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Exponential decay for the damped wave
equation in unbounded domains

Romain Joly∗

Abstract

We discuss the exponential decay of the semigroup generated by the damped wave
equation in an unbounded domain. A typical result is the following. Let d ≥ 1 and
let γ ∈ L∞(Rd) be a periodic non-negative damping such that there exists a length
L > 0 such that any segment of Rd of length L intersects the set {x ∈ R

d, γ(x) > 0}.
Then, there exist M and λ > 0 such that any solution of

∂2
ttu+ γ(x)∂tu = (∆− Id)u (t, x) ∈ R+ × R

d

satisfies

‖u(t)‖H1(Rd) + ‖∂tu(t)‖L2(Rd) ≤ Me−λt
(

‖u(0)‖H1(Rd) + ‖∂tu(0)‖L2(Rd)

)

.
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1 Introduction

The damped wave equation:
In this article, we consider the linear damped wave equation in Rd, with d ≥ 1:
{

∂2
ttu(x, t) + γ(x)∂tu(x, t) = div(K(x)∇u(x, t))− u(x, t) (t, x) ∈ R+ × R

d ,
(u, ∂tu)(·, 0) = (u0, u1) ∈ H1(Rd)× L2(Rd)

(1.1)

where K ∈ C∞(Rd,Md(R)) is a smooth family of real symmetric matrices, which are
uniformly positive in the sense that there exist two positive constants Kinf and Ksup such
that

∀ξ ∈ R
d , Ksup|ξ|2 ≥ ξ⊺.K(x).ξ ≥ Kinf |ξ|2 . (1.2)

The damping coefficient γ ∈ L∞(Rd) is assumed to be a bounded and non-negative func-
tion. We set X = H1(Rd)× L2(Rd) and

A =

(

0 Id
(div(K(x)∇)− Id) −γ(x)

)

D(A) = H2(Rd)×H1(Rd) . (1.3)

We equipped H1(Rd) with the scalar product

〈u|v〉H1 =

∫

Rd

(∇u(x))⊺.K(x).(∇v(x)) + u(x)v(x) dx . (1.4)

Obviously, this scalar product is equivalent to the classical one and direct computations
show that it satisfies

〈(div(K(x)∇)− Id)u|v〉L2 = −〈u|v〉H1 and Re(〈AU |U〉X) = −
∫

γ(x)|v(x)|2 dx

for any U = (u, v) ∈ D(A). Then, one easily checks that A is a dissipative operator and
therefore generates a semigroup eAt on X .

Exponential decay and Hamiltonian flow:
The purpose of this paper is to investigate the exponential decay of the semigroup associ-
ated to (1.1): we wonder if there exist M and λ > 0 such that

∀t ≥ 0 , |||eAt|||L(X) ≤ Me−λt . (1.5)

For the damped wave equation in a bounded domain, it is well known that the exponential
decay is almost equivalent to the fact that all the trajectories of the Hamiltonian flow
intersect the support of the damping (see [16], [3] and [4]). More precisely, to the Laplacian
operator with variable coefficients div(K(x)∇), we associate the symbol g(x, ξ) = ξ⊺.K(x).ξ
and the Hamiltonian flow ϕt(x0, ξ0) = (x(t), ξ(t)) defined on R2d by

ϕ0(x0, ξ0) = (x0, ξ0) and ∂tϕt(x, ξ) = (∂ξg(x(t), ξ(t)),−∂xg(x(t), ξ(t)) . (1.6)
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We introduce the mean value of the damping along a ray a lenght T :

〈γ〉T (x, ξ) =
1

T

∫ T

0

γ(ϕt(x, ξ))dt (1.7)

where we use the obvious notation γ(x, ξ) := γ(x). We also introduce the set Σ of rays of
speed one, that is

Σ = {(x, ξ) ∈ R
2d , ξ⊺K(x)ξ = 1} . (1.8)

Some previous works:
If Ω is a bounded manifold, the uniform positivity of 〈γ〉T (x, ξ) in Σ for some T > 0 implies
that the exponential decay (1.5) holds, as shown in the now famous articles [16], [3] and [4]
of Bardos, Lebeau, Rauch and Taylor. The assumption that there exists T > 0 such that
〈γ〉T (x, ξ) > 0 in Σ is called the geometric control condition. The article [12] underlines in
addition the importance of the value of min(x,ξ)∈Σ 〈γ〉T (x, ξ) in order to control the decay
of the high frequencies.

In the case of an unbounded manifold, two situations have been investigated. First,
some authors have considered the free wave equation (1.1) in an exterior domain (with
γ ≡ 0 or γ > 0 only on a compact subset the exterior domain). They have shown that the
local energy decays to zero in the sense that, under suitable assumptions, the energy of
any solution escapes away from any compact set, see [11], [15] and [2] and the references
therein. Secondly, several works have studied the damped wave equation in an unbounded
manifold and with a non-linearity, but assuming that the damping satisfies γ(x) ≥ α > 0
outside a compact set, see [19], [5] and [9].

Considering these previous works, it appears that one natural case has not been studied:
the exponential decay of the semigroup eAt generated by the damped wave equation on
a whole unbounded manifold, with the geometric control condition only, that is without
assuming that γ ≥ α > 0 outside a compact set. To our knowledge, this case is surprisingly
missing in the literature. The purpose of this article is to investigate this natural problem.

Main results:
We denote by Ck

b (R
d) the set of functions in Ck(Rd) which are bounded, as well as their k

first derivatives. If k = ∞, the bound is not assumed to be uniform with respect to the
derivatives. We recall that 〈γ̃〉T and Σ have been defined in (1.7) and (1.8). For k ∈ Rd

and n ∈ Z
d, we will use the notation nk = (n1k1, n2k2, . . .). Our main result is as follows.

Theorem 1.1. We assume that the non-negative damping γ ∈ L∞(Rd) and the metric
K(x) ∈ C∞(Rd,Md(R)) satisfy:

i) Geometric control condition for a regularized damping:
There exists a damping γ̃ ∈ C1

b (R
d,R) satisfying γ ≥ γ̃ ≥ 0 and such that there exist

T > 0 and α > 0 such that, for all (x, ξ) ∈ Σ, we have 〈γ̃〉T (x, ξ) ≥ α > 0.
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ii) A quasi-periodic framework:
The metric K(x) belongs to C∞

b (Rd,Md(R)) and admits the splitting K(x) =
Kper(x)+Kcomp(x) with Kper being a smooth family of real symmetric matrices satis-
fying (1.2) and Kcomp satisfying |Kcomp(x)|+|DxKcomp| → 0 when |x| → ∞. Morever,
there exist k ∈ Rd with ki 6= 0 for all i = 1, . . . , d such that Kper(x) is k-periodic and
there exist a non-empty open set ω ⊂ Rd and β > 0 such that γ(x+nk) ≥ β > 0, for
all n ∈ Zd and x ∈ ω.

Then, the semigroup generated by the damped wave equation (1.1) is exponentially decreas-
ing that is that there exist M and λ > 0 such that

∀t ≥ 0 , |||eAt|||L(X) ≤ Me−λt . (1.9)

In the one-dimensional case, Hypothesis ii) of Theorem 1.1 is not necessary.

Theorem 1.2. We consider the one-dimensional case d = 1. If Hypothesis i) of Theorem
1.1 holds, then the semigroup generated by the damped wave equation (1.1) is exponentially
decreasing.

Remarks:

• The simplest applications of Theorem 1.1 are the periodic frameworks satisfying the
geometric control condition, see for example Figure 1.a). To our knowledge, the ex-
ponential decay of the semigroup was not known in this simple case. Notice that one
cannot directly use the framework of the torus since the initial data (u0, u1) are not
periodic.

• Of course, the ideas of the proof of Theorem 1.1 may apply to other situations. For
example, if we consider an unbounded manifold without boundary as a cylinder instead
of Rd, then Theorem 1.1 will also hold with the obvious modifications of its statement.

• Theorem 1.2 is stronger than Theorem 1.1 applied to the one-dimensional setting, see
Figure 1.c). The proof of Theorem 1.2 is given in Section 5.

• The exponential decay of the linear semigroup has important applications in the control
theory and the study of dynamics for the wave equations. Some new results are obtained
as corollaries of Theorems 1.1 and 1.2 as explained in Section 6.

• Using the finite speed of propagation of the energy in the damped wave equation, one
could hope to obtain Theorem 1.1 by a basic argument. However, this seems not so
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simple. Indeed, one could try to decompose the initial data into a sum of functions of
bounded support, but the problem is that one cannot split a H1−function into a sum of
compactly supported H1−functions without increasing the H1−energy. Another idea
could be to restrict the initial data into a sufficiently large ball B(0, R) and to observe
it during a time T in the ball B(0, R + T ), which is a compact domain. However, the
relevant time T , during which one has to wait to observe the exponential decay, may
depend on the domain B(0, R + T ), itself depending on the time T . . . That is why our
proof of Theorem 1.1 goes back to the fundamental arguments of the classical compact
case: control the high frequencies by using semiclassical calculus and Hypothesis i) (see
Section 3) and control the low frequencies by an analysis of the spectrum of a wave
operator and by using Hypothesis ii) (see Section 4). The important of the controls of
both high and low frequencies is made clear in [12].

• One of the novelties appearing in the statement of Theorems 1.1 and 1.2 is the requiere-
ment that γ can be regularized into a smaller C1

b−damping γ̃ satisfying the geometrical
conditions. The fact that the derivative of γ̃ can be taken uniformly bounded is impor-
tant in order to apply the pseudo-differential calculus or to use the multipliers techniques
(see Sections 3 and 5). Of course, in the usual compact case, this assumption was auto-
matically satisfied. In Figures 1.b) and 1.d), we show examples where all the Hypotheses
of our main results apply, if one neglects the regularisation hypothesis. In these cases, it
could natural to expect the exponential decay of the semigroup, but this is still an open
problem. Notice that the simple requierement that γ belongs to L∞ is not sufficient to
define properly the mean value 〈γ〉T (x, ξ) everywhere. This could be a hint that the
regularisation assumption is not just a technical one.

Acknowledgements: The author is greatly indebted to Jean-François Bony and Yves
Colin de Verdière for fruitful discussions, which have been essential to this paper.

2 Proof of Theorem 1.1

In this section, we outline the proof of our main theorem. The real technical parts of its
proof will be detailled in Sections 3 and 4.

There exist several ways to obtain the exponential decay (1.9) of the semigroup eAt.
The most classical one is to argue by contradiction to establish the observation inequality
E(v(0)) ≤ C

∫ T

0
γ|∂tv|2dt for some T > 0 and any solution v of the free wave equation

(see for example [7] for the relation between this observation estimate and the exponential
decay of the damped semigroup). A less usual method consists in uniformly estimating
the resolvant (A − λId)−1 on the imaginary axis (see for example chapter 5 of [20]). We
use here this last method as a direct corollary of the result of [8] stated below. With this
method, the control of the low frequencies seems less tricky than the usual arguments since
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✫

✩

✪

Figure 1.a): A periodic two-
dimensional example for which
Theorem 1.1 holds: the semigroup
generated by the corresponding
damped wave equation is decaying
exponentially fast.

Figure 1.b): This two-dimensional quasi-
periodic situation satisfies all the hypothe-
sis of Theorem 1.1 if one does not care about
the regularisation condition in Hypothesis i),
since the minimum of the mean value 〈γ〉T
in Σ is positive for T large enough. However,
Theorem 1.1 fails to apply because for any C1

b

damping γ̃ satisfying γ̃ ≤ γ, the mean value
〈γ̃〉must go to zero along the represented ray.

−2 −1 0 1 2 3 4

Figure 1.c): One can easily construct an example where Theorem 1.2 holds and
where Hypothesis ii) of Theorem 1.1 fails. It is sufficient to place a uniformly
bounded damping of integral larger than one in any interval [n, n + 1] and to be
careful to preclude any periodic pattern.

−2 −1 0 1 2 3 4

Figure 1.d): An one-dimensional example where the mean value of the damping
〈γ〉1(x, ξ) is uniformly positive in Σ, but where Theorem 1.2 does not apply since
there is no regularisation γ̃ ∈ C1

b with mean value 〈γ̃〉T uniformly positive for some
T and with a derivative uniformly bounded in R.

Figure 1: Discussion on some examples of damping. In the two-dimensional situations,
the damping is equal to 1 on the grey regions and equal to 0 in the other regions. In the
one-dimensional situations, the figure roughtly represents the graph of the damping. In
both cases, the metric is assumed to be flat, i.e. K(x) = Id.
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one simply has to estimate (A− iµId)−1 for a given µ ∈ R.

• First step: a characterisation of exponential decay.
We use here the characterisation given by Theorem 3 of [8].

Theorem 2.1. F.L. Huang (1985).
Let eAt be a C0− semigroup in a Hilbert space X and assume that there exists a positive
constant M > 0 such that |||eAt||| ≤ M for all t ≥ 0. Then eAt is exponentially stable if
and only if iR ⊂ ρ(A) and

sup
µ∈R

|||(A− iµId)−1|||L(X) < +∞ . (2.1)

Since the linear operator A associated to the damped wave equation is dissipative, we
have |||eAt||| ≤ 1 for all t ≥ 0. To prove Theorem 1.1, it remains to show that (2.1) holds.
We argue by contradiction and assume that there exist two sequences (Un) = (un, vn) ⊂
D(A) = H2(Rd)×H1(Rd) and (µn) ⊂ R such that

‖Un‖2X = ‖un‖2H1 + ‖vn‖2L2 = 1 and (A− iµn)Un −−−−−−→
n−→+∞

0 in X . (2.2)

Notice that, here, un and vn are complex valued functions. Also notice that, without loss
of generality, by a linear change of variables, one may also assume that k = (1, 1, . . . , 1),
that is that the periodic cell appearing in Hypothesis ii) of Theorem 1.1 is the hypercube
[0, 1]d.

• Second step: replacing γ by a smooth damping.
We recall that H1(Rd) is equipped with the convenient scalar product (1.4). Let us denote
the operator div(K(x)∇) by ∆K . We have

(A− iµnId)Un =

(

vn − iµnun

(∆K − Id)un − γ(x)vn − iµnvn

)

and

Re(〈(A− iµn)Un|Un〉X) = −
∫

γ(x)|vn(x)|2 dx .

Thus, (2.2) implies that
∫

γ(x)|vn(x)|2 dx goes to zero. Therefore, we can replace γ by the
C1
b damping γ̃ of Hypothesis i) of Theorem 1.1 without changing (2.2). We claim that we

can even assume that γ ∈ C∞
b (Rd). Indeed, choose θ = max(0, γ̃ − ε). For a small enough

ε > 0, the damping θ still satisfies that its mean value 〈θ〉T (x, ξ) is uniformly bounded
away from 0. Moreover, since the derivative of γ̃ is bounded, the support of θ stays at
a uniform distance δ > 0 of the set where γ̃ vanishes. Now, molify θ into θ ∗ ρδ where
ρδ is a C∞ regularisation kernel with support in B(0, δ). We obtain a smooth damping γ
with a support included in the one of γ̃. Thus, one can use this new damping without
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changing (2.2). Moreover, this new damping γ belongs to C∞
b (Rd), which ensures that the

multiplication by γ is a pseudo-differential operator of order 0.

• Third step: separation between high and low frequencies.
We now work with k = (1, 1, . . . , 1) and a smooth damping γ with bounded derivatives.
To obtain a contradiction from (2.2), we consider two cases.

→ High frequencies: assume that |µn| goes to +∞. Since A is a real operator, by
symmetry, we can assume that µn > 0 and we set hn = 1/µn. We have to show that
one cannot have ‖Un‖X = 1 and (A− i/hn)Un −→ 0. This will be shown in Section
3 by semiclassical pseudo-differential arguments, using hypothesis i) of Theorem 1.1.

→ Low frequencies: assume that (µn) has a bounded subsequence. Then, up to
extracting a subsequence, one can assume that (µn) converges to a real number µ.
Then (2.2) is equivalent to have a sequence (Un) with ‖Un‖X = 1 and (A− iµ)Un −→
0. In Section 4, we will show that this is not possible due to Hypothesis ii) of Theorem
1.1, by using Floquet-Bloch theory.

Since Sections 3 and 4 provide a contradiction in both cases, Theorem 2.1 implies that our
main result Theorem 1.1 is proved.

3 High frequencies

The purpose of this section is to obtain a contradiction from the existence of sequences
(Un) with ‖Un‖X = 1 and (hn) with hn → 0 satisfying (A − i/hn)Un −→ 0. To simplify
the notations, we may forget the index n for the remaining part of this section and set
Un = Uh = (uh, vh). We have

{

vh − i
h
uh = oH1(1)

(∆K − id)uh − γ(x)vh − i
h
vh = oL2(1)

and thus
{

vh − i
h
uh = oH1(1)

h2(∆K − Id)uh − ihγ(x)uh + uh = oL2(h2) + oH1(h)
(3.1)

To obtain a contradiction between (3.1) and Hypothesis i) of Theorem 1.1, we will use the
semiclassical microlocal analysis and follow the ideas of the chapter 5 of [20]. Notice that
the usual way to deal with high frequencies is to use semiclassical defect measures (see for
example [20]). However, this is not possible in our case since we work in an unbounded
domain and the semiclassical defect measure will only tell us what happens in compact
subsets.
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Lemma 3.1. Assume that the operator Ph = h2(∆K − Id)− ihγ(x) + Id has a resolvant
in L2(Rd) satisfying

‖(Ph)
−1f‖L2 ≤ C

h
‖f‖L2 . (3.2)

Then Ph has a resolvant in H1(Rd) also satisfying

‖(Ph)
−1f‖H1 ≤ C

h
‖f‖H1 .

Proof: We argue by contradiction. Assume that there exists a sequence (uh) with
‖uh‖H1 = 1 and Phuh = oH1(h). Multiplying by uh and integrating, we get that

−h2‖uh‖2H1 − ih

∫

Rd

γ(x)|uh|2 + ‖uh‖2L2 = o(h)‖uh‖L2 .

Taking the real part and solving the equation in ‖uh‖L2, we get

‖uh‖L2 =
1

2

(

o(h) +
√

o(h2) + 4h2‖uh‖2H1

)

∼ h .

We introduce the operator∇K = (−∆K+Id)1/2. It is the particular case h = 1 of the semi-
classical operator (−h2∆K + Id)1/2, which has for principal symbol

√

ξ⊺.K(x).ξ + 1 (see
Section A.1 in Appendix for a brief recall about pseudo-differential semiclassical calculus).
Obviously, it commutes with any polynomial of ∆K . Moreover, applying i) of Corollary
A.2 of the Appendix, with h = 1 fixed, we get that the commutator [∇K , γ(x)·] is bounded
in L2(Rd). Thus, since uh = OL2(h),

∇K(Phuh) = Ph(∇Kuh)− ih[∇K , γ(x)]uh = Ph(∇Kuh) +OL2(h2) .

Since Phuh = oH1(h), we obtain that Ph(∇Kuh) = oL2(h). Using the assumption on the
resolvant of Ph, we obtain that ∇Kuh goes to 0 in L2(Rd) when h goes to 0. However,
‖∇Kuh‖L2 is equivalent to ‖uh‖H1 and we obtain a contradiction with the assumption
‖uh‖H1 = 1. �

Proposition 3.2. If the operator Ph = h2(∆K − Id) − ihγ(x) + Id has a resolvant in
L2(Rd) satisfying (3.2), then (3.1) cannot hold.

Proof: We argue by contradiction again. Assume that Ph satisfies (3.2) and assume that
there exists Uh = (uh, vh) with ‖Uh‖X = 1 such that (3.1) holds. As in the beginning of the
proof of Lemma 3.1, multiplying the second equation of (3.1) by uh, integrating, taking
the real part and solving the equation of second degree in ‖uh‖L2, we get that

‖uh‖L2 =
1

2

(

o(h) +
√

o(h2) + 4h2‖uh‖2H1

)

.
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Due to the first equation of (3.1) and since ‖Uh‖X = 1, we must have ‖uh‖H1 ∼ 1/
√
2,

‖uh‖L2 ∼ h/
√
2 and ‖vh‖L2 ∼ 1/

√
2.

We introduce wh = P−1
h (fh) where fh is the term oH1(h) in the second equation of (3.1).

By assumption and by Lemma 3.1, we have that wh = oH1(1). By the same straightforward
computation than the one just above, we also have wh = oL2(h). Then, uh − wh solves
Ph(uh − wh) = oL2(h2) and by assumption, we get that uh − wh = oL2(h) and thus that
uh = oL2(h). This is a contradiction with the fact that ‖uh‖L2 ∼ h/

√
2, which was proved

above. �

Due to Proposition 3.2, to obtain a contradiction from (3.1), it remains to show the
L2−resolvant estimate (3.2). Obtaining this estimate is the central argument for controlling
the high frequencies. Here, we will use pseudo-differential calculus and we will see the
importance of Hypothesis i) of Theorem 1.1. The remaining part of this section is thus
devoted to the proof of the following result.

Proposition 3.3. The operator

Ph = h2(∆K − Id)− ihγ(x) + Id

has a resolvant in L2 satisfying

‖(Ph)
−1f‖L2 ≤ C

h
‖f‖L2 .

Proof: As usual, we argue by contradiction and assume that there exists a sequence (hn)
going to zero and functions (un) ⊂ H2(Rd) such that ‖un‖L2 = 1 and Phn

un = oL2(hn).
Once again, we may forget the indices and assume that ‖uh‖L2 = 1 and

h2(∆K − Id)uh − ihγ(x)uh + uh = oL2(h) . (3.3)

In what follows, we will use the notations and the results of the pseudo-differential semi-
classical calculus recalled in Section A.1. Our proof follows the lines of Chapter 5 of [20],
omitting the notion of defect measures, which is not convenient in the case of unbounded
domains.

• First step: uh is concentrating along the radial speeds ξ⊺K(x)ξ = 1/h2.
First notice that the main part of Ph is h2∆K + Id in the sense that (h2∆K + Id)uh =
oL2(1). As explained in Appendix, up to an error term OL2(h2), this main part is a
pseudo-differential semiclassical operator Oph(−ξ⊺K(x)ξ + 1). Let χ(x, ξ) ∈ C∞(Rd,R+)
be a smooth cutting function which is equal to one in a neighbourhood of the sphere
Σ = {(x, ξ), ξ⊺K(x)ξ = 1} and equal to 0 outside the annulus 1/2Kmax ≤ |ξ| ≤ 2/Kmin.
Also assume that χ and its derivatives are bounded, which implies that χ(x, ξ) is a symbol
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of order 0. We claim that uh is concentrating on the microlocal set {(x, ξ), ξ⊺K(x)ξ = 1/h2}
in the sense that 〈Oph(1− χ(x, ξ))uh|uh〉L2 goes to 0 when h goes to 0.

To prove this claim, we introduce another smooth cutting function θ which is equal to 1
in a neighbourhood of the sphere Σ = {(x, ξ), ξ⊺K(x)ξ = 1} and equal to 0 in the support
of 1 − χ. The symbol a(x, ξ) = −ξ⊺K(x)ξ + 1 + iθ is of order 2 and uniformly bounded
away from 0. By iii) of Corollary A.2 in Appendix, the symbol b(x, ξ) = 1

a(x,ξ)
is of order

−2 and satisfies

Oph(a) ◦Oph(b) = Id+OL2(h) and Oph(b) ◦Oph(a) = Id+OL2(h) .

Thus,

〈Oph(1− χ)uh|uh〉L2 = 〈Oph(1− χ) ◦Oph(b) ◦Oph(a)uh|uh〉L2 +O(h) .

On the other hand, Oph(a) = Oph(−ξ⊺K(x)ξ+1)+ iOph(θ) and thus Oph(a)uh = oL2(1)+
iOph(θ)uh. Since 1 − χ and b are of order 0 or less, their corresponding operators are
bounded in L2(Rd), uniformly with respect to h and

〈Oph(1− χ)uh|uh〉L2 = i〈Oph(1− χ)Oph(b)Oph(θ)uh|uh〉L2 + o(1) .

Now, it remains to apply Proposition A.1 in Appendix to see that, since 1− χ and θ have
disjoint supports,

Oph(1− χ)Oph(b)Oph(θ)uh = Oph((1− χ)bθ) + oL2(1) = oL2(1) .

This shows that
〈Oph(1− χ)uh|uh〉L2 −−−−→

h−→0
0 .

• Second step: using the geometric control condition of Hypothesis i) of Theorem 1.1.
First notice that

Ph = Oph(−ξ⊺K(x)ξ + 1)− ihOph(γ(x)) +OL2→L2(h2)

and that we may assume that γ is smooth and bounded and so that it is a symbol of order
0 (see Section 2). Let a(x, ξ) be a symbol of order 0. By i) and ii) of Corollary A.2 in
Appendix, the commutator of Ph and Oph(a) is

[Oph(a), Ph] = −ihOph

(

{ξ⊺K(x)ξ, a(x, ξ)}
)

+OL2→L2(h2) .

On the other hand, since Phuh = oL2(h),

〈[Oph(a), Ph]uh|uh〉L2 = 〈Oph(a)Phuh|uh〉L2 − 〈PhOph(a)uh|uh〉L2

= o(h)− 〈Oph(a)uh|P ∗
huh〉L2

= −〈Oph(a)uh|(Ph + 2ihγ(x))uh〉L2 + o(h)

= 2ih〈Oph(a)uh|γ(x)uh〉L2 + o(h)

= 2ih〈γ(x)Oph(a)uh|uh〉L2 + o(h)

= 2ih〈Oph(aγ)uh|uh〉L2 + o(h)

11



Thus, setting g(x, ξ) = ξ⊺K(x)ξ, we obtain that

〈Oph(2aγ + {g, a})uh|uh〉L2 −−−−→
h−→0

0 . (3.4)

Due to iii) of Corollary A.2 of Appendix, we will get a contradiction with ‖uh‖L2 = 1 if we
find a such that 2aγ + {g, a} is uniformly bounded away from zero. Assume that a(x, ξ)
is constant equal to 1 for large ξ, then 2aγ + {g, a} is a symbol of order 0. Moreover,
the first step of this proof shows that modifying 2aγ + {g, a} away from the sphere Σ =
{(x, ξ), ξ⊺K(x)ξ = 1} has no influence on (3.4). Thus, it is sufficient to exhibit a symbol a
such that 2aγ + {g, a} is uniformly bounded and stay uniformly away from zero on Σ.

Let us recall that ϕt is the Hamiltonian flow associated to g and that T is a time such
that the mean value 〈γ〉T (x, ξ) = 1

T

∫ T

0
γ(ϕt(x, ξ))dt is uniformly bounded away from 0

away from Σ, according to Assumption i) of Theorem 1.1. We choose a(x, ξ) = ec(x,ξ) with

c(x, ξ) =
2

T

∫ T

0

(T − t)γ(ϕt(x, ξ)) dt =
2

T

∫ T

0

∫ t

0

γ(ϕs(x, ξ)) ds dt .

By definition of the Hamiltonian flow, for any function f ∈ C1(R2d,R), we have

{g, f}(x, ξ) = ∂τf(ϕτ(x, ξ))|τ=0 .

Since

c(ϕτ(x, ξ)) =
2

T

∫ T

0

(T − t)γ(ϕt+τ (x, ξ)) dt

=
2

T

∫ T+τ

τ

(T − t + τ)γ(ϕt(x, ξ)) dt

we get that

{g, c}(x, ξ) = 2

T

∫ T

0

γ(ϕt(x, ξ)) dt− 2γ(x, ξ) = 2〈γ〉T (x, ξ)− 2γ(x, ξ) .

Thus, we have
2aγ + {g, a} = 2ec(x,ξ)〈γ〉T (x, ξ) .

By assumption i) of Theorem 1.1 and since c ≥ 0, there exists α > 0 such that, for all
(x, ξ) ∈ Σ, 2aγ + {g, a} ≥ α > 0. As explained above, we can neglect any (x, ξ) away from
Σ and this yields that

〈Oph(2aγ + {g, a})uh|uh〉L2 ∼ 〈Oph

(

2ec(x,ξ)〈γ〉T (x, ξ)
)

uh|uh〉L2 ≥ 2α‖uh‖2L2 ,

which contradicts (3.4) since ‖uh‖L2 = 1. �
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4 Low frequencies

In this section, we fix a real number µ and we assume that there is a sequence (Un) with
‖Un‖X = 1 and (A− iµ)Un −→ 0, that is that Un = (un, vn) satisfies vn = iµun + oH1(1)
and

(∆K − Id)un − iµγ(x)un + µ2un = oL2(1) . (4.1)

As a first basic computation, we can multiply (4.1) by un and integrating. We obtain

‖un‖2H1 = µ2‖un‖2L2 + o(1) and

∫

Rd

γ(x)|un(x)|2 dx −−−−−→
n−→∞

0 . (4.2)

Also notice that ‖vn‖L2 ∼ µ‖un‖L2 and thus ‖Un‖X is equivalent to ‖un‖H1. Therefore,
the purpose of this section is to obtain a contradiction from (4.1) and ‖un‖H1 = 1.

• First step: un goes to zero on any compact set.
Let R be a positive radius such that the ball B(0, R) intersects the support of γ. We denote
by ũn the restriction of un to the ball B(0, R). Assume that ‖ũn‖L2 does not go to zero.
More precisely, up to extract a subsequence, assume that ‖ũn‖L2 ≥ α > 0. Since ‖un‖H1

is bounded, up to extracting a subsequence, one can assume that (ũn) converges to a limit
ũ∞, weakly in H1(B(0, R)) and strongly in L2(B(0, R)). By assumption, ũ∞ is not equal
to zero. Moreover, using the second part of (4.2), ũ∞ ≡ 0 on the support of γ and

(∆K − Id)ũ∞ + µ2ũ∞ = 0 in B(0, R)

in the sense of distributions. By the classical unique continuation property of the elliptic
equations, one should have that ũ∞ ≡ 0 everywhere in B(0, R), which is an obvious
contradiction. Thus (un) goes to zero in L2(B(0, R)). Using (4.1), one gets that (∆K −
Id)un also goes to zero in L2(B(0, R)), which shows that (un) goes to zero in H2(B(0, R)).

• Second step: reduction to a periodic framework.
Since (un) goes to zero in H2 in any compact set, div(Kcomp(x)∇un) goes to zero in L2(Rd),
where Kcomp is the non-periodic part of K introduced in Hypothesis ii) of Theorem 1.1.
Due to (4.2), un goes to zero in the support of γ. Therefore, one can replace γ by a periodic
damping γper satisfying γ ≥ γper ≥ 0 and Hypothesis ii) of Theorem 1.1 implies that γper
may be chosen not vanishing everywhere. As a conclusion, one can replace K and γ by
their periodic version Kper and γper and (4.1) will still hold.

• Third step: bounding the resolvants in the periodic framework.
From now on, we are in a periodic media described by periodic functions K and γ. We
want to prove that (4.1) is absurd for ‖un‖H1 = 1. Due to (4.2), it is sufficient to show
that P = (∆K − Id) − iµγ(x) + µ2Id is invertible in L(L2) and has a bounded resolvant
from L2 into L2. In order to work with periodic functions, we introduce the Floquet-Bloch
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decomposition of a function u ∈ L2(Rd) given in Theorem A.3 in Appendix:

u(x) =
1

(2π)d

∫

(0,1)d
eiσ.xûσ(x) dσ ,

where the family of Bloch amplitudes σ 7→ ûσ belongs to L2((0, 1)d, L2(Td)). We have

Pu(x) =
1

(2π)d

∫

(0,1)d
eiσ.xPσûσ(x) dσ , (4.3)

with
Pσ = (∇+ iσ)⊺.K(x).(∇ + iσ)− iµγ(x) + (µ2 − 1)Id

where Pσ is well defined as an operator from H2(Td) into L2(Td), since K and γ are
periodic. To bound the resolvant of P , it is sufficient to bound the resolvant of Pσ for all
σ ∈ [0, 1]d. Notice that Pσ′ is a relatively compact perturbation of Pσ when σ′ is close to σ
and thus the resolvant of Pσ depends continuously on σ. Since [0, 1]d is compact, we only
have to show that, for one fixed σ ∈ [0, 1]d, Pσ is invertible and has a bounded inverse in
L2(Td).

Let us fix σ ∈ [0, 1]d. Since our phase space Td is compact, Pσ has a compact resolvant.
To show that it is invertible in L2(Td), it is sufficient to show that there is no non-trivial
u ∈ H2(Td) such that Pσu = 0. Assume that Pσu = 0 with ‖u‖L2 = 1. Notice that
∫

Td

u(x)((∇ + iσ)⊺.K(x).(∇ + iσ)u(x)) dx =

∫

Td

((−∇+ iσ)u(x))⊺.K(x).(∇ + iσ)u(x) dx

= −
∫

Td

(∇+ iσ)u(x)
⊺
.K(x).(∇+ iσ)u(x) dx

∈ (−∞, 0] .

Thus, multiplying Pσu = 0 by u, integrating and taking the imaginary part, we obtain
that

∫

Td

γ(x)|u(x)|2 dx = 0

which shows that u must vanish in a non-empty open set of Td. To conclude, we have to
use a unique continuation argument showing that u ≡ 0. The operator Pσ has complex
coefficients, but the unique continuation property of classical real elliptic equations as
P ũ = 0 still holds. Indeed, Pσ is locally conjugated to P by Pσ = e−iσ.xPeiσ.x and so
if u vanishes at infinite order at a point x0 and satisfies Pσu = 0, then u vanishes in a
neighbourhood of x0. Notice that it is not correct to consider this conjugaison globally
in T

d since e−iσ.x is not 1−periodic, but we only need to propagate the condition u = 0
locally to obtain that u ≡ 0 everywhere.

To conclude, we have shown that Pσ has a trivial kernel. Since it has compact resolvant,
this shows that it is invertible with a bounded inverse in L2(Td). Using (4.3), this shows
that P is invertible and of bounded inverse, which contradicts (4.1)
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5 Proof of Theorem 1.2

First notice that, up to a change of spatial variable, one can assume that we are in the flat
case K(x) = 1. The statement of Theorem 1.2 only differs from the one of Theorem 1.1
in the fact that Hypothesis ii) is not assumed. Thus, if we follow the proof of Theorem
1.1, one will able to prove Theorem 1.2 if and only if one can deal with the low frequencies
without using Hypothesis ii). In conclusion, using the first arguments of Section 4, we only
have to consider a real number µ and a sequence (un) with ‖un‖H1 = 1 and

(∂xx − Id)un − iµγ(x)un + µ2un = oL2(1) , (5.1)

and to obtain a contradiction from this, without assuming any periodic framework.
As usual, multiplying (5.1) by un, we obtain that

∫

R

|u′
n(x)|2+(1−µ2)|un(x)|2 dx −−−−−→

n−→∞
0 and

∫

R

γ(x)|un(x)|2 dx −−−−−→
n−→∞

0 . (5.2)

We introduce a non-negative function ϕ ∈ C1
b (R,R+) such that |ϕ| + |ϕ′| ≤ Cγ for some

positive C and such that
∫ (k+1)T

kT
ϕ(x)dx = Tα > 0 for each k ∈ Z. This is possible due to

Hypothesis i), to the molifying technique used in Section 2 and by slightly modifying ϕ on
each interval [kT, (k + 1)T ].

Then, we use multipliers techniques inspired by the ones of [13] and [18]. By multiplying
(5.1) by ϕ(x)un, integrating and taking the real part, we obtain that

∫

R

ϕ(x)(|u′
n(x)|2 + (1− µ2)|un(x)|2) dx + Re

(
∫

R

ϕ′(x)un(x)u
′
n(x) dx

)

−−−−−→
n−→∞

0 .

First notice that
∫

ϕµ2|un|2 goes to zero due to (5.2) and the assumption |ϕ|+ |ϕ′| ≤ Cγ.
Moreover

∣

∣

∣

∣

∫

R

ϕ′(x)un(x)u
′
n(x) dx

∣

∣

∣

∣

≤
√

∫

ϕ′|un|2
∫

ϕ′|u′
n|2

which also goes to zero due to (5.2). Thus, we obtain that

∫

R

ϕ(x)|u′
n(x)|2 dx −−−−−→

n−→∞
0 .

Now, we introduce q(x) =
∫ x

0
(α − ϕ(s)) ds and notice that q belongs to L∞(R) because

∫ (k+1)T

kT
ϕ(x)dx = Tα for each k ∈ Z. We multiply (5.1) by q(x)u′

n and we obtain that

1

2

∫

R

q′(x)(|u′
n|2 + (µ2 − 1)|un|2) + iµ

∫

R

q(x)γ(x)unu′
n −−−−−→

n−→∞
0 .
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The last term goes to zero since γun goes to zero in L2(R). Thus, we obtain that

α

2

∫

R

(|u′
n|2 + (µ2 − 1)|un|2)−

1

2

∫

R

ϕ(|u′
n|2 + µ2|un|2) −−−−−→

n−→∞
0 .

As shown above, the second integral goes to zero and we obtain that
∫

R
(|u′

n|2+(µ2−1)|un|2)
goes to zero, which is in obvious contradiction with (5.2) and ‖un‖H1 = 1.

6 Applications to other problems

The exponential decay of the linear semigroup eAt is an essential assumption for obtaining
several dynamical properties of the damped wave equations. In this section, we emphasise
different results, which are corollaries of Theorems 1.1 and 1.2. Each result was already
known with stronger assumptions implying the exponential decay of eAt. Since we have
obtained this decay with weaker conditions, we can improve these results.

• Linear control
By HUM Method of Lions (see [13]), the exponential decay of the linear semigroup eAt is
equivalent to the controllability of the linear wave equation. We denote by 11ω the function
11ω ≡ 1 on ω and 0 elsewhere.

Corollary 6.1. Let ω be an open subset of Rd and assume that the hypotheses of Theorem
1.1, or the ones of Theorem 1.2, hold with γ = 11ω. Then, there exists T > 0 such that, for
any (u0, u1) ∈ H1(Rd)×L2(Rd) and any (ũ0, ũ1) ∈ H1(Rd)×L2(Rd), there exists a control
v ∈ L1((0, T ), L2(ω)) such that the solution u of

{

∂2
ttu− div(K(x)∇u) + u = 11ωv(x, t) (t, x) ∈ (0, T )× Rd ,

(u, ∂tu)(·, 0) = (u0, u1)

satisfies (u, ∂u)(·, T ) = (ũ0, ũ1).

• Stabilisation of the non-linear equation
Another related problem is the stabilisation of the non-linear equation as in [19], [5] or [9].
One considers the non-linear equation

{

∂2
ttu+ γ(x)∂tu = div(K(x)∇u)− u− f(u) (t, x) ∈ R+ × Rd ,

(u, ∂tu)(·, 0) = (u0, u1) ∈ H1(Rd)× L2(Rd)
(6.1)

with f satisfying

f(0) = 0 , sf(s) ≥ 0 , |f(s)| ≤ C(1 + |s|)p and |f ′(s)| ≤ C(1 + |s|)p−1 (6.2)
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with 1 ≤ p < (d + 2)/(d − 2) (or any p ≥ 1 if d < 3). To each solution of (6.1), one can
associate the energy

E(u) := E(u, ∂tu) =
1

2

∫

Rd

(|∂tu|2 + |∇u⊺.K(x).∇u|+ |u|2) +
∫

Rd

V (u) ,

where V (u) =
∫ u

0
f(s)ds. One would like to show that the energy E of the solutions of

(6.1) goes to zero, uniformly in any bounded set. Of course, assuming that the exponential
decay of eAt is necessary, since it corresponds to the case f ≡ 0. In addition, one also needs
a unique continuation property of the linear wave equation to prove that the only solutions
having a constant energy E are the equilibrium points. In [19] and [5], the authors use a
unique continuation property, which needs geometric assumptions stronger than the one
required for the exponential decay of eAt. Thus, we cannot improve their results. However,
we have shown in [9] that the geometric assumptions required for the exponential decay
of eAt are sufficient if we assume that f is smooth and partially analytic. Thus, we can
improve the result of [9] by using a weaker assumption than the one that γ ≥ α > 0 outside
a compact set.

Corollary 6.2. Assume that the hypotheses of Theorem 1.1 holds and that f ∈ C∞(R) is
real analytic and satisfies (6.2). Then the following exponential decay holds. For any E0 ≥
0, there exist K > 0 and λ > 0 such that, for all solutions u of (6.1) with E(u(0)) ≤ E0,
E(u(t)) ≤ Me−λtE(u(0)) for all t ≥ 0.

Of course, in the one-dimensional case d = 1, the unique continuation property holds
without any additional assumption. We obtain the following result, which is an improve-
ment of the previous known result of [19] because one can omit the assumption γ ≥ α > 0
close to ±∞.

Corollary 6.3. Assume that the hypotheses of Theorem 1.2 holds and that f ∈ C1(R)
satisfies f(0) = 0 and sf(s) ≥ 0. Then, for any E0 ≥ 0, there exist K > 0 and λ > 0
such that, for all solutions u of (6.1) with E(u(0)) ≤ E0, E(u(t)) ≤ Me−λtE(u(0)) for all
t ≥ 0.

This type of non-linear stabilisation results is also closely related to the problem of
global control of the non-linear wave equation, see [5], [9] and [10]. For example, one get
the following result in dimension d = 1.

Corollary 6.4. Let ω be an open subset of R. Assume that there exist L > 0 and ε > 0
such that ω contains an interval of length ε in any interval [x, x + L], x ∈ R. Let also
f ∈ C1(R) satisfying f(0) = 0 and sf(s) ≥ 0.

Then, for all E0 ≥ 0, there exists T > 0 such that, for any (u0, u1) and (ũ0, ũ1) ∈
H1(R) × L2(R) with energy E less than E0, there exists a control v ∈ L1((0, T ), L2(ω))
such that the solution u of

{

∂2
ttu− div(K(x)∇u) + u+ f(u) = 11ωv(x, t) (t, x) ∈ (0, T )× R ,

(u, ∂tu)(·, 0) = (u0, u1)
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satisfies (u, ∂u)(·, T ) = (ũ0, ũ1).

• Existence of a compact global attractor
Instead of stabilising to zero the solutions of the non-linear equation (6.1), one may aim at
stabilising the solutions to a compact set, not necessarily reduced to {0}. To this purpose,
we consider a function f(x, u) ∈ C1(Rd × R,R) satisfying

|f(s)| ≤ C(1 + |s|)p and |f ′(s)| ≤ C(1 + |s|)p−1 (6.3)

with 1 ≤ p < (d+ 2)/(d− 2) (or any p ≥ 1 if d < 3) and we replace the first assumptions
of (6.2) by

∃R > 0 , ∀(x, s) ∈ R
d+1 , |x|+ |s| ≥ R ⇒ f(x, s)s ≥ 0 . (6.4)

Following the arguments of [9], one can prove that all the solutions of the non-linear
equation

{

∂2
ttu+ γ(x)∂tu = div(K(x)∇u)− u− f(x, u) (t, x) ∈ R+ × Rd ,

(u, ∂tu)(·, 0) = (u0, u1) ∈ H1(Rd)× L2(Rd)
(6.5)

are attracted to a compact invariant set called the compact global attractor. This set is a
central object of the theory of dynamical systems. It contains all the solutions u(t), which
exist for all t ∈ R and which are uniformly bounded in H1(Rd)× L2(Rd) for all t ∈ R (as
equilibrium points, periodic orbits, heteroclinic orbits, non-wandering points etc.). See for
example [6] and [17] for a review on the concept of compact global attractors. In addition,
the energy E associated to (6.5) is a Lyapounov function, that is that it is non-increasing
and cannot be constant along a solution u(t), except of course if u(t) is an equilibrium
point. Since (6.5) admits a Lyapounov function, one say that the corresponding dynamical
system is gradient. In particular, it cannot admit periodic orbits, homoclinic orbits. . .

Thus, following the arguments of [9], one obtains the following generalisation of the
result of [9], omitting the assumption that γ ≥ α > 0 outside a compact set.

Corollary 6.5. Assume that f ∈ C1(R× R,R) satisfies (6.3) and (6.4) and that:

- either d = 1 and the hypothesis of Theorem 1.2 holds,

- or d ≥ 2, the hypotheses of Theorem 1.1 hold and f ∈ C∞(R × R,R) is analytic with
respect to u.

Then the dynamical system generated by (6.5) in H1
0 (Ω)× L2(Ω) is gradient and admits a

compact global attractor A.

A Appendix

A.1 Pseudo-differential semiclassical calculus

In section, we recall the main results and notations of pseudo-differential calculus, which
are used in this paper. The details and the proofs could be found in many textbooks, as
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[20], [14] or [1].
Let h > 0 be a small parameter, say that h ∈ (0, 1]. We say that a(x, ξ) ∈ C∞(Rd×Rd)

is a symbol of order m if, for any multi-indices α and β, there exists Cα,β such that

sup
(x,ξ)∈R2d

|∂α
x∂

β
ξ a(x, ξ)| ≤ Cα,β(1 + |ξ|)m−|β|

and m is the smallest number such that this bounds holds. To each symbol a, we asso-
ciate the pseudo-differential semiclassical operator denoted by Oph(a) and defined by Weyl
quantization

Oph(a)u =
1

(2π)n

∫

R2d

ei(x−y).ξ a

(

x+ y

2
, hξ

)

u(y) dy dξ .

If a is of order m, then, for any s > 0, Oph(a) is a bounded operator from Hs(Rd) into
Hs−m(Rd), uniformly with respect to h ∈ (0, 1].

Let f ∈ C∞(Rd,R) be a smooth bounded function such that all its derivative are also
bounded functions of L∞(Rd). It is not so trivial but well known that the simple operator
u 7→ f(x)u has for symbol f(x), which is of order 0 (see for example Chapter 4 of [20]).
More classically, we have that the operator h∇ has for symbol iξ, which is of order 1.
Using Proposition A.1 below, one can check that the operator h2∆K = h2div(K(x)∇·) has
for principal symbol −ξ⊺.K(x).ξ in the sense that

h2∆K = Oph(−ξ⊺.K(x).ξ) +OL2→L2(h2) .

Composing two pseudo-differential operators, one obtain a pseudo-differential operator,
which symbol can be express by an asymptotic development. In this paper, we will simply
use the following cases, see [20], [14], [1] or any other textbooks on pseudo-differential
calculus for more precise developments and for proofs.

Proposition A.1. Let a and b be two symbols of order m and n respectively. Assume that
m + n ≤ 2, then Oph(a) ◦ Oph(b) is a pseudo-differential operator of order m + n and its
symbol (a#b) satisfies

a#b = ab− ih

2
{a, b}+OL2→L2(h2)

where {a, b} = ∂ξa∂xb−∂ξb∂xa is the Poisson bracket of a and b and is of order m+n−1.
In particular, if m+ n ≤ 1, then

Oph(a) ◦Oph(b) = Oph(ab) +OL2→L2(h) .

Corollary A.2.

i) If a is of order 1 or less and if b is of order 0, then the commutator [Oph(a),Oph(b)] =
Oph(a) ◦Oph(b)−Oph(b) ◦Oph(a) is of order 0 or less and of estimate OL2→L2(h).
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ii) If a is of order 2 and if b is of order 0, then their commutator is of order 1 and

[Oph(a),Oph(b)] = −ihOph({a, b}) +OL2→L2(h2) .

iii) Assume that a is a symbol of order m ≥ 0 such that there exists α > 0 such that
|a(x, ξ)| ≥ α for all (x, ξ) ∈ R2d. Then b = 1/a is a symbol of order −m and Oph(b)
is a first order inverse of a in the sense that

Oph(a) ◦Oph(b) = Id+OL2→L2(h) and Oph(b) ◦Oph(a) = Id+OL2→L2(h)

In particular, Oph(a) is invertible for h sufficiently small.

A.2 Floquet-Bloch decomposition

In this section, we recall the Floquet-Bloch decomposition in the 1−periodic framework.
For sake of completness, we also recall a short proof of it. We denote by Td the torus
(R/Z)d.

Theorem A.3. Let u ∈ L2(Rd,C) and let û(y) =
∫

Rd e
−iy.xu(x)dx be its Fourier transform.

Then, we have the splitting

u(x) =
1

(2π)d

∫

(0,1)d
eiσ.xûσ(x) dσ ,

where the Bloch amplitude ûσ is defined by

ûσ(x) =
∑

n∈Zd

û(σ + n)ein.x .

Moreover, each ûσ is 1−periodic in the sense that, for any n ∈ Zd, ûσ(x+ n) = ûσ(x) and
thus can be considered as a function defined in Td.

The family σ 7−→ ûσ is well defined for any function u ∈ L2(Rd,C) as a family in
L2((0, 1)d, L2(Td)).

Proof: Let us first assume that u belongs to Schwartz space S(Rd). Floquet-Bloch de-
composition is a simple rearrangement of the Fourier transform:

u(x) =
1

(2π)d

∫

Rd

eiy.xû(y) dy =
∑

n∈Zd

∫

(0,1)d
ei(n+σ).xû(n+ σ) dσ

=

∫

(0,1)d
eiσ.x

(

∑

n∈Zd

û(n + σ)ein.x

)

dσ :=

∫

(0,1)d
eiσ.xûσ(x) dσ .
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The fact that ûσ is 1−periodic is clear. To finish the proof, we have to extend the trans-
formation from L2(Rd) into L2((0, 1)d, L2(Td)). First notice that, for each σ, ‖ûσ‖2L2(Td)

=
∑ |û(n+ σ)|2. Thus,

‖ûσ‖2L2((0,1)d ,L2(Td)) =

∫

(0,1)d

(

∑

n∈Zd

|û(n + σ)|2
)

dσ

=
∑

n∈Zd

∫

(0,1)d
|û(n + σ)|2 dσ

= ‖û‖2L2

= (2π)d‖u‖2L2 .

This shows that we can extend the Floquet-Bloch decomposition in L2((0, 1)d, L2(Td)) from
S(Rd) onto L2(Rd). �
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