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Estimation of amplitude, phase and unbalance parameters in threephase systems: analytical solutions, efficient implementation and performance analysis

This paper focuses on the estimation of the instantaneous amplitude, phase and unbalance parameters in three-phase power systems. Due to the particular structure of three-phase systems, we demonstrate that the Maximum Likelihood Estimates (MLEs) of the unknown parameters have simple closed form expressions and can be easily implemented without matrix algebra libraries. We also derive and analyse the Cramér-Rao Bounds (CRBs) for the considered estimation problem. The performance of the proposed approach is evaluated using synthetic signals compliant with the IEEE Standard C37.118. Simulation results show that the proposed estimators outperform other techniques and reach the CRB under certain conditions.
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I. INTRODUCTION

The analysis of three-phase systems is of major concern in many applications such as power system monitoring, protection and fault detection. In Smart-Grid, voltage and current signals are analysed at substations by Phasor Measurement Units (PMUs). Technically, PMUs estimate the instantaneous amplitude and the instantaneous phase of the voltage or current signal [START_REF] Huang | State estimation in electric power grids: Meeting new challenges presented by the requirements of the future grid[END_REF]. These measurements are then processed by a Supervisory Control And Data Acquisition (SCADA) system to detect supply-demand mismatches or abnormal events [START_REF] Huang | State estimation in electric power grids: Meeting new challenges presented by the requirements of the future grid[END_REF]- [START_REF] Top | Observing the power grid: Working toward a more intelligent, efficient, and reliable smart grid with increasing user visibility[END_REF]. On the generation and user sides, current signal analysis (CSA) is also used as a low-cost and non-invasive technique for fault detection in electrical machines [START_REF] Benbouzid | A review of induction motors signature analysis as a medium for faults detection[END_REF].

Especially, the instantaneous amplitude and phase are commonly used for the detection of broken rotor bars, eccentricity fault and bearing defects [START_REF] Blodt | Mechanical load fault detection in induction motors by stator current time-frequency analysis[END_REF]- [START_REF] Bouzida | Fault diagnosis in industrial induction machines through discrete wavelet transform[END_REF].

The aforementioned applications highlight the importance of Instantaneous Amplitude (IA) and Phase (IP) in modern power systems. In practice, these quantities are unknown and should be estimated from the voltage or current signals. To be compliant with IEEE standards such as the IEEE C37.118 [START_REF]IEEE Standard for Synchrophasor Measurements for Power Systems[END_REF], IA and IP estimators must meet certain requirements in terms of accuracy (M class) and ability to track fast variations (P class). Within the signal processing community, the most commonly used techniques for the estimation of the IA and IP are based on the analytic signal. The analytic signal is usually computed from the Hilbert Transform or the Fast Fourier Transform [START_REF] Vakman | On the Analytic Signal, the Teager-Kaiser Energy Algorithm, and Other Methods for Defining Amplitude and Frequency[END_REF], [START_REF] Marple | Computing the discrete-time analytic signal via FFT[END_REF]. However, these techniques have several limitations as far as power system applications are concerned. Specifically, these techniques require the fulfilment of the Bedrosian condition [START_REF] Bedrosian | A product theorem for Hilbert transforms[END_REF], which can be violated under fast time-varying conditions, and are suboptimal since they do not take into account the particular structure of the electrical signal.

In power systems, the electrical signal is described by three phase components that are phase shifted from each other by 2π/3 [START_REF]IEEE Standard for Synchrophasor Measurements for Power Systems[END_REF]. From a signal processing perspective, this particular structure provides sufficient information to uniquely identify the IA and IP without the difficulties inherent to monodimensional signals [START_REF] Picinbono | On instantaneous amplitude and phase of signals[END_REF]. For instance, under perfectly balanced conditions, it has been proven that the IA and IP can be simply and uniquely identified using a linear transform called the Clarke transform (also called the αβ transform) [START_REF] Clarke | Circuit analysis of AC power systems; symmetrical and related components[END_REF]- [START_REF] Choqueuse | Diagnosis of three-phase electrical machines using multidimensional demodulation techniques[END_REF]. Nevertheless, despite its low complexity, the Clarke transform does not perform well under voltage or current unbalances. Indeed, it has been demonstrated that the Clarke components are noncircular under unbalanced conditions, which leads to extra oscillations of the IA and IP [START_REF] Choqueuse | Diagnosis of three-phase electrical machines using multidimensional demodulation techniques[END_REF], [START_REF] Xia | Widely Linear Adaptive Frequency Estimation of Unbalanced Three-Phase Power Systems[END_REF]. Recently, several techniques have been proposed to cope with this difficulty. the instantaneous frequency of the three-phase signal. Although this adaptive algorithm performs well under unbalanced and fast-varying conditions, it requires appropriate tuning and does not provide any estimate of the IA and IP. In [START_REF] Choqueuse | Diagnosis of three-phase electrical machines using multidimensional demodulation techniques[END_REF], an algorithm based on Principal Component Analysis is proposed for IA and IP estimation but its performance highly depends on the accuracy of the covariance matrix estimate. Finally, it should be emphasized that none of the previous techniques is able to quantify the amount of unbalance, which is also of great interest for monitoring purposes [START_REF] Jouanne | Assessment of voltage unbalance[END_REF].

In this paper, we investigate the problem of estimating the IA, IP and unbalance parameters from the voltage (or current) signal under white Gaussian noise assumption. Specifically, the contribution of this paper is threefold.

• We derive closed form solutions for the Maximum Likelihood Estimators (MLEs) of the IA, IP and unbalance parameters.

• We describe a simple low-complexity algorithm for the implementation of these estimators.

• We provide and analyse the Cramér-Rao Bounds of the IA, IP and unbalance parameters.

The remainder of the paper is organized as follows. Section II presents the three-phase signal model and the assumptions. Section III focuses on the MLEs and Section IV deals with the derivation of the Cramér-Rao Bounds. Finally, Section V evaluates the performance of the proposed technique with synthetic signals.

II. THREE-PHASE SIGNAL MODEL

Hereinafter, bold upper case letters denote matrices, e.g., X; bold lower case letters stand for column vectors, e.g., y, and lower case letters represent scalars. Superscripts (.) T and (.) -1 denote the transpose and the inverse of a matrix, respectively. Finally, Tr [.] is the trace of a matrix, det(.) denotes the matrix determinant and I corresponds to the identity matrix.

This study focuses on three-phase systems with amplitude unbalance. Under amplitude unbalance, the three-phase voltages (or currents) are assumed to be perfectly shifted by 2π/3 and can be modelled by [START_REF]IEEE Standard for Synchrophasor Measurements for Power Systems[END_REF] y to a perfectly balanced three-phase system, but is uncommon in practice [START_REF]IEEE Standard Definitions for the Measurement of Electric Power Quantities Under Sinusoidal, Nonsinusoidal, Balanced, or Unbalanced Conditions[END_REF]. For example, voltages in one or two phases can temporary drop for several hundreds of milliseconds due to system faults, heavy load-switching and large motor starting [START_REF] Tayjasanant | A resistance sign-based method for voltage sag source detection[END_REF]. In the following, we relax the balance assumption by introducing some unbalance between phases as defined in the IEEE standard 1459-2010 [21, 3.2.2].

k [n] = d k a[n] cos (φ[n] -2kπ/3) + b k [n] (1 
Without loss of generality, we set d 0 = 1 to obtain a well-posed problem since, without any constraint on d k , the estimation problem leads to an infinite number of solutions. Using trigonometric identities and matrix notations, (1) can be expressed as

y[n] = DHx[n] + b[n] (2) 
where

• y[n] and b[n] are 3 × 1 column vectors which are defined as

y[n] =      y 0 [n] y 1 [n] y 2 [n]      b[n] =      b 0 [n] b 1 [n] b 2 [n]      . ( 3 
)
• D is a 3 × 3 diagonal matrix containing the unbalance parameters i.e.

D = diag([1 d 1 d 2 ]) =      1 0 0 0 d 1 0 0 0 d 2      . ( 4 
)
• H is a 3 × 2 matrix which is defined as

H =      1 0 -1 2 √ 3 2 -1 2 - √ 3 2      . (5) 
• x[n] is a 2 × 1 vector containing the direct and quadrature components, i.e.

x[n] = G(a[n], φ[n]) =   a[n] cos(φ[n]) a[n] sin(φ[n])   (6) 
where

G(a[n], φ[n]
) is a multivariate non-linear function.

In order to estimate the unknown parameters, we make use of the following assumptions:

• AS1) The unbalance parameters are assumed to be static over the acquisition time.

• AS2) The additive noise is a zero-mean, white Gaussian noise with covariance matrix. σ 2 I, i.e.

b[n]

∼ N (0, σ 2 I). Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

• AS3) The instantaneous amplitude, a[n], phase, φ[n] and the quadrature components, x[n], are treated as deterministic unknown parameters.

Although Assumption AS1) may appear somewhat restrictive, it is worth mentioning that the extension to the dynamic case does not present any difficulties1 . This extension is not discussed here for the sake of brevity. Assumption AS2) is motivated by the Central Limit Theorem and the fact that the Gaussian distribution leads to the largest Cramér-Rao Bound (CRB) [START_REF] Stoica | The Gaussian Data Assumption Leads to the Largest Cramér-Rao Bound[END_REF]. If the Gaussian hypothesis fails to be true, the estimation technique proposed in this paper is still applicable, but it will no longer provide the Maximum Likelihood estimates. Indeed, for non-Gaussian noise, the proposed technique corresponds to the Least Square Estimator (LSE) [START_REF] Stoica | Introduction to Spectral Analysis[END_REF], which is the most natural estimator when no a priori information is available about the noise distribution. Finally, AS3) refers to the Conditional Model and means that the unknown sequence x[n] is frozen in all the realizations of the data y[n] [START_REF] Stoica | Performance study of conditional and unconditional direction-of-arrival estimation[END_REF]. Note that AS3) is less restrictive than the Unconditional Model since it does not require any a priori information about the

distribution of x[n].
Under the above assumptions, the goal of this paper is to estimate a

[n], φ[n], d 1 and d 2 from Y = [y[0], • • • , y[N -1]].

III. MAXIMUM LIKELIHOOD ESTIMATION

In this section, we derive the Maximum Likelihood Estimators (MLEs) of a[n], φ[n], d 1 and d 2 . This section is composed of two parts: first, we demonstrate that the MLEs have closed form solutions, then we describe an efficient algorithm for the implementation of these solutions.

A. Closed form estimator

Let us define

Ω = [a[0], φ[0], .., a[N -1], φ[N -1], d 1 , d 2 ] (7) 
the row vector containing the 2N + 2 unknown parameters. The MLE of Ω is given by

Ω = arg max Ω L(Ω) (8) 
where L(Ω) = ln (p(Y; Ω)) is the log-likelihood function of Y and p(Y; Ω) is the probability density function (pdf) of Y, which is parameterized by Ω. Using AS2) and neglecting the terms that do not depend on the unknown parameters, the maximization of L(Ω) with respect to Ω reduces to the minimization of the Least Square criterion [START_REF] Stoica | Introduction to Spectral Analysis[END_REF] N -1

n=0 (y[n] -DHx[n]) T (y[n] -DHx[n]) (9) 
In the following, we decompose the estimation problem into two steps. First, we estimate the unbalance parameters and quadrature components by minimizing [START_REF]IEEE Standard for Synchrophasor Measurements for Power Systems[END_REF] 

J (d) Tr[(I -M(d)) R] ( 10 
)
where R is the sample covariance matrix i.e.

R 1 N N -1 n=0 y[n]y T [n], (11) 
and

M(d) DH(H T D 2 H) -1 H T D T . ( 12 
)
The cost function can be simplified due to the particular structure of H. Indeed, from the definitions of H and D, we obtain

H T D 2 H = 1 4   d 2 1 + d 2 2 + 4 - √ 3 d 2 1 -d 2 2 - √ 3 d 2 1 -d 2 2 3 d 2 1 + d 2 2   (13) 
Therefore, the inverse matrix is given by

H T D 2 H -1 = 1 3(d 2 1 + d 2 2 + d 2 1 d 2 2 ) ×   3 d 2 1 + d 2 2 √ 3 d 2 1 -d 2 2 √ 3 d 2 1 -d 2 2 d 2 1 + d 2 2 + 4   (14) 
After some computations, it follows that

M(d) = 1 d 2 1 + d 2 2 + d 2 1 d 2 2      d 2 1 + d 2 2 -d 1 d 2 2 -d 2 1 d 2 -d 1 d 2 2 1 -d 2 2 -d 1 d 2 -d 2 1 d 2 -d 1 d 2 1 -d 2 1      . (15) 
From [START_REF] Pradhan | Power System Frequency Estimation Using Least Mean Square Technique[END_REF], we note that

I -M(d) = 1 d 2 1 + d 2 2 + d 2 1 d 2 2      d 2 1 d 2 2 d 1 d 2 2 d 2 1 d 2 d 1 d 2 2 d 2 2 d 1 d 2 d 2 1 d 2 d 1 d 2 d 2 1      . (16) 
Then, it can be checked that

I -M(d) = v(d)v T (d) v T (d)v(d) , (17) 
where v(d) is a 3 × 1 column vector which is defined as

v(d)      d 2 d 1 d 2 d 1      . ( 18 
)
Using ( 17) in [START_REF] Vakman | On the Analytic Signal, the Teager-Kaiser Energy Algorithm, and Other Methods for Defining Amplitude and Frequency[END_REF] and the cyclic property of trace, the cost function can be arranged as

J (d) = Tr v(d)v T (d) R v T (d)v(d) (19) 
= v T (d) Rv(d) v T (d)v(d) . (20) 
From [START_REF] Jouanne | Assessment of voltage unbalance[END_REF], we observe that the cost function J (d) reduces to a Rayleigh quotient. A Rayleigh quotient is bounded by [27, Theorem 4.2.2]:

λ min ≤ v T (d) Rv(d) v T (d)v(d) ≤ λ max (21) 
where λ min and λ max correspond, respectively, to the lowest and highest eigenvalues of R. The lower bound is reached if and only if

v(d) v(d) = u (22) 
where . denotes the vector norm and u is the unit-norm eigenvector satisfying R u = λ min u. In other words, the entire information about d 1 and d 2 is carried by the eigenvector u associated with the smallest eigenvalue of the sample covariance matrix.

From [START_REF] Tayjasanant | A resistance sign-based method for voltage sag source detection[END_REF], we can obtain closed form expressions for the MLEs of d 1 and d 2 . Let us decompose u as

u      u 0 u 1 u 2      (23) 
and let us denote by d 1 and d 2 , the MLEs of the unbalance parameters. Using ( 23) and ( 18) in ( 22), we obtain the following equations

d 1 d 2 = u 0 v( d) (24a) 
d 2 = u 1 v( d) (24b) 
d 1 = u 2 v( d) . (24c) 
Therefore, the MLEs of the unbalance parameters are simply given by

d 1 = u 0 u 1 (25a) d 2 = u 0 u 2 . ( 25b 
)
For large

N , it is shown in Appendix A that d k (k = 1, 2) is Gaussian distributed. Accordingly, for
large N , the bias and variance of d k are respectively given by bias

(d k ) ≈ σ 2 v(d) 2 N × d k C kk -C 0k w 2 k (26a) var d k ≈ σ 2 v(d) 2 N × C 00 -2d k C 0k + d 2 k C kk w 2 k (26b)
where

w 1 = d 2 , w 2 = d 1 , C ij corresponds to the [i, j] element of the 3 × 3 matrix C = 1 k=0 λ k (λ k -σ 2 ) 2 s k s T k , (27) 
and s k (k = 0, 1) are the unit norm eigenvectors associated with the two largest eigenvalues 26), it can be observed that the bias and variance of the estimators go to zero as

λ k (k = 0, 1) of R E[y[n]y T [n]]. From (
σ 2 → 0 or N → ∞. 2) Estimation of x[n], a[n] and φ[n]: Let us denote by D = diag([1 d 1 d 2 ]
) the diagonal matrix containing the estimates of the unbalance parameters. It can be shown that the MLEs of the direct and quadrature components, x[n], are given by [START_REF] Stoica | Introduction to Spectral Analysis[END_REF] x

[n] = (H T D 2 H) -1 H T D T y[n]. ( 28 
)
Remark 1: For balanced systems ( d 1 = d 2 = 1), the MLEs of the direct and quadrature components reduce to

x[n] =   2 3 -1 3 -1 3 0 √ 3 3 - √ 3 3   y[n]. (29) 
In the power electronics community, this transform is known as the Clarke transform [START_REF] Clarke | Circuit analysis of AC power systems; symmetrical and related components[END_REF].

To estimate a[n] and φ[n] from x[n], we resort to the invariance property of the MLE [START_REF] Kay | Fundamentals of statistical signal processing: estimation theory[END_REF]Theorem 7.4]. Using this property, the MLEs of the IA and IP are given by 

 a[n] φ[n]   = G -1 ( x[n]), (30) 
where G -1 (.) corresponds to the inverse of the multivariate non-linear function G(.) in ( 6). Decomposing

x[n] as x[n] = [ x α [n], x β [n]]
T and using the definition of G(.), we obtain

a[n] = x 2 α [n] + x 2 β [n] (31a) φ[n] = arctan x β [n] x α [n] . (31b) 

B. Algorithm Implementation

The proposed estimation procedure is summarized in 

The eigenvalues of R are obtained by solving the equation det(λ k I -R) = 0. For 3 × 3 symmetric matrix, the analytic solutions are given by (see [START_REF] Kopp | Efficient numerical diagonalization of hermitian 3× 3 matrices[END_REF]) where

λ k = 2 √ p 3 cos ϕ + 2kπ 3 - 1 3 c 2 , k = 0, 1, 2 (33) 
Y = [y[0], • • • , y[N -1]] Estimation of x[n] Estimation of a[n] and φ[n] Estimation of d 1 and d 2 x[n] d 1 , d 2 a[n], φ[n]
ϕ = 1 3 arctan   27[ 1 4 c 2 1 (p -c 1 ) + c 0 (q + 27 4 c 0 )] q   c 2 = -r 00 -r 11 -r 22 c 1 = r 00 r 11 + r 00 r 22 + r 11 r 22 -r 2 01 -r 2 02 -r 2 12 c 0 = r 00 r 2 12 + r 11 r 2 02 + r 22 r 2 01 -r 00 r 11 r 22 -2r 02 r 01 r 12 p = c 2 2 -3c 1 q = - 27 2 c 0 -c 3 2 + 9 2 c 2 c 1 .
In particular, as ϕ ∈ [0, 2π 3 [, we can easily show that the smallest eigenvalue is given by λ min = λ 1 . The associated eigenvector, u, is obtained by solving the equation R u = λ min u. After some computations, we obtain

u 0 = β × (r 22 -λ min )(r 11 -λ min ) -r 2 12 (34a) u 1 = β × (r 02 r 12 -r 01 (r 22 -λ min )) (34b) 
u 2 = β × (r 01 r 12 -r 02 (r 11 -λ min )) (34c) 
where the normalized coefficient β is introduced to enforce the constraint u 2 F = 1. Finally, inserting (34) into (25) yields 2) Expression of

d 1 = (r 22 -λ min )(r 11 -λ min ) -r 2 12 r 02 r 12 -r 01 (r 22 -λ min ) (35a) d 2 = (r 22 -λ min )(r 11 -λ min ) -
x α [n] and x β [n]: The estimate of x[n] = [ x 0 [n], x 1 [n]]
T is given by ( 28). This estimate can be expressed in a simple form using the value of (H T D 2 H) -1 in ( 14). After some computations, we find

x α [n] = ( d 2 1 + d 2 2 )y 0 [n] -d 1 d 2 2 y 1 [n] -d 2 1 d 2 y 2 [n] d 2 2 + d 2 1 + d 2 1 d 2 2 (36a) x β [n] = ( d 2 1 -d 2 2 )y 0 [n] + d 1 ( d 2 2 + 2)y 1 [n] -d 2 ( d 2 1 + 2)y 2 [n] √ 3( d 2 2 + d 2 1 + d 2 1 d 2 2 ) (36b) 
Finally, the implementation is detailed in Algorithm 1. For the computation of φ[n] in [START_REF] Renaux | On the high-snr conditional maximum-likelihood estimator full statistical characterization[END_REF] and ϕ in [START_REF] Stoica | MUSIC, maximum likelihood, and cramer-rao bound[END_REF], care must be taken to resolve the ambiguity in the arctan function since φ[n] ∈ [0 2π[ and ϕ ∈ [0 2π/3[. In practice, the correct quadrant can be obtained directly using the atan2 function which is provided in the standard library of most programming languages. We should emphasize that the proposed technique is easy to implement and does not require any external library. Therefore, our solution makes it also a potential (if not the unique) candidate for implementation on hardware embedded system (e.g. FPGA, microprocessors).

IV. PERFORMANCE ANALYSIS: CRAM ÉR RAO BOUNDS

A natural criterion to assess the performance of an estimator, θ, is the mean square error (MSE). The MSE can be decomposed as follows [START_REF] Kay | Fundamentals of statistical signal processing: estimation theory[END_REF] MSE

[ θ] = bias 2 (θ) + var( θ)
where bias(θ) and var( θ) correspond to the bias and variance of the estimator, respectively. For unbiased estimators, the variance is lower bounded by the so-called Cramér-Rao Lower Bound (CRB). In this context, an unbiased estimator that reaches the CRB is said to be efficient [START_REF] Kay | Fundamentals of statistical signal processing: estimation theory[END_REF]. The statistical performance of the Maximum Likelihood Estimator under the Conditional model (CML) has been characterized in several studies. Specifically, it has been demonstrated in [START_REF] Ottersten | Exact and large sample maximum likelihood techniques for parameter estimation and detection in array processing[END_REF], [START_REF] Renaux | On the high-snr conditional maximum-likelihood estimator full statistical characterization[END_REF] that the CML is asymptotically unbiased as N → ∞ or SNR→ ∞, making the comparison between the variance and CRB relevant in the asymptotic regions. Furthermore, it has also been demonstrated that the variance of the CML reaches the CRB at high SNR [START_REF] Renaux | On the high-snr conditional maximum-likelihood estimator full statistical characterization[END_REF], a property which is not systematically shared by other estimators2 . Finally, it has been shown that the CML does not reach the CRB for N → ∞ (with SNR = ∞). In particular, the non-efficiency of the CML for N → ∞ is due to the fact that the number of unknowns grows without bound as N increases3 [START_REF] Stoica | Introduction to Spectral Analysis[END_REF], [START_REF] Stoica | MUSIC, maximum likelihood, and cramer-rao bound[END_REF].

This section focuses on the derivation of the Cramér-Rao Lower Bound for the Conditional Model in [START_REF] Kwasinski | Signal processing in the electrification of vehicular transportation[END_REF]. It should be mentioned that the CRB of the fundamental frequency has been empirically analysed in [START_REF] Xia | Augmented mvdr spectrum-based frequency estimation for unbalanced power systems[END_REF] for unbalanced three-phase systems with constant IA and linear IP. In this section, we provide explicit expressions for the CRBs of the unbalance parameters, IA and IP for the general case, and we highlight some useful properties of these bounds.

The Cramér-Rao inequality states that the variance of any unbiased estimator is bounded by 

var( a[n]) ≥ CRB [a[n]] (37a) var 
( φ[n]) ≥ CRB [φ[n]] (37b) var 
( d k [n]) ≥ CRB [d k ] (37c 
T(Ω)            DHG(a[0], φ[0]) DHG(a[1], φ[1]) . . . DHG(a[N -2], φ[N -2]) DHG(a[N -1], φ[N -1])           
the 3N × 1 column vector containing the noiseless samples.

The CRBs are derived from the inverse of the Fisher Information Matrix. As b[n] ∼ N (0, σ 2 I), the ij th element of the Fisher Information Matrix is given by [START_REF] Kay | Fundamentals of statistical signal processing: estimation theory[END_REF] [

F(Ω)] i,j = 1 σ 2 ∂T(Ω) ∂Ω i T ∂T(Ω) ∂Ω j (38) 
where Ω j corresponds to the (j + 1) th element of Ω (see [START_REF] Blodt | Distinguishing load torque oscillations and eccentricity faults in induction motors using stator current Wigner distributions[END_REF]). From the definition of T(Ω), it follows that

[F(Ω)] i,j = 1 σ 2 N -1 n=0 ∂DHx[n] ∂Ω i T ∂DHx[n] ∂Ω j (39) = [F(Ω)] j,i (40) 
After some computations, we find

F(Ω) =            K 0 0 • • • 0 Z T 0 0 K 1 . . . . . . Z T 1 . . . . . . . . . 0 . . . 0 • • • 0 K N -1 Z T N -1 Z 0 Z 1 • • • Z N -1 Γ            (41) 
where

K n = 1 σ 2 Q[n]H T D 2 HQ T [n] (42a) 
Z n = 1 σ 2   d 1 x T [n]h T 1 h 1 d 2 x T [n]h T 2 h 2   Q T [n] (42b) 
Γ = N σ 2   h 1 R x h 1 0 0 h 2 R x h 2   (42c) 
and

Q[n]   cos(φ[n]) sin(φ[n]) -a[n] sin(φ[n]) a[n] cos(φ[n])   (43a) h 1 - 1 2 √ 3 2 (43b) h 2 - 1 2 - √ 3 2 (43c) R x 1 N N -1 n=0 x[n]x T [n] (43d) 
Let us decompose the Fisher Information Matrix as

F(Ω) =   K Z T Z Γ   (44) 
where

• K is a 2N × 2N matrix which is defined as K      K 0 0 0 0 . . . 0 0 0 K N -1      (45) 
• and Z is a 2 × 2N matrix which is defined as

Z [Z 0 , ..., Z N -1 ] (46) 
Using the inverse formula for partitioned matrix [START_REF] Kay | Fundamentals of statistical signal processing: estimation theory[END_REF], we obtain

F -1 (Ω) =   K -Z T Γ -1 Z -1 -K -Z T Γ -1 Z -1 Z T Γ -1 -Γ -ZK -1 Z T -1 ZK -1 Γ -ZK -1 Z T -1  
Using (42c) and ( 45), it can be checked that the inverses Γ -1 and K -1 are equal to

Γ -1 = σ 2 N   1 h1Rxh T 1 0 0 1 h2Rxh T 2   (47) 
K -1 =      K -1 0 0 0 0 . . . 0 0 0 K -1 N -1      (48) 
where K -1 n is equal to

K -1 n = σ 2 Q -T [n](H T D 2 H) -1 Q -1 [n] (49) 

A. CRBs of the Unbalance Parameters

The Cramér-Rao Bounds of d 1 and d 2 are defined by

CRB[d 1 ] F -1 (Ω) 2N,2N (50a) 
CRB[d 2 ] F -1 (Ω) 2N +1,2N +1 (50b) 
The computation of the Cramér-Rao Bounds requires the inversion of Γ -ZK -1 Z T , which can be expressed in a simple form.

From (49), (48), ( 46) and (42b), it can be verified that

ZK -1 Z T = N σ 2   d 2 1 p 11 h 1 R x h T 1 d 1 d 2 p 12 h 2 R x h T 1 d 1 d 2 p 12 h 2 R x h T 1 d 2 2 p 11 h 2 R x h T 2   (51) 
where p uv h u (H T DH) -1 h T v . Specifically, using ( 14), we find

p 11 = d 2 2 + 1 v(d) 2 , p 12 = -1 v(d) 2 , p 22 = d 2 1 + 1 v(d) 2 , (52) 
where v(d) is defined in [START_REF] Xia | Widely Linear Adaptive Frequency Estimation of Unbalanced Three-Phase Power Systems[END_REF]. Then, using (42c), ( 51) and ( 52), it follows that

Γ -ZK -1 Z T = N σ 2 v(d) 2   d 2 2 h 1 R x h T 1 d 1 d 2 h 2 R x h T 1 d 1 d 2 h 2 R x h T 1 d 2 1 h 2 R x h T 2   (53) 
Finally, the CRBs are obtained by inverting

Γ -ZK -1 Z T . As h 1 R x h T 1 h 2 R x h T 2 -h 2 R x h T 1 h 2 R x h T 1 = (3/4)det(R x ), we obtain CRB[d 1 ] = 4σ 2 v(d) 2 3N × h 2 R x h T 2 d 2 2 det(R x ) (54a) CRB[d 2 ] = 4σ 2 v(d) 2 3N × h 1 R x h T 1 d 2 1 det(R x ) . ( 54b 
)
We observe that CRB[d 1 ] and CRB[d 2 ] tend to 0 when N → ∞ or when σ 2 → 0. Additional properties are also provided in Remark 2 and 3.

Remark 2: The CRBs of d 1 and d 2 are bounded by

4σ 2 v(d) 2 3N l max d 2 2 ≤ CRB[d 1 ] ≤ 4σ 2 v(d) 2 3N l min d 2 2 (55a) 4σ 2 v(d) 2 3N l max d 2 1 ≤ CRB[d 2 ] ≤ 4σ 2 v(d) 2 3N l min d 2 1 . ( 55b 
)
where l max ≥ l min are the eigenvalues of R x .

Proof: First, as h u h T u = 1, the scalar h u R x h T u is bounded by l min ≤ h u R x h T u ≤ l max . Then, as the matrix determinant is equal to the product of the eigenvalues of R x , det(R x ) = l min l max . Using these two properties in (54) yields to (55). (56)

Proof: The proof comes from the fact that h 1 h T 1 = 1 and h 2 h T 2 = 1.

B. CRBs of the Instantaneous Amplitude and Instantaneous Phase

The Cramér-Rao Bounds of a[n] and φ[n] are defined by

CRB[a[n]] F -1 (Ω) 2n,2n (57a) 
CRB[φ[n]] F -1 (Ω) 2n+1,2n+1 (57b) 
The computation of the Cramér-Rao Bounds requires the inversion of K -Z T Γ -1 Z, which is difficult to obtain in closed-form. However, this inverse matrix can be approximated for the asymptotic case N → ∞.

Indeed, when R x is finite, we obtain the following limit

Z T Γ -1 Z = σ 2 N Z T   1 h1Rxh T 1 0 0 1 h2Rxh T 2   Z → 0 Therefore, it follows that K -Z T Γ -1 Z -1 → K -1 (58) 
For the asymptotic case, this approximation shows that the contribution of the estimation error of d 1 and d 2 can be neglected. From (48), we obtain the asymptotic Cramér-Rao Bounds of a[n] and φ[n]. These bounds are equal to

CRB ∞ [a[n]] = [K -1 n ] 0,0 (59a) CRB ∞ [φ[n]] = [K -1 n ] 1,1 (59b) 
In order to obtain a closed-form expression, we make use of the following equality (see the definition of

Q[n] in (43a)) Q -1 [n] =   cos(φ[n]) -1 a[n] sin(φ[n]) sin(φ[n]) 1 a[n] cos(φ[n])   Using this equality in (49) yields to CRB ∞ [a[n]] = σ 2 q 1 [n] H T D 2 H -1 q T 1 [n] (60a) CRB ∞ [φ[n]] = σ 2 a 2 [n] q 2 [n] H T D 2 H -1 q T 2 [n] (60b) 
where

q 1 [n] [cos(φ[n]) sin(φ[n])] (61a) q 2 [n] [-sin(φ[n]) cos(φ[n])] (61b) 
From (60), we see that the asymptotic Cramér Rao Bounds do not depend on N and increase linearly with the noise variance σ 2 . In particular, these bounds tend to 0 only if σ 2 → 0. We also observe 

∂CRB ∞ (a[n]) ∂φ[n] = -a[n] 2 ∂CRB ∞ (φ[n]) ∂φ[n] (62) 
which implies that the positions of the extrema are the same but their natures (minima or maxima) are different.

V. NUMERICAL EXAMPLES

In this section, the performances of the proposed technique are evaluated using synthetic signals as defined in the IEEE Standard C37.118 [START_REF]IEEE Standard for Synchrophasor Measurements for Power Systems[END_REF]. The accuracy of the proposed estimators is assessed with the following Mean Square Errors (MSEs) 

MSE[d k ] = E d k -d k 2 (63a) MSE[a] = 1 N N -1 n=0 E ( a[n] -a[n]) 2 (63b) MSE[φ] = 1 N N -1 n=0 E φ[n] -φ[n] 2 [-π,π( (63c 
[a] = 1 N N -1 n=0 CRB[a[n]] (64) CRB[φ] = 1 N N -1 n=0 CRB[φ[n]]. (65) 
In order to show the accuracy of the CRB approximation in (60), CRB[a] and CRB[φ] are also compared with those obtained with the asymptotic CRBs.

In the following experiments, the unbalance parameters are set to d 0 = 1, d 1 = 0.75, d 2 = 1.199 4 , the nominal frequency is fixed to f s = 60Hz, and the sampling frequency is equal to F s = 5kHz. 4 The values of d k have been chosen to respect both the normalization of the proposed technique, i.e. d0 = 1, and the one of the PCA approach, i.e.

d 2 0 + d 2 1 + d 2 2 = 3.
Experimental Approximated values values using ( 26) 

N CRB MSE var( d k ) biais 2 (d k ) MSE var( d k ) biais 2 (d k ) samples ×10 -4 ×10 -4 ×10 -4 ×10 -4 ×10 -4 ×10 -4 ×10 -4 120 

A. Estimation with Linear Frequency Modulation (FM)

The first test investigates the case of three-phase signals with unit amplitude and linear frequency modulation. Under these conditions, the IA and IP are respectively given by [9, 5.5.7]

a[n] = 1 (66a) φ[n] = 2πf s n/F s + πr f (n/F s ) 2 (66b)
where r f is the frequency ramp rate, which is set to r f = 1Hz/s [9, 5.5.7]. The corresponding signal is displayed in Figure 2a for illustration.

Statistical performances are analysed for different data lengths, and at different signal-to-noise ratios (SNRs). The SNR is defined efficient for large N (at fixed SNR) [START_REF] Stoica | Introduction to Spectral Analysis[END_REF], [START_REF] Ottersten | Exact and large sample maximum likelihood techniques for parameter estimation and detection in array processing[END_REF], [START_REF] Stoica | MUSIC, maximum likelihood, and cramer-rao bound[END_REF], and efficient for large SNR (at fixed N ) [START_REF] Renaux | On the high-snr conditional maximum-likelihood estimator full statistical characterization[END_REF]. In particular, as discussed in section IV, the non-efficiency of the Maximum Likelihood for N → ∞ is due to the fact that the number of unknown parameters grows without bound as N increases [START_REF] Ottersten | Exact and large sample maximum likelihood techniques for parameter estimation and detection in array processing[END_REF]. Finally, we note that the approximated values of the MSE, variance and bias are close to the experimental ones.

SNR dB = 10 log Tr DHR x H T D T 3σ 2 . ( 67 
However, it should be mentioned that a small error still persists even for large N . For example, with N = 1000 samples, the experimental MSE of d 1 is equal to 2.2 × 10 -4 whereas the approximated MSE is equal to 2.4 × 10 -4 .

Figure 3 presents the estimation errors, the CRBs and the CRB limits (see Remark 2) for the unbalance parameters. We see that the CRBs are correctly bounded by the CRB limits. We also note that the CRBs, the lower and upper CRB limits coincide for particular values of N (N = 42, 83, 125, • • • ). These values correspond to the case where R x ≈ 0.5I. Specifically, it can be shown that this equality is satisfied when the number of samples is equal to an integer multiple of the half period (0.5 × F s /f s ≈ 41.66), or when Specifically, the CRB of d 1 is about 2.53 times lower than that of d 2 , and the MSEs follow the same trend for SNR≥ 10dB. This observation is consistent with Remark 3. Indeed, using the expression of a[n] and φ[n], it can be checked that for large N the covariance matrix tends to R x ≈ 0.5I, which implies

N → ∞.
that CRB[d 2 ]/CRB[d 1 ] = ( d2 d1 ) 2 ≈ 2.5.
Comparing the MSEs to the CRB in the asymptotic region, we note that the MLEs of d 1 and d 2 do not achieve the CRBs at fixed SNR. Indeed, we observe an offset between the MSEs and the CRBs, even with a large number of samples.

Figure 4 shows the MSE, the CRB and the asymptotic CRB for the instantaneous amplitude a[n]. For the purpose of comparison, the MSEs obtained with the MLE are compared with those obtained with the Clarke transform and PCA-based techniques [START_REF] Choqueuse | Diagnosis of three-phase electrical machines using multidimensional demodulation techniques[END_REF]. In this figure, we observe that the CRB decreases as the SNR increases. Furthermore, we see that the exact CRB tends to the asymptotic one when N → ∞.

Regarding the estimators, we observe that the Clarke estimator does not provide reliable results due to the unbalance condition. Specifically, the MSE exhibits an "error floor" that is equals to 10 -2 for the June 23, 2014 DRAFT This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication. The final version of record is available at http://dx.doi.org/10.1109/TSP.2014.2333565

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org. asymptotic case SNR→ ∞. We also note that the performances of the PCA estimator highly depend on the data length. Indeed, this estimator is based on the assumption that R x = σ 2 s I, which is only satisfied when N is equal to an integer multiple of the half period, or when N → ∞. Finally, we observe that the MLE outperforms all the other methods and achieves the CRB for SNR→ ∞. 

B. Estimation with sinusoidal amplitude and phase modulation

The performances of the proposed technique are evaluated using three-phase signals with sinusoidal amplitude and phase modulation. Under sinusoidal modulation, IA and IP are given by [9, 5.5.6]

a[n] = 1 + k x cos(2πf m n/F s ) (68a) φ[n] = 2πf s n/F s + k a cos(2πf m n/F s + π) (68b)
where k x is the amplitude modulation factor and k a is the phase modulation factor. In the following simulations, these parameters are chosen according to the worst scenario of the IEEE Standard C37.118 [START_REF]IEEE Standard for Synchrophasor Measurements for Power Systems[END_REF] (k x = k a = 0.1). Figure 2b displays the corresponding signals with a modulation frequency of f m = 5Hz.

The evolution of the CRBs and the MSEs versus the data length or the SNR is very similar to the one observed in subsection V-A, and therefore, are not presented here for the sake of brevity. Instead, as recommended in the standard C37.118 [START_REF]IEEE Standard for Synchrophasor Measurements for Power Systems[END_REF], the following experiments examine the influence of the modulation frequency f m on the statistical performances. We see that the CRBs and MSEs do not seem to be affected by the modulation frequency. A closer inspection reveals some small non-monotonic variations. For instance, the CRB of d 2 is equal to 0.0034 at f m = 1Hz, and to 0.0036 at f m = 10Hz. These variations are caused by the sample covariance matrix R x in (60), which is slightly sensitive to f m .

Figure 7 and 8 present the MSEs, the CRBs and the asymptotic CRBs for the IA and IP. As reported before, we observe that these quantities are not significantly affected by f m .

C. Influence of Harmonics

In this subsection, we analyse the behaviour of the proposed algorithm in the presence of a model mismatch caused by harmonics. In power system, harmonics are produced by nonlinear loads and are a big nuisance in transmission networks [START_REF] Begovic | Frequency tracking in power networks in the presence of harmonics[END_REF]. Due to waveform symmetry, electrical signals mostly contain odd harmonics. By adding odd harmonics in (1), we get the following model

y k [n] = d k a[n] cos(φ[n] -2kπ/3) + l=3,5,.. d k a l [n] cos(lφ[n] -2klπ/3) + b k [n] (69) 
where a l [n] corresponds to the level of the l th harmonic. In this subsection, we assume a constant IA, We observe that the MSEs increase as β increases. Moreover, it is interesting to note that, while

MSE[d 2 ] > MSE[d 1 ]
for small values of β, this trend is reversed for higher values of β. Finally, we can note that the PCA estimator of the instantaneous phase, φ[n], seems to be slightly more robust than the MLE estimator.

D. Frequency Estimation with linear FM and sinusoidal AM/PM

In this experiment, the proposed technique is applied to the estimation of the instantaneous frequency.

The instantaneous frequency can be derived from the MLE of the instantaneous phase as follows

f [n] = F s 4π φ u [n + 1] -φ u [n -1] (70) 
where φ u [n] corresponds to the unwrapped MLE of the instantaneous phase. This frequency estimate is compared to the one obtained with the Augmented Complex Least Mean Square (ACLMS) algorithm in [START_REF] Xia | Adaptive frequency estimation in smart grid applications[END_REF] using a perfect initialization, i.e. f [0] = 60Hz, and a step size of µ = 0.01 and µ = 0.1. Figure 12 displays the reference and the estimated frequencies with linear frequency modulation (see subsection V-A), and sinusoidal amplitude and phase modulation (see subsection V-B). This figure shows that all the considered estimators are able to track the reference frequency. Concerning the ACLMS, we observe that a large step size µ is required to obtain a rapid and precise estimate. However, we also note that a large step size results in an overshoot, which can be problematic in monitoring applications. Finally, we see that the MLE gives the best frequency estimate in the two simulations. Nevertheless, this statement must be tempered because the proposed MLE assumes static unbalance parameters (see AS1)), as opposed to the ACLMS. When AS1) is not satisfied, the proposed MLE must be adapted to take into account the non-stationarity of the sample covariance matrix.

VI. CONCLUSION

In this paper, we investigated the estimation of the amplitude, phase and unbalance parameters in three-phase systems with amplitude unbalance.

First, a new approach to estimate the amplitude, the phase and the unbalance parameters was proposed.

We demonstrated that the Maximum Likelihood Estimators of these parameters have simple closed-form expressions. More precisely, the unbalance parameters are computed from the eigenvector associated with the smallest eigenvalue of the sample covariance matrix, and the amplitude and phase are estimated from a linear transformation of the three-phase signal. We also provided a low complexity algorithm to implement these estimators, which is suitable for real-time implementation in embedded systems.

Then, the Cramér-Rao Bounds (CRBs) of the amplitude, phase and unbalance parameters were derived and analysed. We provided explicit expressions for the CRB of the unbalance parameters and asymptotic expressions for the CRB of the amplitude and phase.

The performances of the proposed estimators were validated using synthetic signals compliant with the IEEE Standard C37.118 and compared with other estimators such as the Clarke transform, the PCA using Taylor expansions, the mean and variance of a ratio of two random variables can be approximated by (see for example [START_REF] Van Kempen | Mean and variance of ratio estimators used in fluorescence ratio imaging[END_REF])

E u 0 u k ≈ E[ u 0 ] E[ u k ] - Σ 0k E 2 [ u k ] + E[ u 0 ]Σ kk E 3 [ u k ] (76a) var u 0 u k ≈ Σ 00 E 2 [ u k ] -2 E[ u 0 ]Σ 0k E 3 [ u k ] + E 2 [ u 0 ]Σ kk E 4 [ u k ] (76b) 
Using ( 25) and ( 73) in (76), it follows that the bias and variance can be approximated by bias

(d k ) ≈ σ 2 N u 2 k (d k C kk -C 0k ) (77a) var d k ≈ σ 2 N u 2 k C 00 -2d k C 0k + d 2 k C kk (77b) 
Finally, as u = v(d)/ v(d) , we get [START_REF] Krim | Two decades of array signal processing research, the parametric approach[END_REF]. 

  ) where y k [n] and b k [n] correspond to the electrical signal and noise component of the k th phase (k = 0, 1, 2), respectively. The time-varying parameters a[n] > 0 and φ[n] correspond to the instantaneous amplitude and phase. Several types of profiles for a[n] and φ[n] are normalized in the IEEE Standard C37.118, such as step change, ramp change, and sine wave modulation [9]. The quantity d k > 0 corresponds to the unbalance parameter on phase k. The ideal case d 0 = d 1 = d 2 = 1 corresponds June 23, 2014 DRAFT
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 11222 From a practical viewpoint, the more difficult task relies on the evaluation of d 1 , d 2 and x[n]. Indeed, d 1 and d 2 requires the computation of the eigenvector u and x[n] requires a matrix inversion. These computations can be performed by specialized mathematical libraries such as LAPACK or the GNU Scientific Library. However, these libraries are designed mainly for large matrices and may produce a lot of computational overhead for small matrices [29]. To reduce computational time and avoid the use of external libraries, we provide in this subsection the analytic expressions of d 1 , d 2 and x[n]. 1) Expression of d 1 and d 2 : Let us express the 3 × 3 symmetric matrix R as

Fig. 1 :

 1 Fig. 1: Estimation procedure for a[n], φ[n], d 1 and d 2 .

  ) where a[n], φ[n] and d k [n] correspond to the estimates of a[n], φ[n] and d k , respectively. To derive explicit expressions for the CRBs, let us define

Remark 3 :

 3 When R x = σ 2 s I, the CRBs of d 1 and d 2 are related by CRB[d 2 ]

  that CRB ∞ [a[n]] does not depend on a[n], while CRB ∞ [φ[n]] decreases quadratically with a[n]. When a[n] = 0, it is interesting to note that the estimation of φ[n] becomes impossible. Finally, we observe that the two CRBs depend on φ[n], and their derivatives are related by

  ) where the notation [.] [-π,π( in (63c) means that the phase error is reduced to the interval [-π, π(, and E[.] corresponds to the expectation operator. In the following, the expectations are estimated through 5000 Monte Carlo trials. As the MLE is asymptotically unbiased, we compare the MSEs of the unbalance parameters to the Cramér-Rao Bounds CRB[d 1 ] and CRB[d 2 ], and the MSEs of the IA and IP to the average CRBs CRB

  )Tables I and II present the CRB, MSE, variance and (the square of) the bias of d k (k = 1, 2) versus the data length and SNR, respectively. The approximated values of the variance and bias in[START_REF] Krim | Two decades of array signal processing research, the parametric approach[END_REF] are also provided for comparison. First, we observe that the CRB, MSE, variance and bias decrease as the data length or SNR increases. Then, we note that the square of the bias is close or equal to zero in each simulation, making the comparison between the CRB and MSE relevant in the asymptotic regions. By comparing the CRB and MSE in

Fig. 2 :

 2 Fig. 2: Three-phase signals according to the IEEE Standard C37.118.1 with amplitude unbalance (d 1 = 0.75, d 2 = 1.199 and σ 2 = 0)

Figure 3

 3 also shows that the estimation of d 1 is more accurate than the estimation of d 2 .
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 3 Fig. 3: Linear FM: Estimation of d 1 and d 2
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 545 Figure 5 presents the estimation error and the CRB for the instantaneous phase φ[n]. We can draw similar conclusions as those from Figure 4. Specifically, the MLE outperforms the other estimators and achieves the CRB for SNR→ ∞. Furthermore, we note that the MSE tends to a fixed value at low SNR.

Figure 6

 6 Figure 6 displays the CRBs and the MSEs of the unbalance parameters for N = 128 and σ 2 = 4×10 -2 .

a[n] = 1 ,Figures 9 ,

 19 Figures 9, 10 and 11 present the influence of the harmonic coefficient β on the MSEs. The CRBs are not presented here due to the model mismatch.
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 6789101112 Fig. 6: Sinusoidal AM-PM: Estimation of d 1 and d 2 (k x = k a = 0.1, N = 128 and σ 2 = 4 × 10 -2 )
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Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org. Algorithm 1 Implementation of the MLE Require: X. 1: Compute the data sample covariance matrix R with (11).

2: Compute λ min = λ 1 with (33).

3: Compute d 1 and d 2 with (35).

4: Compute x α [n] and x β [n] with (36).

5: Compute a[n] and φ[n] with (31). 6: return d 1 , d 2 , a[n] and φ[n].
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TABLE I :

 I Linear FM: CRB, variance and square of the bias of the estimators d k versus data length (σ 2 = 4.10 -2 ).
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SNR since the difference between the CRB and MSEs is non-zero, even with a large number of samples. This behaviour is not observed in Table

II

. These observations corroborate the fact that the CML is not
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TABLE II :

 II Linear FM: CRB, variance and square of the bias of the estimators d k versus SNR (N = 128).

For dynamic unbalance parameters, the covariance matrix R in (11) is time-varying and must be replaced by R[n].
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For example, the Unconditional Maximum Likelihood does not reach the CRB at finite number of samples and high signal to noise ratio[START_REF] Renaux | Unconditional maximum likelihood performance at finite number of samples and high signal-to-noise ratio[END_REF].

In our context, the number of unknowns is equal to 2(N + 1). June 23, 2014 DRAFT

estimator and the ACLMS. These simulations showed that the proposed estimators outperform the other techniques and achieve the CRB at high SNR, whatever the number of samples and the modulation frequency. Extension of the proposed technique to more complicated signals, including non-sinusoidal signals with amplitude and phase unbalance, will be investigated in future works.

APPENDIX A ASYMPTOTIC PROPERTIES OF d k

Under the assumptions AS1)-AS3), the covariance matrix, R, is given by

This matrix can be decomposed as

where Λ = diag(λ 0 , λ 1 , σ 2 ) (λ 0 ≥ λ 1 ≥ σ 2 ) is a 3 × 3 diagonal matrix containing the eigenvalues and S = [s 0 , s 1 , u] is a 3 × 3 matrix containing the unit-norm associated eigenvectors.

Similarly, the sample covariance matrix, R, can be decomposed as

where S = [ s 0 , s 1 , u] and Λ = diag( λ 0 , λ 1 , λ 2 ).

Let us focus on the unit-norm eigenvector, u. For large N , u is approximately jointly Gaussian distributed with mean and covariance matrix given by (see [START_REF] Stoica | MUSIC, maximum likelihood, and cramer-rao bound[END_REF])

where

Similarly to [START_REF] Stoica | The Gaussian Data Assumption Leads to the Largest Cramér-Rao Bound[END_REF], let us decompose u as

Using this decomposition and (73), the eigenvector u k is approximately distributed as

where

Gaussian distributions. In the general case, the distribution of a ratio of two Gaussian distributions is quite complicated [START_REF] Marsaglia | Ratios of normal variables[END_REF]. However, under the assumption that u k > 0, which is motivated by [START_REF] Stoica | Introduction to Spectral Analysis[END_REF], it has been shown in [START_REF] Marsaglia | Ratios of normal variables[END_REF] that this distribution can be well approximated by a Gaussian distribution. Furthermore, Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.