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An Analytic Geometry Approach to Wiener System
Frequency Identification

Fouad Giri, Member, IEEE, Youssef Rochdi, and Fatima-Zahra Chaoui

Abstract—This paper addresses the problem of Wiener system
identification. The underlying linear subsystem is stable but not
necessarily parametric. The nonlinear element in turn is allowed
to be nonparametric, noninvertible, and nonsmooth. As Wiener
models are uniquely defined up to an uncertain multiplicative
factor, it makes sense to start the frequency identification process
estimating the system phase (which is common to all models). To
this end, a consistent estimator is designed using analytic geometry
tools. Accordingly, the system frequency behavior is characterized
by a family of Lissajous curves. Interestingly, all these curves are
candidates to modelling the system nonlinearity, but the most con-
venient one is the less spread of them. Finally, the frequency gain
is in turn consistently estimated optimizing an appropriate cost
function involving the obtained phase and nonlinearity estimates.

Index Terms—Frequency identification, Lissajous curves, non-
linear block-oriented systems, system identification, Wiener sys-
tems.

I. INTRODUCTION

T HE Wiener model consists of a linear dynamic subsystem
followed in series by a nonlinear element (Fig. 1). Most

of previous identification methods were developed supposing
that the nonlinearity is a polynomial of known degree and the
linear part is a transfer function of known order, see e.g., [11],
[13]–[15], [17], [19]. As the intermediate signal is not
accessible for measurement (and may even be of no physical
meaning), the system output then turns out to be a bilinear
(but fully known) function of the unknown parameters (those
of the nonlinearity and those of the linear subsystem). Such
bilinearity has been coped with following different approaches.
First, the iterative optimization method consists in computing
alternatively the parameters of the linear subsystem and those
of the nonlinear subsystem. When optimization is performed
with respect to one set of parameters, the other set is fixed. Such
a procedure is shown to be efficient provided that it converges,
e.g., [17]. But, convergence can not be achieved except under
restrictive conditions, e.g., [20]. In [3], a separable nonlinear
optimization solution is suggested. It consists in expressing a
part of the parameters (namely, those of the linear subsystem)
in function of the others, using first order optimality conditions.
The dimension of the parameter space is thus reduced making
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Fig. 1. Wiener model structure.

easier the optimization problem. Frequency-type solutions have
also been proposed, see e.g., [6]. The idea is to apply repeatedly
a sine input with different amplitudes
and frequencies . Then, exploiting the polynomial nature of
the nonlinearity, the input-output equation can be solved with
respect to the unknown parameters.

Nonparametric nonlinearities have also been dealt with using
different approaches. In [7]–[10], the identification problem was
dealt with using stochastic tools. But, the nonlinearity is sup-
posed to be invertible and smooth. In [1] a frequency method
is proposed for noninvertible nonlinearities. It consists in ap-
plying repeatedly sine input signals and operating a discrete-
Fourier transformation of the obtained (steady-state) periodic
output signals to estimate the frequency gain (for dif-
ferent frequencies) and the nonlinearity. Unfortunately, the pro-
posed estimators (phase, gain and nonlinearity) are not consis-
tent in general as this is pointed out in [2]. A stochastic solution
has been proposed in [12], where the linear subsystem coeffi-
cients are first estimated using a least-squares type algorithm
and the obtained estimates are used to recover the nonlinearity

at any fixed . The consistency is established supposing
that the linear subsystem is MA with known and nonzero leading
coefficient. The nonlinearity was assumed to be continuous with
growth not faster than a polynomial. In [5], a recursive iden-
tification scheme is proposed for Wiener systems including a
dead-zone preload nonlinearity. There too, consistency is only
achieved supposing the linear subsystem to be MA with known
and nonzero leading coefficient. More recently, a semi-para-
metric identification approach has been presented in [16]. The
impulse response function of the linear subsystem is identified
via the nonlinear least squares approach with the system non-
linearity estimated by a pilot nonparametric kernel regression
estimate. The linear subsystem estimate is then used to form
a nonparametric kernel estimate of the nonlinearity. The price
paid is that the impulse response function is truncated to a finite
order which, in effect, amounts to suppose the linear subsystem
to be MA.

In this paper, a new frequency-domain identification scheme
is designed for Wiener systems involving possibly noninvert-
ible and nonsmooth nonlinearities. The identification purpose
is to estimate the system nonlinearity and the system
phase and gain , for a set of a priori
chosen frequencies . As a matter of fact, the
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estimation of the linear subsystem (gain and phase) is much
more complex in the case of noninvertible nonlinearities. The
complexity arises from the fact that the (unavailable) internal
signal cannot be uniquely reconstituted from the output
signal. Consequently, the system cannot be uniquely modelled
i.e., any couple of the form
is a possible model. It is readily seen that all these models
have the same phase (modulo ). A consistent estimator is
designed using analytic geometry tools. Its key feature is the
characterization of the system frequency behavior (within
the set ) by a family of static Lissajous curves.
Interestingly, the curves correspond precisely to the functions

and and these are
nothing other than the nonlinearities associated with the par-
ticular models and
with . A particularly important fact is that the
nonlinearities and are,
less or more, spread versions of and , respectively.
The couple of models that involve the less spread nonlinearity
will prove to be the most judicious choice (in regard of gain
estimation). One more crucial feature of our solution is that
attention is explicitly paid to the compatibility between phase
estimates and nonlinearity estimate. The above compatibility
and spreadability requirements will prove to be essential to
guarantee the consistency of the whole identification scheme.

The paper is organized as follows: the identification problem
is stated in Section II; geometric characterization of the system
frequency behavior is developed in Section III; this characteri-
zation is used in Section IV to design the identification scheme;
Section V gives complementary analytical expressions; con-
cluding remarks and reference list end the paper.

II. IDENTIFICATION PROBLEM STATEMENT

1) System Description: We are considering nonlinear sys-
tems that can be described by the Wiener model of Fig. 1 where

denotes the transfer function of the linear subsystem
and is a memoryless nonlinear function. Analytically, the
Wiener model is described by the equations

(1)

(2)

where is the inverse Laplace transform of
; the symbol ’ ’ refers to the convolution operation;

and are the system input and output, respectively. These
are accessible to measurement while the internal signals
and are not. The equation error is a random signal
that accounts for external noise. It is supposed that:

i) is asymptotically stable because system identifica-
tion is carried out in open loop and;

ii) for any and any time-sequence such that,
(for all ), one has: is a stationary

ergodic sequence of zero-mean independent random vari-
ables. Ergodicity allows the substitution of arithmetic av-
erages to probabilistic means, making simpler the forth-
coming developments.

The frequency domain identification method we are
developing necessitates the application of sine signals,

, for a set of a priori chosen amplitudes

and frequencies . In steady
state, the resulting internal signal is

With these notations, it is supposed that is defined on all
intervals and falls in the
following class of functions:

Assumption A1:
a) If is even then, should be known and

b) If is not even then, there should exist
such that is invertible in the intervals

, i.e.,
one has, for all and
all :

.
Without loss of generality we suppose that ,

for all . Indeed, if were zero (for some ) then
would be null and the output would in turn be

null (up to noise). Except for assumption A1, the system
is arbitrary. In particular, and are not necessarily
parametric and the latter is allowed to be nonpolynomial,
noninvertible and nonsmooth. Note that Part b of Assumption
A1 is not too restrictive because the sizes of the intervals

are unknown and may be
arbitrarily small (i.e., may be too close to ).

2) Identification Purpose: We aim at designing an
identification scheme that is able to provide a model es-
timate representing well the system when
this is excited by sinusoidal inputs with the characteristics

.
3) Model Multiplicity: The complexity of the identification

problem mainly comes from the fact that the internal signal
is not accessible for measurement. This in particular

implies model multiplicity. Indeed, any couple of the form
is a possible model. This naturally

leads to the question: what particular model should we focus
on? This question will be answered later in Section IV-B. At
this point, let us just note that, as long as the phase is concerned,
all models are similar to either or , depending
on the sign of , where

(3)

Therefore, we begin the identification process designing a
phase estimator. The main design ingredients are developed in
Section III.

III. GEOMETRIC CHARACTERIZATION OF THE

SYSTEM FREQUENCY BEHAVIOR

All along this section, the Wiener system is excited by a
sine input signal where is any fixed
couple belonging to the set . Using
the models and , the resulting internal signals
are respectively defined by the equations

������ ������� ��� �����������	 ����� 	 ������ (4a)

�
����� � ������� ��� ���������
� ��	 ����� 	

�

�
���� �

(4b)
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Fig. 2. Example of closed-locus.

A. Characterization of the Curves
and

The aim of this subsection is to establish key properties that
characterize the parameterized curves
and . First, notice that sine signals
that oscillate at the same frequency as are of
the form:

(5a)

where is arbitrary and denotes the set of real num-
bers. It is readily seen that

(5b)

Now, let be the parameterized locus constituted of all
points of coordinates . As and
are periodical, with the same period , the curve

turns out to be an oriented closed-locus. Furthermore,
and are symmetric with respect to the -axis, a property
that will be useful in the forthcoming development. In general,

is constituted of one or several loops, (see e.g., Fig. 2). In
the particular case where is a sine signal, is a standard
Lissajous curve and may present different shapes, e.g., an el-
lipse, a circle or a line ([18]). The only characteristic of that
is of interest, for the present study, is its geometric area, denoted

. Recall that the geometric area of a simple (oriented) loop
ignores the loop orientation and, so, is always positive. This is to
be distinguished from the algebraic area that may be positive or
negative, depending on the loop orientation sense. In the case of
a multi-loops locus, the global geometric area equals the sum of
the geometric areas of the different single loops. Fig. 2 shows
an oriented closed-locus composed of two loops. For the sake
of simplicity, these are supposed to be circles of radius . The
geometric area of the whole locus equals while its alge-
braic area is null. Now, we are ready to introduce the following
definition.

Definition 3.1: The closed-locus is said to be static if its
geometrical area is null . Then, looks like a
standard curve (not a closed locus). Inversely, is said non-
static (or memory) when .

Proposition 3.1: Consider the Wiener system described
by (1)–(2) and Assumption A1, excited by sine inputs

with .
Then, one has:

1) all curves
are static;

2) for any and any , the curve is symmetric to
with respect to the ordinate axis ( -axis).

Proof:
1) From (2), (4) and (5a)–(5b), it follows that:

Since and are functions (in the standard sense),
it follows that and are static curves. The
result also holds for (for all ) since

if is even
if is odd. (6)

2) Recall that is constituted of the points
and is the set

of points . The above points
have the same -value but opposite abscissas.

Proposition 3.2: Consider the problem statement of Proposi-
tion 3.1. If is static for some , then one has, for all

Proof: From (4a)–(4b) one has, for all

On the other hand, if is static then there exists a function
such that

(7)

then, one has for all

(8a)

(8b)

Furthermore, it can be easily checked that, for all

(9)

where . Then, one gets that, for all

which, together with (8a)–(8b), yields (for all )
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These, respectively, give

These expressions establish Proposition 3.2 with
. As is arbitrary and the cosine is periodic, the above

expressions hold for all
Proposition 3.3: Consider the problem statement of Propo-

sition 3.1 and suppose that is static. Then, one has the fol-
lowing properties:

1) if the function is not even, then: , for
some ;

2) if the function is even, then: or
, for some .

Proof: Let us introduce the following notations:

(10)

with (11)

Then, using Proposition 3.2, it follows that, for all
:

(12)

Case 1: is not even. Using Assumption A1 (Part
b), the function is invertible in the subinterval

. Then, from (12) it fol-
lows that for any such that ,
one has

(13)

Now, it can easily be checked that if , then for all

(14)

But this clearly contradicts (13). Hence, .
Case 2: is even. Letting in (12), one gets

. Then, it fol-
lows from Assumption A1 (part a) that
, i.e.

(15)

for some integer . This, together with
(10) implies that, either or

.

Proposition 3.4: Consider the problem statement of Propo-
sition 3.1. If is static then there is a unique function ,
such that: , . More specifically, for all

if
if

for some integer
Proof: The fact that is static guarantees the existence

of a such that

(16)

The uniqueness of is now proved separating the two cases
pointed out in Assumption A1.

Case 1: the function is not even. Using Proposition
3.3 (part 1) it follows that , for some

. Then (16), implies

(17)

Comparing (17) with (4a) yields

which implies that, for all

(18)

(19)

Hence, Proposition 3.4 holds in Case 1.
Case 2: is even. Using Proposition 3.3 (Part 2), it fol-
lows that:

(20)

for some . Let us show, by contradiction,
that the second solution in (20) can not hold. Assume that,
for some integer

(21)

It follows from (16) that:

(22)

Again, comparing (22) and (4a), one gets

This can be rewritten in a more compact form, letting

(23)
Substituting to in (23) implies that, for all

(24)
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As is even, it follows, comparing (23)–(24), that , in turn,
is even. Then, one gets from (23) that:

(25)
Using the variable change , it follows

from (25) that, :

(26)

Let us check that such a solution is not admissible in the
sense of Assumption A1 (part a). Indeed, one readily gets from
(26) that

(27)

On the other hand, it follows from Assumption A1 (part a)
that:

(28)

Since (for all ) it follows
from (27)–(28) that . This clearly shows that
does not satisfy assumption A1 (part a) and, so, is not admis-
sible. Hence, the solution (21) must be discarded. Then, in view
of (20), one necessarily has: . The rest of the proof
is similar to Case 1. Proposition 3.4 is established

B. Estimation of the Parameterized Curves

Propositions 3.3 and 3.4 are quite interesting. The first
shows that can be recovered (modulo

) by just tuning the parameter until the closed-locus
becomes static. Due to Proposition 3.4, the obtained static
curve is precisely the graphical plot of either
or . Now, the main issue is that the locus

depends on the signal which is not accessible for
measurement. This is presently coped with making full use of
the information at hand, namely the periodicity (with period

) of both and and the ergodicity of the noise
. Bearing these in mind, the relation

suggests the following estimator:

(29)

where and is a sufficiently large integer. Specifi-
cally, for a fixed time instant , the quantity is the mean
value of the (measured) sequence .
Then, an estimate of is simply obtained substituting

to when constructing . Accordingly,
turns out to be the parameterized locus including all points

. These remarks lead to the following
proposition:

Proposition 3.5: Consider the problem statement of Proposi-
tion 3.1. Then, one has:

1) converges in probability to (as ).
2) converges in probability to (as ) i.e., for

all

(30)

3) Consequently, if then is
static .

4) Inversely, if is static for some , then one
of the following statements hold w.p.1:
a) (for some )

and the mapping coincides
with the curve of the function for

.
b) (for some

) and the mapping
coincides with the curve of

for .

Proof: From (2) one gets that, for all

(31)

Then, using the fact that is periodic with period , it
follows from (31) that, for all and all integers :

, which in turn implies that:

(32)

Since , with , is zero mean and ergodic,
the last term on the right side vanishes w.p.1 as . This
proves Part 1 of the proposition. To prove Part 2, notice that,
using the fact that both and are periodic (with period

), one has:

Averaging both sides (with respect to ) gives

(33)

Again, the last term on the right side vanishes w.p.1 as
, for the same reasons as above. This proves Part 2 of the

proposition. Part 3 is a consequence of Part 2 and Proposition
3.1. Part 4 follows from Part 2 using Proposition 3.4

Remark 3.1: In the light of Proposition 3.5 (Part 4) it is seen
that, for sufficiently large N, all curves belonging to the family

are static and any one of them is a,
more or less, spread version of all the others. The same remark
applies to the family .
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IV. FREQUENCY IDENTIFICATION METHOD

FOR WIENER SYSTEMS

A. Graphical Phase Estimation (GPE)

Proposition 3.5 and Remark 3.1 suggest the following phase
estimator:

GPE1. Apply the input signal
to the nonlinear system of interest for

.
GPE2. Get a recording of the output over a suffi-
ciently large interval of time . Generate
the continuous signals and using
(29). Compute the norms, i.e.,:

and

. Choose a threshold

. If
then go to Step GPE3. Otherwise, increase the value of
and repeat Step GPE2 starting from the beginning.
GPE3. Plot the (closed) parameterized curve

, for different
values of until a static curve is observed. Let de-
note the first value of such that is static. Then,

is the estimate of either or .
GPE4. Repeat the above steps for all

. Check that each curve is a,
more or less, spread version of the others. If, for some ,
one gets a curve that is not coherent with those obtained
previously, then take where is as in
GPE3.

It is worth noting that the correction (by ) in the step GPE4
ensures that the phase estimator focuses either on

(for all ) or on
(for all ). In fact, it does not matter to know which one is being
focused on. The main point is that the estimator focuses either
on or on (but not on both). This remark together
with the results of Proposition 3.5 guarantee the consistency
of the estimator . This is formalized in the following
theorem:

Theorem 4.1: Consider the problem statement of Proposi-
tion 3.1. The phase estimator , defined by the procedure
GPE1-GPE4, is consistent in the sense that one has w.p.1, ei-
ther (for all ) or

(for all ).

B. Graphical Nonlinearity Estimation (NLE)

Let us consider the family of (static) curves
constructed in the phase estimation procedure

GPE1–GPE4. In the light of Proposition 3.5 and The-
orem 4.1, it is clear that, for any fixed couple

, the curve converges in
probability to (the graphical plot of) either or

(where ). Therefore, a consistent
estimate of either or
can be recovered from the curve .
The question is: what use can be made of an estimate of
( or )?

Fig. 3. Example of a nonlinearity and its spread versions.

This question is answered exploiting model multiplicity
pointed out in Section II. Specifically, the above functions are
nothing other than the nonlinearities of the particular couple of
models

respectively. That is, for any , the curve
converges (in probability) to the nonlinearity of either

or (it does not matter to know which
one). Then, it makes sense to limit the identification to the
model family . But,
what particular model of this family should one focuses on?

To answer such a question, notice that the functions
and are more or

less spread versions of and , respectively.
Specifically, is more spread than
if . Otherwise, is less
spread than (and so it is a concentrated version of) .
The same remark applies to compared to

. As the functions of interest, namely
and , are all defined in the same interval,
i.e., , it is judicious to focus on the couple of
models that involve the less spread (or, equivalently, the most
concentrated) nonlinearity (see Fig. 3).

Let denote such couple where
. For convenience, the cor-

responding elements are, respectively, denoted

and , i.e.

(34)

(35)
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where . Focusing on will
prove to be the most convenient choice when it comes to esti-
mating the gains .

On the other hand, as is the less spread func-
tion in the family , one nec-
essarily has

(36)

Finally, recall that and
, for all . That is, the estimator defined by GPE1-

GP4, is still convenient in the sense that converges in

probability to for all or
it converges to , for all . Taking these remarks into ac-
count, we propose the following algorithm to get a nonlinearity
estimate :

NLE1 . Consider the family of static curves
, constructed in the phase estimation proce-

dure GPE1-GPE4. Select the most concentrated (i.e.,
less spread) curve and let denote the corresponding
frequency.
NLE2 . Let (with ) be the function in-
duced by the static curve .
NLE3 . If is not even, then take .
NLE4 . If is even, conclude that (within )

if

otherwise.

Remark 4.1: The fact that is known (Assumption A1,
part a) has been used in Step NLE4. The estimate thus ob-
tained may correspond to either or , depending on the phase
estimate . This is made precise in the following theorem
which is a direct consequence of Proposition 3.5 and Theorem
4.1.

Theorem 4.2: Consider the problem statement of Proposition
3.1. The nonlinearity estimator NLE1-NLE4, is consistent in the
sense that one has w.p.1:

a) if then
, for all ;

b) if then
, for all .

Remarks 4.2:
1) In the case where this may be of interest, a polynomial rep-

resentation can, a afterward, be given to the nonlinearity
interpolating a number of points selected on the

curve .
2) In [1], model rescaling (34)–(35) has also been used to

cope with the estimation of the nonlinearity. However, it
was suggested there that may be chosen arbitrary. Doing
so, the gains can not be consistently estimated as
explained in Section IV-C.

C. Gain Modulus Estimation

The phase estimates and the nonlin-
earity estimate obtained previously will now be used to get
estimates of the gains .
To keep simple the forthcoming presentation, it is temporarily

assumed that , (for
all ) and (no noise). In the proce-
dure GPE1-GPE3, the Wiener system has been excited by the
family of signals . Using
the model , the Wiener system signals can be ex-
pressed as follows:

(37)

with . On the other hand, it readily follows
from (34) and (36) that:

(38)

If were invertible, then the internal signal
would be

available and, so, would be easily recovered. The
situation becomes much more problematic when is not in-
vertible. Nevertheless, the gains can still be uniquely
determined if the system nonlinearity satisfies, in addition to
Assumption A1, the following assumption:

Assumption A2: If is even then, there exist
such that, for all , all

and all ,
one has: .

Remark 4.3: Let be any function satisfying Assumptions
A1–A2. The following properties hold:

1) If is even then it is invertible at and
is known (Assumption A1, Part a). Furthermore,
one gets from Assumption A2 that, for all , the
branch of corresponding to the (unilateral) interval

is locally invertible on the subintervals
. For instance, the

function satisfies both Assumptions A1 (Part
a) and A2, the numbers are then arbitrary.

2) It has already been noticed that is a less or more spread
version of . Therefore, also satisfies Assumptions
A1–A2. More precisely,
a) in the case where is even, replace in Assumption

A2, the intervals and
by

and , respectively;
b) in the case where is not even, re-

place in Assumption A1 (Part b) the
intervals
and
by and

, respectively.
Now, it will be shown that, under Assumptions A1–A2, the

gain can exactly be estimated
using the following algorithm, where :

(39a)

(39b)

Proposition 4.1: Consider the optimization problem defined
by (39a)–(39b) in presence of the constraint (37), where satis-
fies Assumptions A1–A2 (as this is made precise in Remark 4.3
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(part 2)). Then, for all , has a unique global minimum

at

Proof: It is readily seen from (39b) that
, which means that is a global minimum. Let us show

that such a minimum is unique. To this end, let denotes any
real such that . It follows from (37) and (39b) that,
for almost all :

(40)

On the other hand, it is obvious that for all such
that , one has

(41a)

Similarly, for all such that
, one has

(41b)

Now, let us distinguish between the two cases pointed out in
Assumptions A1–A2.

Case 1: is even. Using Assumptions A1 (Part
a) and A2 and Remark 4.3 (part 2), it follows
from (40) that:

, for all such that (41b) holds.
This readily gives .
Case 2: is not even. Using Assumption A1
(part b) and Remark 4.3 (part 2), it follows
from (40) that

, for all t such that (41a) holds.
This implies that .

Hence, uniqueness of the global minimum of is proved
in all cases

Remark 4.4:
1) A crucial feature that makes the optimization problem

(39a)–(39b) well posed is that the function is de-
fined for all possible values of its argument, i.e.,

with and
. Indeed, (38) ensures that the above argu-

ment belongs to , which is an interval of definition
of . Accordingly, the minimum search in (39a) is limited
to the interval .

2) It is important to note that the above well posedness
(of the optimization problem (39a-b)) is a direct con-
sequence of our choice to focus on the particular
models and that in-

volve the functions and

which are most concen-
trated (less spread) on [see (34)–(36)].

3) While the proposed optimization-based approach is
largely inspired from [1], it is worth noting that the spread
requirement (applied when selecting the models
and ) is entirely new. Indeed, it is suggested in

[1] that the function (here denoted ) involved in (39b),
can be arbitrarily chosen (see Assumption A3.1 in that
paper and subsequent comments). If we did so, there
would be no guarantee that all arguments of interest, i.e.,

, belong to the definition
interval . Then, the minimum search interval in
(39a-b) may not include the global minimum, ,
for some values of .

Proposition 4.1 is now used to build up a consistent estimator
of the gains in presence of not necessarily null noise

. Then, (37) becomes

(42a)

(42b)

Given the estimates and , of
the nonlinearity and phase, Algorithm (39a-b) suggests the fol-
lowing gain estimator:

(43a)

(43b)

where is defined by (29), i.e.

(43c)

Theorem 4.3: Consider the Wiener system described
by (1)–(2) and suppose that the involved nonlinearity sat-
isfies Assumptions A1-A2. Let the system be excited by
the same input signals as in procedure GPE1-GPE4, i.e.,

. The system can also be
modelled by , defined by (34)–(35), and the nonlinearity

in turn satisfies Assumptions A1-A2 [as this is made precise
in Remark 4.3 (part 2)]. Then, the gain estimator (43a)–(43c)
is consistent i.e., converges in probability to

, as .
Proof: In view of Proposition 4.1, it is sufficient to show

that converges in probability to as .
To this end, note that, by Proposition 3.5 (Part 1), con-
verges in probability to , for all , (as ).
Furthermore, it was shown in Theorems 4.1 and 4.2 that one of
the following statements holds w.p.1, as :

i) converges to (for all )
and converges to .

ii) converges to (for all ) and con-
verges to .

In the light of these remarks, it is readily seen comparing
(39b) and (43b) that actually converges in probability
to as

Remark 4.5:
1) Since (43b) has a unique minimum, this can be found

graphically plotting against .
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Fig. 4. Output ���� obtained over three periods with � � � � ���� ����	
(simulation of Section IV-D-I).

2) The gain estimator in [1] was only considered in the ab-
sence of noise and, even in this case, no formal conver-
gence analysis has been given. The absence of formal anal-
ysis in that paper can be explained by the shortcoming
pointed out in Remark 4.4 (part 3).

D. Simulation Results

1) Identification in Presence of Discontinuous Nonlinearity:
The graphical identification method described previously is now
illustrated considering a Wiener system characterized by

(44a)

(44b)

Note that involves a large phase variation, due to
its nonminimum phase feature. The nonlinearity is a
preload with an abrupt discontinuity at . According to
the proposed identification method, the system is excited by
6 sinusoids of the form ,
where the couples are given the values of Table I.
The output is disturbed by a zero-mean noise randomly
uniformly distributed in . Fig. 4 shows the (steady
state) output signal, , obtained with .
The phase estimator GPE1-GPE4 is first applied to get phase
estimates . The way in which the estimator operates
is illustrated here for . First, the average
output is generated according to (29) (with )
and used to construct the parameterized closed-locus

for
different values of . The curves corresponding to four values
of are shown by Fig. 5. It is seen that a static curve is
obtained for . Then, it is concluded that

which, in fact, is nothing other than
. The phase estimates obtained

for the different frequencies are given by
Table I. Notice that they all correspond to .

The static curves obtained for the
different ’s are plotted in Fig. 6. A rapid inspection of

Fig. 5. Curves� obtained with � � ���� ����	 and� � 
� for several
values of 	 (simulation of Section IV-D-I).

these curves shows that the less spread (most concentrated)
one of them is that corresponding to .
Following Section IV-B, we will focus on the particular models

9



TABLE I
NUMERICAL VALUES OBTAINED IN SIMULATION OF SECTION IV-D-I

Fig. 6. Curves �� � �� obtained for the frequencies � �� �
�� � � � � �� (simulation of Section IV-D-I).

and , defined by (34)–(35)
which, presently, are characterized by:

and . According to the es-

timation procedure NLE1–NLE4, the nonlinearity estimate

it defined by the particular static curve . It is

easily checked that, for this example, coincides with . The
compatibility between the phase estimates, on one hand, and the
nonlinearity estimate, on the other hand, is thus guaranteed just
as this was predicted by Theorem 4.2. Recall that, in practical
situations, it does not really matter which model,

or , is actually being identified.

Given the estimates and , the estimator (43a-c)

is resorted to get estimates of the frequency gains

. This is illustrated by Fig. 7 which shows the cost
function plotted against for

, . It is seen that the global minimum is achieved
for which is very close to the true
gain value. Table I gives the gain estimates thus obtained for
different frequencies and shows that the quality of estimation is

Fig. 7. Plot of � ��� for � � � 	
� (simulation of Section IV-D-I).

quite satisfactory. Hence, the consistency of the whole identifi-
cation method is confirmed, despite the presence of significant
noise amplitude (Fig. 4) and nonlinearity discontinuity (44b).

2) Identification of Non-Invertible Nonlinearity: In this sub-
section we only focus on phase estimation for a specific Wiener
system involving a not invertible nonlinearity. By the way, it
will be shown, using the considered example, that the method
proposed in [1] is unable to recover the true value (modulo )
of the phase, while our method will be able to do it. The consid-
ered Wiener system is characterized by

(45)

The system output is disturbed by a zero-mean noise that
is randomly uniformly distributed in .

As is even, it follows from Assumption A1 (part a)
that must be known. That is, the fact that can
be used in the identification process. First, the phase estimator

GPE1–GPE4 is applied to get an estimate of the phase
for . To this end, the system is excited

by the signal . Fig. 8 shows the closed-locus
obtained with different values of and . Ac-

cording to GPE1–GPE4, the phase estimate is that value
of that leads to a static curve. Inspecting Fig. 8, it is readily
seen that there are two possible values for , namely

and . The second value is dis-
carded as it leads to a nonadmissible nonlinearity because then

. Therefore, we let . As the true
value of the phase is
it follows that i.e., equals
modulo . Hence, the obtained phase estimate is consistent. The

corresponding static curve then gives the

estimate which presently corresponds to .
But, as is even, one has .

Let us now apply the method proposed in [1] to get a phase
estimate for the same frequency i.e., . Accordingly, the

estimate of is given by the rule

10



Fig. 8. Curves � obtained for several values of � (simulation of Sec-
tion IV-D-II).

where denotes the Fourier (Discrete) Transform of a filtered
and sampled version of the system output signal and is
any integer (generally the first one) such that . In the
present case

where the noise effect has been ignored for simplicity and also
there is no need to signal filtering and sampling. This clearly
shows that the unique possible choice of the integer is .
Furthermore, it is readily seen that

which implies the following phase estimate:

It is readily seen that
. This is clearly different from zero (modulo ).

The phase estimate is thus biased. This counter example shows
that the phase estimator obtained using the approach proposed in
[1], is not consistent in all situations. Consequently, the nonlin-
earity and the frequency gains cannot be consistently estimated
based on such phase estimator, see [2] for more details.

V. PRACTICAL ISSUES

A. Useful Analytical Expressions

1) Analytical Evaluation of the Geometric Area: Let
denote the geometric area of the curve . It

follows using Proposition 3.2 and (9), that:

(46)

This provides us with an analytical rule for static fea-
ture recognition, namely is static if .
Now, using Proposition 3.5 it follows that if
(for a sufficiently large value of ) then, one has either

or . In the first case, the mapping
gives an estimate of otherwise

the mapping corresponds to . The smaller the
better the estimation quality is. Procedure GPE1-GPE4 can
then be reformulated as a problem of optimizing the nonlinear
function . As the problem is one-dimensional and the
domain search is well defined (namely ), the minimum
can be determined graphically. To illustrate this analytical
way by simulation, consider the simulation conditions of Sec-
tion IV-D-I. Let us focus the illustration on .
The corresponding function is plotted versus in
Fig. 9(a). It is seen that actually has a global minimum

in the interval . Specifically, , and this
is precisely the value obtained in Section IV-D-I.
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Fig. 9. (a) Plot of ������ vs �, for � � � � � for the Wiener system of
Section IV-D-I. (b) Plot of vs ������ vs �, for � � � � � for the Wiener
system of Section IV-D-II.

Now, let us consider the Wiener system of Section IV-D-II,
which involves a noninvertible nonlinearity. We aim at esti-
mating the phase for . The corresponding function

is represented (versus ) in Fig. 9(b). It is seen that
actually has a global minimum in the interval .

This is achieved at which is very close to the
phase estimate obtained earlier in Section IV-D-II.

2) Analytical Evaluation of Signal Spread: Let us consider

the family of (static) curves ,
, constructed in GPE1–GPE4. Let

denote the function induced by the static
curve . It was noticed in Section IV-B that each function

is a more or less spread version of the functions or
. According to the estimation procedure NLE1-NLE4, the

estimate of the nonlinearity is that function that presents
the smallest degree of spread. Doing so, one recovers the largest
part of the system nonlinearity ( or ). In the simulation
of Section IV-D-I, this was easily recognized using the plots
of (Fig. 6). The spread degree can also be evaluated
analytically using the following measure ([4]):

(47)

The larger the more spread is the function . Ac-
cording to the procedure NLE1-NLE4, the best estimate for
the system nonlinearity is that function with the smallest
value of .

B. Practical Implementation Issues

The implementation of the proposed identification method
can only be performed with digital means. This necessitates
signal sampling and numerical approximations of involved
mathematical expressions.

1) Signal Sampling and Noise Effect: Input signal sampling
is easily handled as the used signals are sinusoidal. The output
signal is a periodic signal (with period ) corrupted
with noise i.e., . Nevertheless, the noise ef-
fect is readily filtered thanks to the averaging (29). Indeed, it
is seen from Proposition 3.5 (Part 1) that the average output,
namely , does converge in probability to whatever
. This particularly holds for at the sampling time instants

where denotes the sampling pe-
riod which, presently, is chosen of the form

for some integer . Furthermore, the averaging
(29) is an algebraic operation that is easily realisable using dig-
ital means.

The consistency of implies that related sampling
issue is equivalent to the sampling of . As this is a pe-

riodic signal it can be approximated by
(the ’s denote its Fourier coefficients).

The sampling period should satisfy the Shannon condition
or, equivalently, . That is, the

number of samples in the time interval must be at
least twice the number of selected harmonics.

Remark 5.1: A similar discussion of periodic signal sampling
is made in [1]. More elaborate results on periodic signals sam-
pling can be found in [21] and reference list therein.

2) Numerical Version of the Phase Estimation Part: For dig-
ital implementation purpose, a numerical version has to be de-
veloped for the identification method. While algebraic expres-
sions are digitally implemented just substituting sampled data to
continuous signals, the implementation of integral expressions
relays on numerical approximations (like rectangle or trape-
zoidal methods). In the rest of this subsection, we will focus
on developing a numerical version for the phase estimation part
(GPE1–GPE4). The other identification method parts (nonlin-
earity and frequency gain modulus) can be handled similarly.

First, the norms involved in the step GPE2 are ap-
proximated as in usual practice, e.g.

Then, step GPE3 should read: ’Plot the

(closed) parameterized curve

with ’. As the sampling time is substituted
to the continuous-time , the obtained curve, , is no
longer a continuous line. Nevertheless, the consistency of the
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discrete curve is still guaranteed because
is consistent. Specifically, one has w.p.1, for all

The phase estimate obtained in step GPE3 is then
denoted and its quality depends partly
on the accuracy with which the discrete curve

approximates the continuous line
. It is clear

that, tends to
when (i.e., when ).

Then, the result of Proposition 3.5 (Part 4) guarantees that
or .

Step GPE4 applies exactly as in the continuous-time case.
Now, let us go back to step GPE3 which involves static curve

recognition. It has been pointed out (Section V-A-I) that such
recognition can be performed using expression (46) to evaluate
the geometric area of the curve . The numerical version
of such expression is

(46a)

Note that the time in the right side
of (46) must be a multiple of the sampling period .
As and , one readily gets that

. This sug-
gests that should be of the form ( being
integer). Doing so, the problem at hand turns out to be the
minimization of the quantity with respect
to . The minimum search can be performed graphically as
explained in Section V-A-I. According to the step GPE3, such
minimization task determines the true phase (modulo )
up to an error bounded by . That is, the larger the number

of data samples the better the phase estimation accuracy is.

VI. CONCLUSION

In this paper, a frequency-domain solution has been devel-
oped to deal with Wiener system identification. Unlike most pre-
vious works, the system nonlinearity is not necessarily required
to be (globally) invertible and smooth. The main component of
the proposed identification method is the consistent phase esti-
mator GPE1-GPE4 described in Section IV-A. The design of
this estimator essentially relays on the geometric findings of
Section III which are original features of this work. The main
outcome of such investigation is that the Lissajous curves

are all nonstatic except for . Inversely, when is
static then it corresponds to or to or to (more or less)
spread versions of these. The focus has been made on the couple
of models that involve the less spread
(i.e., most condensed) nonlinearities. This choice has proved to
be judicious in regard to gain estimation. The fact that the non-
linearity estimation is coupled with the phase estimation guaran-
tees the compatibility of the corresponding estimates. The above
compatibility and spread facts are new features in this work.

REFERENCES

[1] E. W. Bai, “Frequency domain identification of Wiener models,” Au-
tomatica, vol. 39, pp. 1521–1530, 2003.

[2] F. Giri, Y. Rochdi, and F. Z. Chaoui, “Comment on ’frequency domain
identification of Wiener models’,” Automatica, vol. 44, pp. 1451–1455,
2008.

[3] J. Bruls, C. T. Chou, B. R. J. Heverkamp, and M. Verhaegen, “Linear
and nonlinear system identification using separable least squares,” Eur.
J. Control, vol. 5, pp. 116–128, 1999.

[4] M. Carbon, D. Ghorbanzadeh, P. Marry, N. Point, and D. Vial, Mathe-
matical Elements for Signals. Paris, France: Dunod, 1997.

[5] H. F. Chen, “Recursive identification for Wiener model with discontin-
uous piece-wise linear function,” IEEE Trans. Automat. Control, vol.
51, no. 3, pp. 390–400, Mar. 2006.

[6] A. Gardiner, “Frequency domain identification of nonlinear systems,”
in Proc. IFAC Symp. Syst. Identi. Estim., Rotterdam, The Netherlands,
1993, pp. 831–834.

[7] W. Greblicki, “Nonparametric identification of Wiener systems,” IEEE
Trans. Inform. Theory, vol. 38, no. 5, pp. 1487–1493, Sep. 1992.

[8] W. Greblicki, “Nonparametric approach to Wiener system identifica-
tion,” IEEE Trans. Circuits Syst. I, vol. 44, no. 6, pp. 538–545, Jun.
1997.

[9] W. Greblicki, “Recursive identification of Wiener system,” Appl. Math.
Comput. Sci., vol. 11, pp. 977–991, 2001.

[10] W. Greblicki, “Nonlinearity recovering in Wiener system driven with
correlated signal,” IEEE Trans. Automat. Control, vol. 49, no. 10, pp.
1805–1810, Oct. 2004.

[11] Z. Hasiewicz, “On equivalence conditions of local and global identifi-
cation of a memoryless cascade complex system,” Syst. Anal. Model.
Simul., vol. 4, pp. 341–345, 1987.

[12] X. L. Hu and H. F. Chen, “Strong consistency of recursive identification
for Wiener systems,” Automatica, vol. 41, pp. 1905–1916, 2005.

[13] I. W. Hunter and M. J. Korenberg, “The identification of nonlinear bio-
logical systems: Wiener and Hammerstein cascade models,” Biol. Cy-
bern., vol. 55, pp. 135–144, 1986.

[14] A. E. Nordsjö and L. H. Zetterberg, “Identification of certain
time-varying nonlinear Wiener and Hammerstein systems,” IEEE
Trans. Signal Processing, vol. 49, no. 3, pp. 577–592, May 2001.

[15] G. A. Pajunen, “Adaptive control of Wiener type nonlinear systems,”
Automatica, vol. 28, pp. 781–785, 1992.

[16] M. Pawlak, Z. Hasiewicz, and P. Wachel, “On nonparametric identifi-
cation of Wiener systems,” IEEE Trans. Signal Processing, vol. 55, no.
2, pp. 482–492, Feb. 2007.

[17] J. Vörös, “Parameter identification of Wiener systems with discontin-
uous nonlinearities,” Syst. Control Lett., vol. 44, pp. 363–372, 2001.

[18] E. W. Weisstein, “Lissajous Curve,” MathWorld, a Wolfram Web
Resource, Tech. Rep. [Online]. Available: http://mathworld.wol-
fram.com/LissajousCurve.html

[19] D. T. Westwick and R. E. Kearney, “A new algorithm for the identi-
fication of multiple-input Wiener systems,” Biol. Cybern., vol. 68, pp.
75–85, 1992.

[20] T. Wigren, “Recursive prediction error identification using the non-
linear Wiener model,” Automatica, vol. 29, pp. 1011–1025, 1993.

[21] M. Jacob, T. Blu, and M. Unser, “Sampling of periodic signals: A quan-
titative error analysis,” IEEE Trans. Signal Processing, vol. 50, no. 5,
pp. 1153–1159, May 2002.

13




