵀK(x)ξ = 1/h2} in the sense that 〈Oph(1−χ(x, ξ))uh|uh〉L2 goes to 0
when h goes to 0.

To prove this claim, we introduce another smooth cutting function θ which is equal to 1 in a
neighbourhood of the sphere Σ = {(x, ξ), ξᵀK(x)ξ = 1} and equal to 0 in the support of 1 − χ.
The symbol a(x, ξ) = −ξᵀK(x)ξ + 1 + iθ is of order 2 and uniformly bounded away from 0. By
Corollary A.3 in Appendix, the symbol b(x, ξ) = 1

a(x,ξ) is of order −2 and satisfies

Oph(a) ◦Oph(b) = Id+OL2(h) and Oph(b) ◦Oph(a) = Id+OL2(h) .
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Thus,
〈Oph(1− χ)uh|uh〉L2 = 〈Oph(1− χ) ◦Oph(b) ◦Oph(a)uh|uh〉L2 +O(h) .

On the other hand, Oph(a) = Oph(−ξᵀK(x)ξ + 1) + iOph(θ) and thus Oph(a)uh = oL2(1) +
iOph(θ)uh. Since 1 − χ and b are of order 0 or less, their corresponding operators are bounded
in L2(Rd), uniformly with respect to h and

〈Oph(1− χ)uh|uh〉L2 = i〈Oph(1− χ)Oph(b)Oph(θ)uh|uh〉L2 + o(1) .

Now, it remains to apply Proposition A.1 in Appendix to see that, since 1−χ and θ have disjoint
supports,

Oph(1− χ)Oph(b)Oph(θ)uh = Oph((1− χ)bθ) + oL2(1) = oL2(1) .

This shows that
〈Oph(1− χ)uh|uh〉L2 −−−−−→

h−→0
0 .

• Second step: using the geometric control condition of Theorem 1.2.
First notice that

Ph = Oph(−ξᵀK(x)ξ + 1)− ihOph(γ(x)) +OL2→L2(h2)

and that we may assume that γ is smooth and bounded and so that it is a symbol of order 0 (see
Section 2). Let a(x, ξ) be a symbol of order 0. By Corollary A.2 in Appendix, the commutator
of Ph and Oph(a) is

[Oph(a), Ph] = −ihOph
(
{ξᵀK(x)ξ, a(x, ξ)}

)
+OL2→L2(h2) .

On the other hand, since Phuh = oL2(h),

〈[Oph(a), Ph]uh|uh〉L2 = 〈Oph(a)Phuh|uh〉L2 − 〈PhOph(a)uh|uh〉L2

= o(h)− 〈Oph(a)uh|P ∗huh〉L2

= −〈Oph(a)uh|(Ph + 2ihγ(x))uh〉L2 + o(h)

= 2ih〈Oph(a)uh|γ(x)uh〉L2 + o(h)

= 2ih〈γ(x)Oph(a)uh|uh〉L2 + o(h)

= 2ih〈Oph(aγ)uh|uh〉L2 + o(h)

Thus, setting g(x, ξ) = ξᵀK(x)ξ, we obtain that

〈Oph(2aγ + {g, a})uh|uh〉L2 −−−−−→
h−→0

0 . (3.4)

Due to Corollary A.3 of Appendix, we will get a contradiction with ‖uh‖L2 = 1 if we find a such
that 2aγ + {g, a} is uniformly bounded away from zero. Assume that a(x, ξ) is constant equal to
1 for large ξ, then 2aγ+{g, a} is a symbol of order 0. Moreover, the first step of this proof shows
that modifying 2aγ + {g, a} away from the sphere Σ = {(x, ξ), ξᵀK(x)ξ = 1} has no influence on
(3.4). Thus, it is sufficient to exhibit a symbol a such that 2aγ+{g, a} is uniformly bounded and
stay uniformly away from zero on Σ.
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Let us recall that ϕt is the Hamiltonian flow associated to g and that T is a time such that
the mean value 〈γ〉T (x, ξ) = 1

T

∫ T
0 γ(ϕt(x, ξ))dt is uniformly bounded away from 0 away from Σ,

according to Assumption (GCC) of Theorem 1.2. We choose a(x, ξ) = ec(x,ξ) with

c(x, ξ) =
2

T

∫ T

0
(T − t)γ(ϕt(x, ξ)) dt =

2

T

∫ T

0

∫ t

0
γ(ϕs(x, ξ)) ds dt .

By definition of the Hamiltonian flow, for any function f ∈ C1(R2d,R), we have

{g, f}(x, ξ) = ∂τf(ϕτ (x, ξ))|τ=0 .

Since

c(ϕτ (x, ξ)) =
2

T

∫ T

0
(T − t)γ(ϕt+τ (x, ξ)) dt

=
2

T

∫ T+τ

τ
(T − t+ τ)γ(ϕt(x, ξ)) dt

we get that

{g, c}(x, ξ) =
2

T

∫ T

0
γ(ϕt(x, ξ)) dt− 2γ(x, ξ) = 2〈γ〉T (x, ξ)− 2γ(x, ξ) .

Thus, we have
2aγ + {g, a} = 2ec(x,ξ)〈γ〉T (x, ξ) .

By assumption (GCC) of Theorem 1.2 and since c ≥ 0, there exists α > 0 such that, for all
(x, ξ) ∈ Σ, 2aγ+ {g, a} ≥ α > 0. As explained above, we can neglect any (x, ξ) away from Σ and
this yields that

〈Oph(2aγ + {g, a})uh|uh〉L2 ∼ 〈Oph

(
2ec(x,ξ)〈γ〉T (x, ξ)

)
uh|uh〉L2 ≥ 2α‖uh‖2L2 ,

which contradicts (3.4) since ‖uh‖L2 = 1. �

4 Proof of Theorem 1.2: low frequencies

We now have to deal with the low frequencies to finish the proof of Theorem 1.2. This is done
by using Carleman estimates. Notice that the same tool will provide the logarithmic decay of
Theorem 1.3 (see Section 5).

In this section, we fix first a real number µ and we assume that there is a sequence (Un) with
‖Un‖X = 1 and (A− iµ)Un −→ 0, that is that Un = (un, vn) satisfies vn = iµun + oH1(1) and

(∆K − Id)un − iµγ(x)un + µ2un = oL2(1) . (4.1)

We work with γ ∈ C∞b (Rd) satisfying the geometric control condition (GCC) of Theorem 1.2 (see
Section 2). This condition yields that, for any (x, ξ) ∈ Σ, the ray of length T contains a point y
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such that γ(y) ≥ α/T . Since the metric K is uniformly bounded, we can find a sequence (xn) ⊂ Rd
such that γ(xn) ≥ α/T and any point of Rd is at bounded distance L of the set ∪n{xn}. Since γ
is uniformly continuous, we can find r, a > 0 such that γ(x) ≥ a > 0 on ∪nB(xn, r). This is the
control by a network of balls (NCC) stated in Theorem 1.3, which will be a sufficient condition
to control the low frequencies in this section. We will denote by ω the set ω = ∪nB(xn, r).

As a first basic computation, we can multiply (4.1) by un and integrate. Taking real and
imaginary parts, we obtain

‖un‖2H1 = µ2‖un‖2L2 + o(1) and

∫
Rd

γ(x)|un(x)|2 dx −−−−−→
n−→∞

0 . (4.2)

Also notice that ‖vn‖L2 = µ‖un‖L2 + o(1). Thus, if µ = 0 we obtain a contradiction between
‖Un‖X = 1 and ‖Un‖X ∼ µ‖un‖L2 + o(1). Assume from now on that µ 6= 0, we get that ‖Un‖X is
equivalent to ‖un‖L2 and, up to a renormalisation, we can assume that (un) satisfies ‖un‖L2 = 1.

Now, we can multiply (4.1) by ∆Kun and integrate. The real part of the result shows that
‖∆Kun‖2 = O(1) + 〈oL2(1)|∆Kun〉L2 , which implies that ‖∆Kun‖ is bounded. Then, considering
the imaginary part, we get that∫

Rd

γ(x)|∇un(x)|2 dx −−−−−→
n−→∞

0 . (4.3)

• First step: using Hörmander sub-ellipticity argument.
We set P = ∆K − iµγ(x) + (µ2 − 1)Id and

Qh = h2eϕ/h(−∆K + (1− µ2)Id)e−ϕ/h .

We follow the classical arguments (see for example [19]). We have

Qhu = −h2∆Ku+ 2h∇ϕᵀK(x)∇u+ u(−∇ϕᵀK(x)∇ϕ+ h∆K(ϕ) + h2(1− µ2)) .

With the notations of the Appendix A, using −h2∆K = Oph(ξᵀK(x)ξ), h∇ = Oph(iξ) and
Proposition A.1, we obtain that

Qh = Oph (ξᵀK(x)ξ −∇ϕᵀK(x)∇ϕ+ 2i∇ϕᵀK(x)ξ) +OL2→L2(h2) .

We set Qh = QRh + iQIh +OL2→L2(h2) with

QRh = Oph(qR) = Oph(ξᵀK(x)ξ −∇ϕᵀK(x)∇ϕ)

QIh = Oph(qI) = Oph(2∇ϕᵀK(x)ξ) .

We use Proposition A.4 in Appendix to check that QRh and QIh are self-adjoint operators and
Corollary A.2 shows that

‖Qhu‖2L2 = ‖QRh u‖2L2 + ‖QIhu‖2L2 + 〈QRh u|iQIhu〉L2 + 〈iQIhu|QRh u〉L2 +O(h2‖u‖2L2)

= 〈((QRh )2 + (QIh)2 + i[QRh , Q
I
h])u|u〉L2 +O(h2‖u‖2L2)

≥ h〈Oph(η(q2
R + q2

I ) + {qR, qI})u|u〉+O(h2‖u‖2L2) (4.4)
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where η is any number such that ηh ≤ 1. Let

B =

{
(x, ξ) ∈ R2d ,

Kinf

2Ksup
|∇ϕ(x)| ≤ |ξ| ≤ 2Ksup

Kinf
|∇ϕ(x)|

}
.

Notice that qR is uniformly away from 0 for (x, ξ) outside B. Assume that ϕ satisfies the sub-
ellipticity criterion: There exists α > 0 such that

{qR, qI}(x, ξ) ≥ α > 0 on ((Rd \ ω)× Rd) ∩ {(x, ξ); qR(x, ξ) = qI(x, ξ) = 0} (4.5)

Then, taking η sufficiently large, η(q2
R + q2

I ) + {qR, qI} is uniformly positive on Rd \ω. Moreover,
the behaviour for large |ξ| is given by q2

R, thus we have that η(q2
R + q2

I ) + {qR, qI} is a symbol of
order 4 and there is a positive constant α > 0 such that

η(q2
R + q2

I ) + {qR, qI} ≥ α(1 + |ξ|2)2 on (Rd \ ω)× Rd .

Using G̊arding inequality stated in Proposition A.6 in Appendix and (4.4), we obtain that, if
(4.5) holds, then there is c > 0 such that

‖Qhu‖2L2 ≥ ch‖u‖2L2 for all u satisfying u|ω ≡ 0 . (4.6)

To obtain a contradiction with (4.1) and ‖un‖L2 = 1, we proceed as follows. Let χ ∈ C∞b (R, [0, 1])
be a function such that χ(s) = 0 for s ≥ a and χ ≡ 1 in a neighbourhood of 0. We have that
χ ◦ γ vanishes on ω and, since (1 − χ ◦ γ) vanishes on {x, γ(x) ≤ ν} for some small ν > 0, any
derivative of χ◦γ is controlled by κγ for κ large enough. We set vn = eϕ/h(χ◦γ)un and compute

Qhvn = h2eϕ/h(−P − iµγ)(χ ◦ γ)un

= − h2eϕ/h(χ ◦ γ)Pun − iµh2eϕ/hγ(χ ◦ γ)un − 2h2eϕ/h∇(χ ◦ γ)ᵀK(x)∇un
− h2eϕ/hun∆K(χ ◦ γ)

= oL2(1) when n→ +∞ and h > 0 is fixed.

where we used the fact that γun and γ∇un goes to zero in L2(Rd). Now, remember that un −
(χ ◦ γ)un is supported on {x, γ(x) ≥ ν} and thus also goes to zero in L2. For h fixed, ‖vn‖L2 is
thus uniformly positive since eϕ/h(x) ≥ eminϕ/h > 0 and ‖(χ ◦ γ)un‖L2 → 1. Since vn vanishes on
ω, this is an obvious contradiction with (4.6) and Qhvn = oL2(1) shown above.

• Second step: Carleman weight ϕ = eλψ.
The usual way to obtain a weight ϕ satisfying Hörmander sub-elliptic assumption (4.5) consists
in choosing ϕ = eλψ, with a function ψ, whose critical points belongs to ω = ∪nB(xn, r), and λ
large enough. We reproduce here this argument with an obvious care about uniformity.

Assume that ϕ = eλψ for some constant λ and that ψ ∈ C∞b (Rd) is such that there exists
α > 0 such that |∇ψ(x)| ≥ α > 0 for all x ∈ Rd \ ω. A straightforward computation yields

{qR, qI} = ∂ξ (ξᵀK(x)ξ) ∂x

(
λeλψ∇ψᵀK(x)ξ

)
− ∂x

(
ξᵀK(x)ξ − λ2e2λψ∇ψᵀK(x)∇ψ

)
∂ξ

(
λeλψ∇ψᵀK(x)ξ

)
≥ λ4e3λψ(∇ψᵀK(x)∇ψ)2 +O(|ξ|2λeλψ) +O(λ3e3λψ)
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where the estimations O(·) hold for |ξ| and λ going to +∞. Notice that, when (x, ξ) belongs to
B, |ξ| is of order O(λeλψ(x)). Since |∇ψ(x)| ≥ α > 0 on Rd \ ω, we can fix λ large enough, such
that the positive term λ4e3λψ(∇ψᵀK(x)∇ψ)2 controls the last two terms (with indefinite sign),
when (x, ξ) belongs to B and x 6∈ ω.

• Third step: construction of the appropriate Carleman phase ψ.
To summarise, the above arguments show that, if we are able to construct a suitable phase ψ,
then the sub-elliptic criterium (4.5) would hold and also the uniform positivity property (4.6).
This will provide a contradiction between (4.1) and ‖un‖L2 ≡ 1, as described below Equation
(4.6). This will yield the control of the low frequencies and finished this section.

Thus, we only have to construct ψ ∈ C∞b (Rd,R) such that |∇ψ| is uniformly positive outside
ω = ∪nB(xn, r). We recall that the points xn are assumed to form a network in the sense that
any point x ∈ Rd is at distance at most L of a point xn. We split Rd in cubes (Ck)k∈Zd of size 4L
by setting Ck = 4Lk + [−2L, 2L]d. For each k ∈ Zd, the center of Ck is ck = 4Lk and there is at
least one of the points xn which is in ck + [−L,L]d, let us denote it yk. For each k, one can find a
C∞−diffeomorphism with compact support in the interior of Ck such that yk is mapped onto ck.
We glue all these diffeomorphisms into a diffeomorphism Φ of Rd mapping all the yk onto the ck
and we notice that we can make this construction such that Φ and Φ−1 belong to C∞b (Rd,R) (an
explicit construction is given in [22]). Consider

ψ(x) = ψ̃ ◦ Φ(x) with ψ̃(x) =
d∑
i=1

cos
(πxi

4L

)
.

Obviously, |∇ψ̃| is uniformly positive outside ∪nB(cn, ρ) for any ρ > 0. Thus, |∇ψ| is uniformly
positive outside ∪nB(xn, r), which concludes this section.

5 Proof of Theorem 1.3

The proof of Theorem 1.3 relies on the same arguments than the ones of Sections 2 and 4. We
will only outline them.

Instead of Theorem 2.1, we use the following characterisation of the logarithmic rate of decay
given by Theorem 3 of Burq [7].

Theorem 5.1 (Burq, [7, Theorem 3]). Let A be maximal dissipative operator (and hence the
generator of eAt a C0−semigroup of contractions) in a Hilbert space X and assume that there
exist C, c > 0 such that iR ⊂ ρ(A) and

∀µ ∈ R, ‖(A− iµId)−1‖L(X) < Cec|µ|. (5.1)

Then for any k > 0 there exists Ck such that for any t > 0,∥∥∥∥ etA

(1−A)k

∥∥∥∥
L(X)

≤ Ck
log(2 + t)k

.

First notice that the estimate (5.1) is already proved for low frequencies in Section 4. Thus,
it is enough to prove it for large µ (say µ = h−1, h → 0+, the case of negative µ being similar).

14



We are consequently in a high frequency regime, but are nevertheless going to use the approach
developed in the previous section for low frequencies, based on Carleman weight and Hörmander
sub-ellipticity argument. Indeed, a simple adaptation allows to prove similar Carleman estimates
in the high-frequency regime (and hence for the semi-classical Helmoltz operator) by tracking the
exponential dependence of the constants with respect to the frequency parameter.

As in Section 2, we can assume that γ is smooth by arguing by contradiction: assume that
there exist two sequences (Un) = (un, vn) ⊂ D(A) = H2(Rd) ×H1(Rd) and (µn) −→ +∞ such
that ‖Un‖2X = 1 and ‖(A − iµn)Un‖X goes to 0 in X faster than any exponential. Once again,
we have Re(〈(A− iµn)Un|Un〉X) = −

∫
γ(x)|vn(x)|2 dx, which shows that γvn is decaying as fast

as (A − iµn)Un. As in the second step of Section 2, we can replace γ by a smooth damping
γ ∈ C∞b (Rd) satisfying γ ≤ γ without changing the fact that ‖(A − iµn)Un‖X goes to 0 in X
faster than any exponential. Notice that, if γ satisfies Hypothesis (NCC) of Theorem 1.3, then
one can easily construct a smooth damping γ ≤ γ also satisfying (NCC).

We would like to show (5.1) for large µ. As previously, simple calculations show that it is
enough to prove a similar estimate on ((∆K − Id)− iµγ(x) + µ2)−1:

∃C, c > 0 , ∀µ ∈ R , |||((∆K − Id)− iµγ(x) + µ2)−1|||L(L2(Rd)) ≤ Cec|µ| . (5.2)

We use the arguments and the notations of Section 4.
Let (u, f) solutions to ((∆K − Id)− iµγ(x) + µ2)u = f , i.e., setting h = 1/µ,

(h2∆K − ihγ(x) + (1− h2))u = h2f .

Let
Q̃h = eϕ/h(−h2∆K + (h2 − 1)Id)e−ϕ/h .

We have Q̃h = Q̃Rh + iQ̃Ih +O(h2) with

Q̃Rh = Oph(q̃R) = Oph(ξᵀK(x)ξ −∇ϕᵀK(x)∇ϕ− 1)

Q̃Ih = Oph(q̃I) = Oph(2∇ϕᵀK(x)ξ) .

In this setting, we shall assume that the phase function ϕ ∈ C∞b (Rd) satisfies Hörmander hypo-
ellipticity condition: there exists α > 0 such that

{q̃R, q̃I}(x, ξ) ≥ α > 0 on ((Rd \ ω)× Rd) ∩ {(x, ξ); q̃R(x, ξ) = q̃I(x, ξ) = 0} (5.3)

The same proof as in the previous section shows that, under this condition, if v vanished in ω,
then for h > 0 small enough,

‖v‖L2 ≤
C

h
‖Q̃hv‖L2 .

Coming back to u, applying the previous estimate to v = eϕ(x)/hχ̃u with a cutoff χ̃ = χ ◦ γ as in
the previous section, we get

‖u‖L2 ≤ Chec/h‖χ̃f − (2(∇χ̃)ᵀK(x)∇+ ∆K χ̃)u‖L2 + Cec/h‖γχ̃u‖L2 ,

where c = supx,y∈R2 |ϕ(x) − ϕ(y)|. Remember that all the terms involving u in the right-hand
side are controlled by γu, itself being controlled by the usual computation

∫
γ|u|2 = −hRe(

∫
fu).
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We can now proceed by contradiction and conclude the proof of the estimate (5.2) exactly as in
the previous section: it is impossible to have sequences (µn) = (1/hn), (un) and (fn) such that
‖un‖ = 1, hn → 0 and (fn) goes to zero faster than any exponential e−κµn .

To conclude, it remains to construct the Carleman weight ϕ = eλψ satisfying Hörmander
hypo-ellipticity condition. This is done exactly as in Section 4. Notice that the only difference
here with the low frequency case is that q̃R = qR − 1. However, during the construction, this
additional term 1 generates terms which are of order λ2eλΨ. Thus, this will not perturb the
exponential bound of the estimate.

6 Applications to other problems

The exponential decay of the linear semigroup eAt is an essential assumption for obtaining several
dynamical properties of the damped wave equations. In this section, we emphasise different
results, which are corollaries of Theorem 1.2. Each result was already known with stronger
assumptions implying the exponential decay of eAt. Since we have obtained this decay with
weaker conditions, we can improve on these results.

6.1 Stabilisation in uniformly local Sobolev spaces

Theorem 1.2 concerns the solutions of the damped wave equation with finite energy. In an
unbounded domain, a natural question would be to consider solutions with infinite energy. For
this reason, we introduce the uniformly local Sobolev spaces as follows. For any u ∈ L2

loc(Rd), we
set

‖u‖L2
ul

= sup
ξ∈Rd

(∫
B(ξ,1)

|u(x)|2dx
)1/2

= sup
ξ∈Rd

‖u‖L2(B(ξ,1)) . (6.1)

The uniformly local Lebesgue space is defined as

L2
ul(Rd) =

{
u ∈ L2

loc(Rd)
∣∣∣ ‖u‖L2

ul
<∞ , lim

ξ→0
‖u(· − ξ)− u‖L2

ul
= 0
}
, (6.2)

In a similar way, for any k ∈ N, we introduce the uniformly local Sobolev space

Hk
ul(Rd) =

{
u ∈ Hk

loc(Rd)
∣∣∣ ∂jxiu ∈ L2

ul(Rd) for i = 1, . . . , d and j = 0, 1, . . . , k
}
, (6.3)

which is equipped with the natural norm ‖u‖Hk
ul

=
(∑d

i=1

∑k
j=0 ‖∂

j
xiu‖2L2

ul

)1/2
. As shown in

[11], the damped wave equation (1.1) is well defined on H1
ul(Rd) × L2

ul(Rd). The assumption
limξ→0 ‖u(· − ξ) − u‖L2

ul
= 0 in (6.2) introduces a continuity with respect to translations, which

plays the role of the uniform continuity for continuous functions. It could be possible to work
without this assumption, however H1

ul(Rd) would not be dense in L2
ul(Rd) in this case, which is

troublesome. That is why the assumption limξ→0 ‖u(·− ξ)−u‖L2
ul

= 0 in (6.2) may be important
for the functional analysis.

We have the following result.

Theorem 6.1. Assume that the assumptions of Theorem 1.2 hold. Then the semigroup generated
by the damped wave equation (1.1) on H1

ul(Rd)×L2
ul(Rd) is exponentially decreasing. There exist
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M and λ > 0 such that, for any solution U(t) = (u(t), ∂tu(t)) of (1.1) with U(0) ∈ H1
ul(Rd) ×

L2
ul(Rd), we have

‖U(t)‖H1
ul×L

2
ul
≤Me−λt‖U(0)‖H1

ul×L
2
ul

Proof: It is sufficient to show that there exists a time T > 0 and C ∈ (0, 1) such that

‖U(T )|B(ξ,1)‖H1×L2 ≤ C‖U(0)‖H1
ul×L

2
ul

(6.4)

for all solutions of (1.1) and all ξ ∈ Rd. Due to the finite speed of propagation of informations and
due to the bounds on the metric K(x), U(T )|B(ξ,1) only depends on the values of U(0)|B(ξ,1+κT )

for some κ > 0. Applying Theorem 1.2 to the solution corresponding to a compactly supported
truncation of U(0), we have that

‖U(T )|B(ξ,1)‖H1×L2 ≤Me−λT ‖U(0)|B(ξ,2+κT )‖H1×L2 ≤ Ne−λTT d‖U(0)‖H1
ul×L

2
ul

since the ball B(ξ, 2 + κT ) can be covered by a number O(T d) of balls of radius 1. For T large
enough, we obtain (6.4), which shows the result. �

6.2 Linear control

By HUM Method of Lions (see [23]), the exponential decay of the linear semigroup eAt is equiv-
alent to the controllability of the linear wave equation (in large time). We denote by 11ω the
function 11ω ≡ 1 on ω and 0 elsewhere.

Corollary 6.2. Let ω be an open subset of Rd and assume that the hypotheses of Theorem 1.2
hold with γ = 11ω. Then, there exists T > 0 such that, for any (u0, u1) ∈ H1(Rd) × L2(Rd) and
any (ũ0, ũ1) ∈ H1(Rd)×L2(Rd), there exists a control v ∈ L1((0, T ), L2(ω)) such that the solution
u of {

∂2
ttu− div(K(x)∇u) + u = 11ωv(x, t) (t, x) ∈ (0, T )× Rd ,

(u, ∂tu)(·, 0) = (u0, u1)

satisfies (u, ∂u)(·, T ) = (ũ0, ũ1).

6.3 Global attractor and stabilisation for the non-linear equation

Another related problem is the asymptotic behaviour of the non-linear equation as studied in
[33], [10], [9] or [16]. One considers the non-linear equation{

∂2
ttu+ γ(x)∂tu = div(K(x)∇u)− u− f(x, u) (t, x) ∈ R+ × Rd ,

(u, ∂tu)(·, 0) = (u0, u1) ∈ H1(Rd)× L2(Rd) (6.5)

with f(x, s) ∈ C1(Rd × R,R) compactly supported in x, satisfying

|f(x, s)| ≤ C(1 + |s|)p and |f ′(x, s)| ≤ C(1 + |s|)p−1 (6.6)

with 1 ≤ p < (d+ 2)/(d− 2) (or any p ≥ 1 if d < 3) and

lim inf
|s|→+∞

max
x∈supp(f)

f(x, s)s ≥ 0 . (6.7)
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To each solution of (6.5), one can associate the energy

E(u) := E(u, ∂tu) =
1

2

∫
Rd

(|∂tu|2 + |∇uᵀ.K(x).∇u|+ |u|2) +

∫
Rd

V (x, u) ,

where V (x, u) =
∫ u

0 f(x, s)ds. This energy is non-increasing since

∂tE(u(t)) = −
∫
Rd

γ(x)|∂tu(x, t)|2 dx .

Notice that (6.6) implies that the energy is well defined and that (6.7) shows that the energy
is bounded from below and that the bounded sets of X = H1(Rd) × L2(Rd) are equivalent to
the sets of bounded energy. Thus any trajectory of (6.5) has a non-increasing energy and stays
bounded in X. Assume now that the semigroup eAt is exponentially stable, then any trajectory
U = (u, ∂tu) satisfies

U(t) = eAtU(0) +

∫ t

0
eA(t−s)

(
0

f(x, u(x, s))

)
ds . (6.8)

The first term of (6.8) is decaying exponentially fast and the integral term is compact since
f is compactly supported in x and due to either the compact Sobolev embedding H1 ↪→ L2p

for p < d/(d − 2) or to more technical arguments based on the Strichartz estimates for p ∈
[d/(d − 2), (d + 2)/(d − 2)) (see [9] and see [16]). Thus, following the ideas of [9] and [16], we
obtain that any solution is asymptotically compact and converges to a trajectory with constant
energy. Now, we would like to show that the energy E associated to (6.5) is a Lyapounov
function, that is that it is non-increasing and cannot be constant along a solution u(t), except
of course if u(t) is an equilibrium point. If (6.5) admits a Lyapounov function, one says that
the corresponding dynamical system is gradient. In particular, it cannot admit periodic orbits,
homoclinic orbits. . . The gradient structure of (6.5), together with its asymptotic compactness,
will also ensure the existence of a compact global attractor, that is a compact invariant set of X
which attracts all the trajectories of (6.5). This set is a central object of the theory of dynamical
systems. It contains all the solutions u(t), which exist for all t ∈ R and which are uniformly
bounded in H1(Rd) × L2(Rd) for all t ∈ R (as equilibrium points, heteroclinic orbits etc.). See
for example [13] and [31] for a review on the concepts of compact global attractors, of asymptotic
compactness or of gradient structure.

To show that the energy E is a Lyapounov function, that is that it cannot be constant along
a trajectory, except if this trajectory is an equilibrium point, one has to use a suitable unique
continuation property. In [33] and [9], the authors use a unique continuation property, which
needs geometric assumptions stronger than the one required for the exponential decay of eAt.
However, we have shown in [16] that the geometric assumptions required for the exponential
decay of eAt are sufficient if we assume that f is smooth and partially analytic. Thus, we can
improve the result of [16] by using a weaker assumption than the one that γ ≥ α > 0 outside a
compact set.

Corollary 6.3. Assume that the hypotheses of Theorem 1.2 hold. Also assume that f ∈ C∞(R×
R,R) satisfies (6.6) and (6.7) and that f is compactly supported in x and analytic with respect to
u. Then the dynamical system generated by (6.5) in H1

0 (Rd) × L2(Rd) is gradient and admits a
compact global attractor A.
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Moreover, if f(x, u)u ≥ 0 for any (x, u) ∈ Rd+1, then the semilinear damped wave equation
(6.5) is stabilised in the sense that for any E0 ≥ 0, there exist K > 0 and λ > 0 such that, for all
solutions u of (6.5) with E(u(0)) ≤ E0, E(u(t)) ≤Me−λtE(u(0)) for all t ≥ 0.

Of course, in the one-dimensional case d = 1, the unique continuation property holds without
any additional assumption. We obtain the following result, where one can omit the assumption
γ ≥ α > 0 close to ±∞ used in [33].

Corollary 6.4. Assume that the hypotheses of Theorem 1.2 hold in dimension d = 1 and that
f ∈ C1(R) satisfies (6.6) and (6.7) and that f is compactly supported in x. Then the dynamical
system generated by (6.5) in H1

0 (R)×L2(R) is gradient and admits a compact global attractor A.
Moreover, if f(x, u)u ≥ 0 for any (x, u) ∈ R2, then the semilinear damped wave equation (6.5)

is stabilised.

Notice that Corollaries 6.3 and 6.4 are not exactly generalisations of the results of [16] and
[33]. Indeed, f is assumed to be compactly supported in x. In [16] and [33], because of the
assumption γ ≥ α > 0 outside a compact set, one is able to deal with nonlinearities f being not
compactly supported.

This type of non-linear stabilisation results is also closely related to the problem of global
control of the non-linear wave equation, see [9], [16] and [17]. For example, one gets the following
result in dimension d = 1.

Corollary 6.5. Let ω be an open subset of R. Assume that there exist L > 0 and ε > 0 such that
ω contains an interval of length ε in any interval [x, x + L], x ∈ R. Let also f ∈ C1(R × R,R)
compactly supported in x and satisfying (6.7).

Then, for all E0 ≥ 0, there exists T > 0 such that, for any (u0, u1) and (ũ0, ũ1) ∈ H1(R) ×
L2(R) with energy E less than E0, there exists a control v ∈ L1((0, T ), L2(ω)) such that the
solution u of{

∂2
ttu− div(K(x)∇u) + u+ f(x, u) = 11ωv(x, t) (t, x) ∈ (0, T )× R ,

(u, ∂tu)(·, 0) = (u0, u1)

satisfies (u, ∂u)(·, T ) = (ũ0, ũ1).

A Appendix: pseudo-differential semiclassical calculus

In section, we recall the main results and notations of pseudo-differential calculus, which are used
in this paper. The details and the proofs could be found in many textbooks, as [34], [24], [1] or
[19].

Let h > 0 be a small parameter, say that h ∈ (0, 1]. We say that a(x, ξ) ∈ C∞(Rd × Rd) is a
symbol of order m if, for any multi-indices α and β, there exists Cα,β such that

sup
(x,ξ)∈R2d

|∂αx ∂
β
ξ a(x, ξ)| ≤ Cα,β(1 + |ξ|)m−|β|

and m is the smallest number such that this bounds holds. To each symbol a, we associate the
pseudo-differential semiclassical operator denoted by Oph(a) and defined by Weyl quantization

Oph(a)u =
1

(2π)n

∫
R2d

ei(x−y).ξ a

(
x+ y

2
, hξ

)
u(y) dy dξ . (A.1)

19



If a is of order m, then, for any s > 0, Oph(a) is a bounded operator from Hs(Rd) into Hs−m(Rd),
uniformly with respect to h ∈ (0, 1].

Let f ∈ C∞(Rd,R) be a smooth bounded function such that all its derivative are also bounded
functions of L∞(Rd). It is not so trivial but well known that the simple operator u 7→ f(x)u has
for symbol f(x), which is of order 0 (see for example Chapter 4 of [34]). More classically, we have
that the operator h∇ has for symbol iξ, which is of order 1. Using Proposition A.1 below, one
can check that the operator h2∆K = h2div(K(x)∇·) has for principal symbol −ξᵀ.K(x).ξ in the
sense that

h2∆K = Oph(−ξᵀ.K(x).ξ) +OL2→L2(h2) .

Composing two pseudo-differential operators, one obtain a pseudo-differential operator, which
symbol can be express by an asymptotic development. In this paper, we will simply use the
following cases, see [34], [24], [1] or any other textbooks on pseudo-differential calculus for more
precise developments and for proofs.

Proposition A.1 (Composition). Let a and b be two symbols of order m and n respectively.
Assume that m + n ≤ 2, then Oph(a) ◦ Oph(b) is a pseudo-differential operator of order m + n
and its symbol (a#b) satisfies

a#b = ab− ih

2
{a, b}+OL2→L2(h2)

where {a, b} = ∂ξa∂xb − ∂ξb∂xa is the Poisson bracket of a and b and is of order m + n − 1. In
particular, if m+ n ≤ 1, then

Oph(a) ◦Oph(b) = Oph(ab) +OL2→L2(h) .

Corollary A.2 (Commutators).

i) If a is of order 1 or less and if b is of order 0, then the commutator [Oph(a),Oph(b)] =
Oph(a) ◦Oph(b)−Oph(b) ◦Oph(a) is of order 0 or less and of estimate OL2→L2(h).

ii) If a is of order 2 and if b is of order 0, then their commutator is of order 1 and

[Oph(a),Oph(b)] = −ihOph({a, b}) +OL2→L2(h2) .

Corollary A.3 (Inverse). Assume that a is a symbol of order m ≥ 0 such that there exists α > 0
such that |a(x, ξ)| ≥ α for all (x, ξ) ∈ R2d. Then b = 1/a is a symbol of order −m and Oph(b) is
a first order inverse of a in the sense that

Oph(a) ◦Oph(b) = Id+OL2→L2(h) and Oph(b) ◦Oph(a) = Id+OL2→L2(h)

In particular, Oph(a) is invertible for h sufficiently small.

Simply using the definition (A.1) and a straightforward computation, we obtain the expression
of the adjoint operator.

Proposition A.4 (Adjoint operator). Let a be a symbol of order m ≥ 0 and u ∈ Hm(Rd). Then,

(Oph(a))∗ = Oph(a) and Re(〈Oph(a)u |u 〉L2) = 〈Oph(Re(a))u |u 〉L2 .
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We will also use a version of G̊arding inequality. We give a complete proof since in many
cases, the result is stated for functions defined in a compact domain rather than in Rd, which
avoids the question of uniformity of the constants.

Proposition A.5 (G̊arding inequality). Let a be a symbol of order m ≥ 0 such that there exists
a positive constant α and 0 ≤ k ≤ m such that, for all (x, ξ) ∈ R2d, Re(a(x, ξ)) ≥ α(1 + |ξ|)k > 0.
Then, there exists c > 0 such that, for any u ∈ Hm(Rd) and any h > 0 sufficiently small,

Re(〈Oph(a)u |u 〉L2) ≥ c
(
‖u‖2L2 + hk/2‖u‖2

Hk/2

)
.

Proof: Assume first that k = 0. We define b(x, ξ) =
√

Re(a(x, ξ)). We notice that b is a well
defined symbol of order m/2 and Oph(b) is invertible in the sense of Corollary A.3. In particular,
there exists κ > 0 such that ‖Oph(b)u‖ ≥ κ‖u‖2 for any h small enough. Using Proposition A.4,
we get that

Re(〈Oph(a)u |u 〉L2) = 〈Oph(b2)u |u 〉L2 = 〈Oph(b)2u |u 〉L2 +O(h)‖u‖2L2

= 〈Oph(b)u |Oph(b)u 〉L2 +O(h)‖u‖2L2

≥ (κ2 +O(h))‖u‖2L2 ,

which concludes for h small enough.
Now, if k > 0, we consider ã = a− β(1 + |ξ|2)k/2, which satisfies the proposition for k = 0 if

β is small enough. We get that

Re(〈Oph(a)u |u 〉L2) − β〈Oph((1 + |ξ|2)k/2)u |u 〉L2 ≥ c‖u‖2L2 .

To conclude, we only have to remark that 〈Oph((1 + |ξ|2)k/2)u |u 〉L2 is equivalent to ‖u‖2L2 +

hk/2‖u‖2
Hk/2 . �

It is also common to use G̊arding inequality for functions vanishing on some part of Rd. In
this case, we have to be more careful about the uniformity of the positive constants, which leads
use to work with k = m .

Proposition A.6 (G̊arding inequality with truncation). Let a be a symbol of order m ≥ 0 and ω
be a subset of Rd. Assume that there exists a positive constant α such that, for all x ∈ Rd \ω and
all ξ ∈ Rd, Re(a(x, ξ)) ≥ α(1+ |ξ|)m > 0. Then, there exists c > 0 such that, for any u ∈ Hm(Rd)
such that u|ω ≡ 0 and any h > 0 sufficiently small,

Re(〈Oph(a)u |u 〉L2) ≥ c
(
‖u‖2L2 + hm/2‖u‖2

Hm/2

)
.

Proof: We set Ωε = {x ∈ Rd, d(x,Rd \ ω) < ε}. Notice that, by definition of a symbol of order
m ≥ 0, we have ∂xa(x, ξ) ≤ C(1 + |ξ|2)m/2, which implies that we still have Re(a(x, ξ)) ≥ α̃(1 +
|ξ|2)m/2 > 0 for α̃ ∈ (0, α) in Ωε for some small ε > 0. Due to the distance ε > 0 between Rd \Ωε

and Rd \ω, we can construct a function χ ∈ C∞b (Rd, [0, 1]) with support in ω and which is equal to
1 outside Ωε. It is then sufficient to apply Proposition A.5 to ã(x, ξ) = a(x, ξ)+(1+ |ξ|2)m/2χ(x).
�
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Figure 1.a): A periodic two-dimensional
example for which Theorem 1.2 holds: the
semigroup generated by the corresponding

damped wave equation is decaying
exponentially fast.

Figure 1.b): A two-dimensional quasi-periodic
exam[le where only the regularisation condition
in Hypothesis i) is not satisfied. Theorem 1.2

fails to apply because for any uniformly
continuous damping γ̃ satisfying γ̃ ≤ γ, the
infimum of the mean value 〈γ̃〉 is equal to 0.

ï2 ï1 0 1 2 3 4

Figure 1.c): A one-dimensional example where the mean value of the damping 〈γ〉1(x, ξ) is
uniformly positive in Σ, but where Theorem 1.2 does not apply since there is no uniformly
continuous regularisation γ̃ with mean value 〈γ̃〉T uniformly positive for some T and with a

derivative uniformly bounded in R.

Figure 1.d): An example where (NCC) holds but (GCC) does not. A network of balls where
the damping is effective is in dark grey. In this case, the exponential decay of Theorem 1.2 fails
but the logarithmic decay of Theorem 1.3 holds.

Figure 1: Discussion on some examples of damping. In the two-dimensional situations, the
damping is equal to 1 on the grey regions and equal to 0 in the other regions. In the one-
dimensional situation, the figure represents the graph of the damping. In both cases, the metric
is assumed to be flat, i.e. K(x) = Id.
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