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This paper addresses the problem of Wiener system identification. The underlying linear subsystem is stable but not necessarily parametric. The nonlinear element in turn is allowed to be nonparametric, noninvertible, and nonsmooth. As Wiener models are uniquely defined up to an uncertain multiplicative factor, it makes sense to start the frequency identification process estimating the system phase (which is common to all models). To this end, a consistent estimator is designed using analytic geometry tools. Accordingly, the system frequency behavior is characterized by a family of Lissajous curves. Interestingly, all these curves are candidates to modelling the system nonlinearity, but the most convenient one is the less spread of them. Finally, the frequency gain is in turn consistently estimated optimizing an appropriate cost function involving the obtained phase and nonlinearity estimates.

I. INTRODUCTION

T HE Wiener model consists of a linear dynamic subsystem followed in series by a nonlinear element (Fig. 1). Most of previous identification methods were developed supposing that the nonlinearity is a polynomial of known degree and the linear part is a transfer function of known order, see e.g., [START_REF] Hasiewicz | On equivalence conditions of local and global identification of a memoryless cascade complex system[END_REF], [START_REF] Hunter | The identification of nonlinear biological systems: Wiener and Hammerstein cascade models[END_REF]- [START_REF] Pajunen | Adaptive control of Wiener type nonlinear systems[END_REF], [START_REF] Vörös | Parameter identification of Wiener systems with discontinuous nonlinearities[END_REF], [START_REF] Westwick | A new algorithm for the identification of multiple-input Wiener systems[END_REF]. As the intermediate signal is not accessible for measurement (and may even be of no physical meaning), the system output then turns out to be a bilinear (but fully known) function of the unknown parameters (those of the nonlinearity and those of the linear subsystem). Such bilinearity has been coped with following different approaches. First, the iterative optimization method consists in computing alternatively the parameters of the linear subsystem and those of the nonlinear subsystem. When optimization is performed with respect to one set of parameters, the other set is fixed. Such a procedure is shown to be efficient provided that it converges, e.g., [START_REF] Vörös | Parameter identification of Wiener systems with discontinuous nonlinearities[END_REF]. But, convergence can not be achieved except under restrictive conditions, e.g., [START_REF] Wigren | Recursive prediction error identification using the nonlinear Wiener model[END_REF]. In [START_REF] Bruls | Linear and nonlinear system identification using separable least squares[END_REF], a separable nonlinear optimization solution is suggested. It consists in expressing a part of the parameters (namely, those of the linear subsystem) in function of the others, using first order optimality conditions. The dimension of the parameter space is thus reduced making F. Giri is with the Groupe de Recherche en Informatique, Image, Automatique, Instrumentation de Caen (GREYC) Laboratory, University of Caen Basse-Normandie, Caen 14032, France (e-mail: fouad.giri@unicaen.fr).

Y. Rochdi and F.Z. Chaoui are with the LAII, EMI, Rabat, Morocco and also with the Department of Electrical Engineering, L'Ecole Supérieure de l'Enseignement Technique (ENSET), Rabat, Morocco (e-mail: youssefrochdi@yahoo.fr, chaouifatima@yahoo.fr). easier the optimization problem. Frequency-type solutions have also been proposed, see e.g., [START_REF] Gardiner | Frequency domain identification of nonlinear systems[END_REF]. The idea is to apply repeatedly a sine input with different amplitudes and frequencies . Then, exploiting the polynomial nature of the nonlinearity, the input-output equation can be solved with respect to the unknown parameters.

Nonparametric nonlinearities have also been dealt with using different approaches. In [START_REF] Greblicki | Nonparametric identification of Wiener systems[END_REF]- [START_REF] Greblicki | Nonlinearity recovering in Wiener system driven with correlated signal[END_REF], the identification problem was dealt with using stochastic tools. But, the nonlinearity is supposed to be invertible and smooth. In [START_REF] Bai | Frequency domain identification of Wiener models[END_REF] a frequency method is proposed for noninvertible nonlinearities. It consists in applying repeatedly sine input signals and operating a discrete-Fourier transformation of the obtained (steady-state) periodic output signals to estimate the frequency gain (for different frequencies) and the nonlinearity. Unfortunately, the proposed estimators (phase, gain and nonlinearity) are not consistent in general as this is pointed out in [START_REF] Giri | Comment on 'frequency domain identification of Wiener models[END_REF]. A stochastic solution has been proposed in [START_REF] Hu | Strong consistency of recursive identification for Wiener systems[END_REF], where the linear subsystem coefficients are first estimated using a least-squares type algorithm and the obtained estimates are used to recover the nonlinearity at any fixed . The consistency is established supposing that the linear subsystem is MA with known and nonzero leading coefficient. The nonlinearity was assumed to be continuous with growth not faster than a polynomial. In [START_REF] Chen | Recursive identification for Wiener model with discontinuous piece-wise linear function[END_REF], a recursive identification scheme is proposed for Wiener systems including a dead-zone preload nonlinearity. There too, consistency is only achieved supposing the linear subsystem to be MA with known and nonzero leading coefficient. More recently, a semi-parametric identification approach has been presented in [START_REF] Pawlak | On nonparametric identification of Wiener systems[END_REF]. The impulse response function of the linear subsystem is identified via the nonlinear least squares approach with the system nonlinearity estimated by a pilot nonparametric kernel regression estimate. The linear subsystem estimate is then used to form a nonparametric kernel estimate of the nonlinearity. The price paid is that the impulse response function is truncated to a finite order which, in effect, amounts to suppose the linear subsystem to be MA.

In this paper, a new frequency-domain identification scheme is designed for Wiener systems involving possibly noninvertible and nonsmooth nonlinearities. The identification purpose is to estimate the system nonlinearity and the system phase and gain , for a set of a priori chosen frequencies . As a matter of fact, the estimation of the linear subsystem (gain and phase) is much more complex in the case of noninvertible nonlinearities. The complexity arises from the fact that the (unavailable) internal signal cannot be uniquely reconstituted from the output signal. Consequently, the system cannot be uniquely modelled i.e., any couple of the form is a possible model. It is readily seen that all these models have the same phase (modulo ). A consistent estimator is designed using analytic geometry tools. Its key feature is the characterization of the system frequency behavior (within the set

) by a family of static Lissajous curves. Interestingly, the curves correspond precisely to the functions and and these are nothing other than the nonlinearities associated with the particular models and with . A particularly important fact is that the nonlinearities and are, less or more, spread versions of and , respectively. The couple of models that involve the less spread nonlinearity will prove to be the most judicious choice (in regard of gain estimation). One more crucial feature of our solution is that attention is explicitly paid to the compatibility between phase estimates and nonlinearity estimate. The above compatibility and spreadability requirements will prove to be essential to guarantee the consistency of the whole identification scheme.

The paper is organized as follows: the identification problem is stated in Section II; geometric characterization of the system frequency behavior is developed in Section III; this characterization is used in Section IV to design the identification scheme; Section V gives complementary analytical expressions; concluding remarks and reference list end the paper.

II. IDENTIFICATION PROBLEM STATEMENT

1) System Description: We are considering nonlinear systems that can be described by the Wiener model of Fig. 1 where denotes the transfer function of the linear subsystem and is a memoryless nonlinear function. Analytically, the Wiener model is described by the equations

(1) (2)
where is the inverse Laplace transform of ; the symbol ' ' refers to the convolution operation; and are the system input and output, respectively. These are accessible to measurement while the internal signals and are not. The equation error is a random signal that accounts for external noise. It is supposed that: i) is asymptotically stable because system identification is carried out in open loop and; ii) for any and any time-sequence such that, (for all ), one has: is a stationary ergodic sequence of zero-mean independent random variables. Ergodicity allows the substitution of arithmetic averages to probabilistic means, making simpler the forthcoming developments. The frequency domain identification method we are developing necessitates the application of sine signals,

, for a set of a priori chosen amplitudes and frequencies . In steady state, the resulting internal signal is With these notations, it is supposed that is defined on all intervals and falls in the following class of functions:

Assumption A1: a) If is even then, should be known and b) If is not even then, there should exist such that is invertible in the intervals , i.e., one has, for all and all : . Without loss of generality we suppose that , for all . Indeed, if were zero (for some ) then would be null and the output would in turn be null (up to noise). Except for assumption A1, the system is arbitrary. In particular, and are not necessarily parametric and the latter is allowed to be nonpolynomial, noninvertible and nonsmooth. Note that Part b of Assumption A1 is not too restrictive because the sizes of the intervals are unknown and may be arbitrarily small (i.e., may be too close to ). 2) Identification Purpose: We aim at designing an identification scheme that is able to provide a model estimate representing well the system when this is excited by sinusoidal inputs with the characteristics . 3) Model Multiplicity: The complexity of the identification problem mainly comes from the fact that the internal signal is not accessible for measurement. This in particular implies model multiplicity. Indeed, any couple of the form is a possible model. This naturally leads to the question: what particular model should we focus on? This question will be answered later in Section IV-B. At this point, let us just note that, as long as the phase is concerned, all models are similar to either or , depending on the sign of , where

Therefore, we begin the identification process designing a phase estimator. The main design ingredients are developed in Section III.

III. GEOMETRIC CHARACTERIZATION OF THE SYSTEM FREQUENCY BEHAVIOR

All along this section, the Wiener system is excited by a sine input signal where is any fixed couple belonging to the set . Using the models and , the resulting internal signals are respectively defined by the equations x(t)=U jG(j!)j cos (!t0'(!)) and w(t)= f (x(t)) (4a)

x 0 (t)= U jG(j!)j cos (!t0'(!)0) and w(t)= f 0 x 0 (t) :

(4b) 

A. Characterization of the Curves and

The aim of this subsection is to establish key properties that characterize the parameterized curves and . First, notice that sine signals that oscillate at the same frequency as are of the form:

(5a)
where is arbitrary and denotes the set of real numbers. It is readily seen that (5b) Now, let be the parameterized locus constituted of all points of coordinates . As and are periodical, with the same period , the curve turns out to be an oriented closed-locus. Furthermore, and are symmetric with respect to the -axis, a property that will be useful in the forthcoming development. In general, is constituted of one or several loops, (see e.g., Fig. 2). In the particular case where is a sine signal, is a standard Lissajous curve and may present different shapes, e.g., an ellipse, a circle or a line ( [START_REF] Weisstein | Lissajous Curve[END_REF]). The only characteristic of that is of interest, for the present study, is its geometric area, denoted . Recall that the geometric area of a simple (oriented) loop ignores the loop orientation and, so, is always positive. This is to be distinguished from the algebraic area that may be positive or negative, depending on the loop orientation sense. In the case of a multi-loops locus, the global geometric area equals the sum of the geometric areas of the different single loops. Fig. 2 shows an oriented closed-locus composed of two loops. For the sake of simplicity, these are supposed to be circles of radius . The geometric area of the whole locus equals while its algebraic area is null. Now, we are ready to introduce the following definition.

Definition 3.1: The closed-locus is said to be static if its geometrical area is null . Then, looks like a standard curve (not a closed locus). Inversely, is said nonstatic (or memory) when . Proposition 3.1: Consider the Wiener system described by ( 1)-( 2) and Assumption A1, excited by sine inputs with . Then, one has:

1) all curves are static; 2) for any and any , the curve is symmetric to with respect to the ordinate axis ( -axis).

Proof: 1) From ( 2), ( 4) and (5a)-(5b), it follows that: Since and are functions (in the standard sense), it follows that and are static curves. The result also holds for (for all ) since if is even if is odd. ( 6)

2) Recall that is constituted of the points and is the set of points

. The above points have the same -value but opposite abscissas. On the other hand, if is static then there exists a function such that [START_REF] Greblicki | Nonparametric identification of Wiener systems[END_REF] then, one has for all (8a) (8b) Furthermore, it can be easily checked that, for all [START_REF] Greblicki | Recursive identification of Wiener system[END_REF] where . Then, one gets that, for all which, together with (8a)-(8b), yields (for all )

These, respectively, give These expressions establish Proposition 3.2 with . As is arbitrary and the cosine is periodic, the above expressions hold for all Proposition 3.3: Consider the problem statement of Proposition 3.1 and suppose that is static. Then, one has the following properties:

1) if the function is not even, then: , for some ; 2) if the function is even, then: or , for some .

Proof: Let us introduce the following notations:

(10) with [START_REF] Hasiewicz | On equivalence conditions of local and global identification of a memoryless cascade complex system[END_REF] Then, using Proposition 3.2, it follows that, for all :

(12)
Case 1: is not even. Using Assumption A1 (Part b), the function is invertible in the subinterval . Then, from ( 12) it follows that for any such that , one has [START_REF] Hunter | The identification of nonlinear biological systems: Wiener and Hammerstein cascade models[END_REF] Now, it can easily be checked that if , then for all [START_REF] Nordsjö | Identification of certain time-varying nonlinear Wiener and Hammerstein systems[END_REF] But this clearly contradicts (13). Hence, . Case 2:

is even. Letting in [START_REF] Hu | Strong consistency of recursive identification for Wiener systems[END_REF], one gets . Then, it follows from Assumption A1 (part a) that , i.e. [START_REF] Pajunen | Adaptive control of Wiener type nonlinear systems[END_REF] for some integer . This, together with (10) implies that, either or . for some integer Proof: The fact that is static guarantees the existence of a such that ( 16)

The uniqueness of is now proved separating the two cases pointed out in Assumption A1.

Case 1: the function is not even. Using Proposition 3.3 (part 1) it follows that , for some . Then [START_REF] Pawlak | On nonparametric identification of Wiener systems[END_REF], implies [START_REF] Vörös | Parameter identification of Wiener systems with discontinuous nonlinearities[END_REF] Comparing ( 17) with (4a) yields which implies that, for all As is even, it follows, comparing (23)-( 24), that , in turn, is even. Then, one gets from (23) that:

(25) Using the variable change , it follows from (25) that, :

Let us check that such a solution is not admissible in the sense of Assumption A1 (part a). Indeed, one readily gets from (26) that (27) On the other hand, it follows from Assumption A1 (part a) that:

(28)

Since

(for all ) it follows from ( 27)-( 28) that . This clearly shows that does not satisfy assumption A1 (part a) and, so, is not admissible. Hence, the solution ( 21) must be discarded. Then, in view of [START_REF] Wigren | Recursive prediction error identification using the nonlinear Wiener model[END_REF], one necessarily has:

. The rest of the proof is similar to Case 1. Proposition 3.4 is established

B. Estimation of the Parameterized Curves

Propositions 3.3 and 3.4 are quite interesting. The first shows that can be recovered (modulo ) by just tuning the parameter until the closed-locus becomes static. Due to Proposition 3.4, the obtained static curve is precisely the graphical plot of either or . Now, the main issue is that the locus depends on the signal which is not accessible for measurement. This is presently coped with making full use of the information at hand, namely the periodicity (with period ) of both and and the ergodicity of the noise . Bearing these in mind, the relation suggests the following estimator:

(29)
where and is a sufficiently large integer. Specifically, for a fixed time instant , the quantity is the mean value of the (measured) sequence . Then, an estimate of is simply obtained substituting to when constructing . Accordingly, turns out to be the parameterized locus including all points . These remarks lead to the following proposition:

Proposition 3.5: Consider the problem statement of Proposition 3.1. Then, one has: (for some ) and the mapping coincides with the curve of for .

Proof: From (2) one gets that, for all (31)

Then, using the fact that is periodic with period , it follows from (31) that, for all and all integers : , which in turn implies that:

(32)

Since

, with , is zero mean and ergodic, the last term on the right side vanishes w.p.1 as . This proves Part 1 of the proposition. To prove Part 2, notice that, using the fact that both and are periodic (with period ), one has:

Averaging both sides (with respect to ) gives ) it is seen that, for sufficiently large N, all curves belonging to the family are static and any one of them is a, more or less, spread version of all the others. The same remark applies to the family .

IV. FREQUENCY IDENTIFICATION METHOD FOR WIENER SYSTEMS

A. Graphical Phase Estimation (GPE) . Check that each curve is a, more or less, spread version of the others. If, for some , one gets a curve that is not coherent with those obtained previously, then take where is as in GPE3.

It is worth noting that the correction (by ) in the step GPE4 ensures that the phase estimator focuses either on (for all ) or on (for all ). In fact, it does not matter to know which one is being focused on. The main point is that the estimator focuses either on or on (but not on both). This remark together with the results of Proposition 3.5 guarantee the consistency of the estimator . This is formalized in the following theorem:

Theorem 4.1: Consider the problem statement of Proposition 3.1. The phase estimator , defined by the procedure GPE1-GPE4, is consistent in the sense that one has w.p.1, either (for all ) or (for all ).

B. Graphical Nonlinearity Estimation (NLE)

Let us consider the family of (static) curves constructed in the phase estimation procedure GPE1-GPE4. In the light of Proposition 3.5 and Theorem 4.1, it is clear that, for any fixed couple , the curve converges in probability to (the graphical plot of) either or (where ). Therefore, a consistent estimate of either or can be recovered from the curve . The question is: what use can be made of an estimate of ( or )? This question is answered exploiting model multiplicity pointed out in Section II. Specifically, the above functions are nothing other than the nonlinearities of the particular couple of models respectively. That is, for any , the curve converges (in probability) to the nonlinearity of either or (it does not matter to know which one). Then, it makes sense to limit the identification to the model family . But, what particular model of this family should one focuses on?

To answer such a question, notice that the functions and are more or less spread versions of and , respectively. Specifically, is more spread than if . Otherwise, is less spread than (and so it is a concentrated version of) . The same remark applies to compared to . As the functions of interest, namely and , are all defined in the same interval, i.e., , it is judicious to focus on the couple of models that involve the less spread (or, equivalently, the most concentrated) nonlinearity (see Fig. 3).

Let denote such couple where . For convenience, the corresponding elements are, respectively, denoted and , i.e.

(34)

where . Focusing on will prove to be the most convenient choice when it comes to estimating the gains . On the other hand, as is the less spread function in the family , one necessarily has (36) Finally, recall that and , for all . That is, the estimator defined by GPE1-GP4, is still convenient in the sense that converges in probability to for all or it converges to , for all . Taking these remarks into account, we propose the following algorithm to get a nonlinearity estimate : NLE1 . Consider the family of static curves , constructed in the phase estimation procedure GPE1-GPE4. 

Remarks 4.2:

1) In the case where this may be of interest, a polynomial representation can, a afterward, be given to the nonlinearity interpolating a number of points selected on the curve . 2) In [START_REF] Bai | Frequency domain identification of Wiener models[END_REF], model rescaling (34)-(35) has also been used to cope with the estimation of the nonlinearity. However, it was suggested there that may be chosen arbitrary. Doing so, the gains can not be consistently estimated as explained in Section IV-C.

C. Gain Modulus Estimation

The phase estimates and the nonlinearity estimate obtained previously will now be used to get estimates of the gains . To keep simple the forthcoming presentation, it is temporarily assumed that , (for all ) and (no noise). In the procedure GPE1-GPE3, the Wiener system has been excited by the family of signals . Using the model , the Wiener system signals can be expressed as follows:

(37) with . On the other hand, it readily follows from (34) and (36) that:

(38)

If

were invertible, then the internal signal would be available and, so, would be easily recovered. The situation becomes much more problematic when is not invertible. Nevertheless, the gains can still be uniquely determined if the system nonlinearity satisfies, in addition to Assumption A1, the following assumption:

Assumption A2: If is even then, there exist such that, for all , all and all , one has: . Remark 4.3: Let be any function satisfying Assumptions A1-A2. The following properties hold:

1) If is even then it is invertible at and is known (Assumption A1, Part a). Furthermore, one gets from Assumption A2 that, for all , the branch of corresponding to the (unilateral) interval is locally invertible on the subintervals . For instance, the function satisfies both Assumptions A1 (Part a) and A2, the numbers are then arbitrary.

2) It has already been noticed that is a less or more spread version of . Therefore, also satisfies Assumptions A1-A2. More precisely, a) in the case where is even, replace in Assumption A2, the intervals and by and , respectively; b) in the case where is not even, replace in Assumption A1 (Part b) the intervals and by and , respectively. Now, it will be shown that, under Assumptions A1-A2, the gain can exactly be estimated using the following algorithm, where : , for all such that (41b) holds. This readily gives . Case 2:

(39a) (39b 
is not even. Using Assumption A1 (part b) and Remark 4.3 (part 2), it follows from (40) that , for all t such that (41a) holds. This implies that . Hence, uniqueness of the global minimum of is proved in all cases Remark 4.4: 1) A crucial feature that makes the optimization problem (39a)-(39b) well posed is that the function is defined for all possible values of its argument, i.e., with and . Indeed, (38) ensures that the above argument belongs to , which is an interval of definition of . Accordingly, the minimum search in (39a) is limited to the interval . 2) It is important to note that the above well posedness (of the optimization problem (39a-b)) is a direct consequence of our choice to focus on the particular models and that involve the functions and which are most concentrated (less spread) on [see (34)-( 36)]. 3) While the proposed optimization-based approach is largely inspired [START_REF] Bai | Frequency domain identification of Wiener models[END_REF], it is worth noting that the spread requirement (applied when selecting the models and ) is entirely new. Indeed, it is suggested in [START_REF] Bai | Frequency domain identification of Wiener models[END_REF] that the function (here denoted ) involved in (39b), can be arbitrarily chosen (see Assumption A3.1 in that paper and subsequent comments). If we did so, there would be no guarantee that all arguments of interest, i.e., , belong to the definition interval . Then, the minimum search interval in (39a-b) may not include the global minimum, , for some values of . Proposition 4.1 is now used to build up a consistent estimator of the gains in presence of not necessarily null noise . Then, (37) becomes (42a) (42b) Given the estimates and , of the nonlinearity and phase, Algorithm (39a-b) suggests the following gain estimator:

(43a) (43b)
where is defined by (29), i.e.

(43c)

Theorem 4.3: Consider the Wiener system described by ( 1)-( 2) and suppose that the involved nonlinearity satisfies Assumptions A1-A2. Let the system be excited by the same input signals as in procedure GPE1-GPE4, i.e.,

. The system can also be modelled by , defined by ( 34)-( 35), and the nonlinearity in turn satisfies Assumptions A1-A2 [as this is made precise in Remark 4.3 (part 2)]. Then, the gain estimator (43a)-( 43c) is consistent i.e., converges in probability to , as . Proof: In view of Proposition 4.1, it is sufficient to show that converges in probability to as . To this end, note that, by Proposition 3.5 (Part 1), converges in probability to , for all , (as ). Furthermore, it was shown in Theorems 4.1 and 4.2 that one of the following statements holds w.p.1, as : i) converges to (for all ) and converges to . ii) converges to (for all ) and converges to . In the light of these remarks, it is readily seen comparing (39b) and (43b) that actually converges in probability to as Remark 4.5: 1) Since (43b) has a unique minimum, this can be found graphically plotting against . 2) The gain estimator in [START_REF] Bai | Frequency domain identification of Wiener models[END_REF] was only considered in the absence of noise and, even in this case, no formal convergence analysis has been given. The absence of formal analysis in that paper can be explained by the shortcoming pointed out in Remark 4.4 (part 3).

D. Simulation Results

1) Identification in Presence of Discontinuous Nonlinearity:

The graphical identification method described previously is now illustrated considering a Wiener system characterized by (44a) (44b) Note that involves a large phase variation, due to its nonminimum phase feature. The nonlinearity is a preload with an abrupt discontinuity at . According to the proposed identification method, the system is excited by 6 sinusoids of the form , where the couples are given the values of Table I. The output is disturbed by a zero-mean noise randomly uniformly distributed in . Fig. 4 shows the (steady state) output signal, , obtained with . The phase estimator GPE1-GPE4 is first applied to get phase estimates . The way in which the estimator operates is illustrated here for . First, the average output is generated according to (29) (with ) and used to construct the parameterized closed-locus for different values of . The curves corresponding to four values of are shown by Fig. 5. It is seen that a static curve is obtained for . Then, it is concluded that which, in fact, is nothing other than . The phase estimates obtained for the different frequencies are given by Table I. Notice that they all correspond to . The static curves obtained for the different 's are plotted in Fig. 6. A rapid inspection of these curves shows that the less spread (most concentrated) one of them is that corresponding to . Following Section IV-B, we will focus on the particular models 

and

, defined by (34)-(35) which, presently, are characterized by: and . According to the estimation procedure NLE1-NLE4, the nonlinearity estimate it defined by the particular static curve . It is easily checked that, for this example, coincides with . The compatibility between the phase estimates, on one hand, and the nonlinearity estimate, on the other hand, is thus guaranteed just as this was predicted by Theorem 4.2. Recall that, in practical situations, it does not really matter which model, or

, is actually being identified.

Given the estimates and , the estimator (43a-c) is resorted to get estimates of the frequency gains . This is illustrated by Fig. 7 which shows the cost function plotted against for , . It is seen that the global minimum is achieved for which is very close to the true gain value. Table I gives the gain estimates thus obtained for different frequencies and shows that the quality of estimation is quite satisfactory. Hence, the consistency of the whole identification method is confirmed, despite the presence of significant noise amplitude (Fig. 4) and nonlinearity discontinuity (44b).

2) Identification of Non-Invertible Nonlinearity: In this subsection we only focus on phase estimation for a specific Wiener system involving a not invertible nonlinearity. By the way, it will be shown, using the considered example, that the method proposed in [START_REF] Bai | Frequency domain identification of Wiener models[END_REF] is unable to recover the true value (modulo ) of the phase, while our method will be able to do it. The considered Wiener system is characterized by (45)

The system output is disturbed by a zero-mean noise that is randomly uniformly distributed in . As is even, it follows from Assumption A1 (part a) that must be known. That is, the fact that can be used in the identification process. First, the phase estimator GPE1-GPE4 is applied to get an estimate of the phase for . To this end, the system is excited by the signal . Fig. 8 shows the closed-locus obtained with different values of and . According to GPE1-GPE4, the phase estimate is that value of that leads to a static curve. Inspecting Fig. 8, it is readily seen that there are two possible values for , namely and . The second value is discarded as it leads to a nonadmissible nonlinearity because then . Therefore, we let . As the true value of the phase is it follows that i.e., equals modulo . Hence, the obtained phase estimate is consistent. The corresponding static curve then gives the estimate which presently corresponds to . But, as is even, one has . Let us now apply the method proposed in [START_REF] Bai | Frequency domain identification of Wiener models[END_REF] to get a phase estimate for the same frequency i.e., . Accordingly, the estimate of is given by the rule where denotes the Fourier (Discrete) Transform of a filtered and sampled version of the system output signal and is any integer (generally the first one) such that . In the present case where the noise effect has been ignored for simplicity and also there is no need to signal filtering and sampling. This clearly shows that the unique possible choice of the integer is . Furthermore, it is readily seen that which implies the following phase estimate:

It is readily seen that . This is clearly different from zero (modulo ). The phase estimate is thus biased. This counter example shows that the phase estimator obtained using the approach proposed in [START_REF] Bai | Frequency domain identification of Wiener models[END_REF], is not consistent in all situations. Consequently, the nonlinearity and the frequency gains cannot be consistently estimated based on such phase estimator, see [START_REF] Giri | Comment on 'frequency domain identification of Wiener models[END_REF] for more details.

V. PRACTICAL ISSUES

A. Useful Analytical Expressions

1) Analytical Evaluation of the Geometric Area: Let denote the geometric area of the curve . It follows using Proposition 3.2 and (9), that:

(46) This provides us with an analytical rule for static feature recognition, namely is static if . Now, using Proposition 3.5 it follows that if (for a sufficiently large value of ) then, one has either or . In the first case, the mapping gives an estimate of otherwise the mapping corresponds to . The smaller the better the estimation quality is. Procedure GPE1-GPE4 can then be reformulated as a problem of optimizing the nonlinear function . As the problem is one-dimensional and the domain search is well defined (namely ), the minimum can be determined graphically. To illustrate this analytical way by simulation, consider the simulation conditions of Section IV-D-I. Let us focus the illustration on . The corresponding function is plotted versus in Fig. 9(a). It is seen that actually has a global minimum in the interval . Specifically, , and this is precisely the value obtained in Section IV-D-I. Now, let us consider the Wiener system of Section IV-D-II, which involves a noninvertible nonlinearity. We aim at estimating the phase for . The corresponding function is represented (versus ) in Fig. 9(b). It is seen that actually has a global minimum in the interval . This is achieved at which is very close to the phase estimate obtained earlier in Section IV-D-II.

2) Analytical Evaluation of Signal Spread: Let us consider the family of (static) curves , , constructed in GPE1-GPE4. Let denote the function induced by the static curve . It was noticed in Section IV-B that each function is a more or less spread version of the functions or . According to the estimation procedure NLE1-NLE4, the estimate of the nonlinearity is that function that presents the smallest degree of spread. Doing so, one recovers the largest part of the system nonlinearity ( or ). In the simulation of Section IV-D-I, this was easily recognized using the plots of (Fig. 6). The spread degree can also be evaluated analytically using the following measure ( [START_REF] Carbon | Mathematical Elements for Signals[END_REF]):

(47)

The larger the more spread is the function . According to the procedure NLE1-NLE4, the best estimate for the system nonlinearity is that function with the smallest value of .

B. Practical Implementation Issues

The implementation of the proposed identification method can only be performed with digital means. This necessitates signal sampling and numerical approximations of involved mathematical expressions.

1) Signal Sampling and Noise Effect: Input signal sampling is easily handled as the used signals are sinusoidal. The output signal is a periodic signal (with period ) corrupted with noise i.e., . Nevertheless, the noise effect is readily filtered thanks to the averaging (29). Indeed, it is seen from Proposition 3.5 (Part 1) that the average output, namely , does converge in probability to whatever . This particularly holds for at the sampling time instants where denotes the sampling period which, presently, is chosen of the form for some integer . Furthermore, the averaging (29) is an algebraic operation that is easily realisable using digital means.

The consistency of implies that related sampling issue is equivalent to the sampling of . As this is a periodic signal it can be approximated by (the 's denote its Fourier coefficients). The sampling period should satisfy the Shannon condition or, equivalently, . That is, the number of samples in the time interval must be at least twice the number of selected harmonics.

Remark 5.1: A similar discussion of periodic signal sampling is made in [START_REF] Bai | Frequency domain identification of Wiener models[END_REF]. More elaborate results on periodic signals sampling can be found in [START_REF] Jacob | Sampling of periodic signals: A quantitative error analysis[END_REF] and reference list therein.

2) Numerical Version of the Phase Estimation Part: For digital implementation purpose, a numerical version has to be developed for the identification method. While algebraic expressions are digitally implemented just substituting sampled data to continuous signals, the implementation of integral expressions relays on numerical approximations (like rectangle or trapezoidal methods). In the rest of this subsection, we will focus on developing a numerical version for the phase estimation part (GPE1-GPE4). The other identification method parts (nonlinearity and frequency gain modulus) can be handled similarly.

First, the norms involved in the step GPE2 are approximated as in usual practice, e.g. ). Then, the result of Proposition 3.5 (Part 4) guarantees that or .

Step GPE4 applies exactly as in the continuous-time case. Now, let us go back to step GPE3 which involves static curve recognition. It has been pointed out (Section V-A-I) that such recognition can be performed using expression (46) to evaluate the geometric area of the curve . The numerical version of such expression is (46a) Note that the time in the right side of (46) must be a multiple of the sampling period . As and , one readily gets that . This suggests that should be of the form ( being integer). Doing so, the problem at hand turns out to be the minimization of the quantity with respect to . The minimum search can be performed graphically as explained in Section V-A-I. According to the step GPE3, such minimization task determines the true phase (modulo ) up to an error bounded by . That is, the larger the number of data samples the better the phase estimation accuracy is.

VI. CONCLUSION

In this paper, a frequency-domain solution has been developed to deal with Wiener system identification. Unlike most previous works, the system nonlinearity is not necessarily required to be (globally) invertible and smooth. The main component of the proposed identification method is the consistent phase estimator GPE1-GPE4 described in Section IV-A. The design of this estimator essentially relays on the geometric findings of Section III which are original features of this work. The main outcome of such investigation is that the Lissajous curves are all nonstatic except for . Inversely, when is static then it corresponds to or to or to (more or less) spread versions of these. The focus has been made on the couple of models that involve the less spread (i.e., most condensed) nonlinearities. This choice has proved to be judicious in regard to gain estimation. The fact that the nonlinearity estimation is coupled with the phase estimation guarantees the compatibility of the corresponding estimates. The above compatibility and spread facts are new features in this work.
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 32 Consider the problem statement of Proposition 3.1. If is static for some , then one has, for all Proof: From (4a)-(4b) one has, for all
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  3.4 holds in Case 1. Case 2: is even. Using Proposition 3.3 (Part 2), it follows that: (20) for some . Let us show, by contradiction, that the second solution in (20) can not hold. Assume that, for some integer (21) It follows from (16) that: (22) Again, comparing (22) and (4a), one gets This can be rewritten in a more compact form, letting (23) Substituting to in (23) implies that, for all (24)

  last term on the right side vanishes w.p.1 as , for the same reasons as above. This proves Part 2 of the proposition. Part 3 is a consequence of Part 2 and Proposition 3.1. Part 4 follows from Part 2 using Proposition 3.4 Remark 3.1: In the light of Proposition 3.5 (Part 4
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TABLE I NUMERICAL

 I VALUES OBTAINED IN SIMULATION OF SECTION IV-D-I

  As the sampling time is substituted to the continuous-time , the obtained curve, , is no longer a continuous line. Nevertheless, the consistency of the discrete curve is still guaranteed because is consistent. Specifically, one has w.p.1, for allThe phase estimate obtained in step GPE3 is then denoted and its quality depends partly on the accuracy with which the discrete curve

	Then, (closed) with '. approximates step parameterized GPE3 the continuous line . It is clear that, tends to when (i.e., when	should	read: curve	'Plot	the