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Abstract

This paper aims to unify and extend existing techniques for deriving upper
bounds on the transient of max-plus matrix powers. To this aim, we introduce
the concept of weak CSR expansions: At = CStR⊕Bt. We observe that most
of the known bounds (implicitly) take the maximum of (i) a bound for the weak
CSR expansion to hold, which does not depend on the values of the entries
of the matrix but only on its pattern, and (ii) a bound for the CStR term to
dominate.

To improve and analyze (i), we consider various cycle replacement techniques
and show that some of the known bounds for indices and exponents of digraphs
apply here. We also show how to make use of various parameters of digraphs.
To improve and analyze (ii), we introduce three different kinds of weak CSR
expansions (named after Nachtigall, Hartman-Arguelles, and Cycle Threshold).
As a result, we obtain a collection of bounds, in general incomparable to one
another, but better than the bounds found in the literature.
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1. Introduction

Max-plus algebra is a version of linear algebra developed over the max-plus
semiring, which is the set Rmax = R ∪ {−∞} equipped with the multiplication
a ⊗ b = a + b and the addition a ⊕ b = max(a, b). This semiring has zero
0 := −∞ (neutral with respect to ⊕) and unity 1 := 0 (neutral with respect
to ⊗), and each element µ except for 0 has an inverse µ− := −µ satisfying
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µ ⊗ µ− = µ− ⊗ µ = 1. Taking powers of scalars in Rmax means ordinary
multiplication: λ⊗t := t · λ.

The max-plus arithmetic is extended to matrices in the usual way, so that
(AB)ij =

⊕

k aik⊗bkj = maxk(aik+bkj) for matrices A = (aij) and B = (bij) of
compatible sizes. In this paper, all matrix multiplications are to be understood
in the max-plus sense. For multiplication by a scalar and for taking powers of
scalars we will write the sign ⊗ explicitly, while for the matrix multiplication it
will be always omitted.

Historically, max-plus algebra first appeared to analyze production systems
driven by the dynamics

xi(k + 1) = max
j

(
xj(k) + aij

)
. (1)

Thus, repeated application of matrix A = (aij) in max-plus algebra to an initial
vector x(0) computes the vectors x(k). Here x(k) is typically a vector consisting
of n real components, expressing the times of certain events happening during
the kth production cycle. According to dynamics (1), event i has to wait until
all the preceding events j happen and the necessary time delays aij have passed,
so that event i can then occur as early as possible. Such situation is usual in
train scheduling, working plan analysis, and synchronization of multiprocessor
systems [3, 5, 15]. Recently, Charron-Bost et al. [9] have shown that also the
behavior of link reversal algorithms used for routing, scheduling, resource allo-
cation, leader election, and distributed queuing can be described by a recursion
of the form (1).

In this paper, we investigate the sequence of max-plus matrix powers At =
t times

︷ ︸︸ ︷

AAA · · ·A. Cohen et al. [10] proved that this sequence eventually exhibits a
periodic regime whenever A is irreducible, i.e., whenever the digraph D(A) de-
scribed by A is strongly connected: there exists a positive integer γ and a
nonnegative integer T such that

∀t ≥ T : At+γ = λ⊗γ ⊗At (2)

where λ = λ(A) is the unique max-plus eigenvalue of A. The smallest T that
can be chosen in (2) is called the transient of A; we denote it by T (A).

Since it satisfies x(t) = Atv every max-plus linear dynamical system, i.e.,
every sequence x(t) satisfying (1) is periodic in the same sense whenever A is
irreducible. Its transient T (A, v) in general depends on v and is always upper-
bounded by T (A).

Bounds on the transients were obtained by Hartmann and Arguelles [14],
Bouillard and Gaujal [4], Soto y Koelemeijer [27], Akian et al. [2], and Charron-
Bost et al. [8]. Those bounds are incomparable because they depend on different
parameters of A or assume different hypotheses. However they all appear, at
least in the proofs, as the maximum of a first bound independent of the values
of the entries of A and a second bound taking those values into account. The
first motivation for this paper was to find a common ground for these bounds
in order to understand, unify, combine, and improve them.
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Schneider [20] observed that the Cyclicity Theorem can be written in the
form of a CSR expansion, which was formulated by Sergeev [23]: there exists a
nonnegative integer T such that

∀t ≥ T : At = λ⊗t ⊗ CStR , (3)

where the matrices C, S, and R are defined in terms of A and fulfill CSt+γR =
CStR for all t ≥ 0. In an earlier work, considering infinite-dimensional matrices,
Akian, Gaubert and Walsh [2, Section 7] gave a similar formulation originating
in the preprints of Cohen et al. [10].

Because of the periodicity of the sequence CStR, the smallest T satisfying (3)
is T (A).

Later, Sergeev and Schneider [24] proved that for t large enough, At is the
sum (in the max-plus sense) of terms of the form λ⊗t

i ⊗ CiS
t
iRi. This sum,

which we call CSR decomposition, has two remarkable properties: it holds for
reducible matrices as well as irreducible ones, and the CSR decomposition holds
for t ≥ 3n2, a bound that does not depend on the values of the entries of A.

As a common ground of transience bounds and CSR decomposition, we
propose the new concept of weak CSR expansions. We suggest that all existing
techniques for deriving transience bounds implicitly use the idea that eventually
we have

∀t ≥ T : At =
(
λ⊗t ⊗ CStR

)
⊕Bt , (4)

where C, S, and R are defined as in the CSR expansion, and B is obtained
from A by setting several entries (typically, all entries in several rows and
columns) to 0. In this case, we say that B is subordinate to A. Call the
smallest T for which (4) holds the weak CSR threshold of A with respect to B
and denote it by T1(A,B).

This quantity heavily depends on the choice of B, i.e., on which entries are
set to 0. If we choose B = (0), then we recover the ordinary CSR expan-
sion and we have T1(A,B) = T (A). If D(B) is acyclic, then Bn = (0) and
T (A) ≤ max(T1(A,B), n). More generally T (A) ≤ max(T1(A,B), T2(A,B)),
where T2(A,B) is the least integer satisfying

∀t ≥ T : λ⊗t ⊗
(
CStR

)
≥ Bt .

Analogously, we call T2(A,B, v) the least integer satisfying

∀t ≥ T : λ⊗t ⊗
(
CStRv

)
≥ Btv .

We claim that the bounds in [4, 8, 14, 27] implicitly are of this type, for
various choices of B and various ways to bound T1 and T2.

We next summarize the contents of the remaining part of this paper. In
Section 2, we recall notions and results of max algebra, focusing on its relation to
weighted digraphs. In Section 3, we introduce three schemes of defining B, and
thereby weak CSR expansions: the Nachtigall scheme, the Hartmann-Arguelles
scheme, and the cycle threshold scheme. The first scheme is implicitly used
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in [2, 4, 8, 27], the second one is derived from [14], and the third one is completely
new.

In Section 4 we state some bounds on T1(A,B) and T2(A,B), thus on T
that we obtain in this paper. Those bounds strictly improve the ones in [4, 8,
14, 27]. Moreover they can be combined in several ways. Notably, for the three
schemes defined in Section 3, we bound the weak CSR threshold T1(A,B) by
the Wielandt number

Wi(n) =

{

0 if n = 1

(n− 1)2 + 1 if n > 1
(5)

(named in honor of [28]). The bound Wi(n) is optimal because it is the worst
case transient of powers of Boolean matrices, i.e., matrices with entries 0 and 1
(see Remarks 3.1 and 4.2). We also recover another optimal bound for Boolean
matrices due to Dulmage and Mendelsohn [11] that do not only depend on n but
also on some graph parameter. The section also includes examples to compare
the different bounds.

In Section 5, we compare our results to some bounds found in the literature.
In Section 6, we explain the strategy of the proof, which leads us to introduce

a graph theoretic quantity, which we name cycle removal threshold of a graph
and state bounds on T1(A,B) that depend on this quantity for some graphs.

In Sections 7 and 8, we prove the results stated in Section 6 to bound T1(A,B)
in terms of the cycle removal threshold.

In Section 9 we bound the cycle removal threshold. First we recall the
bounds of [7] that depend on several parameters of D(A) and use the ideas of
Hartman and Arguelles [14] to give a new bound depending on less parameters.
Then, we introduce a new technique leading to other two bounds on T1(A,B).

In Section 10 we prove the bounds on T2(A,B).
In Section 11, we recall some bounds on the index of Boolean matrices to be

used in some bounds on T1.
The technique of local reduction, originating from Akian, Gaubert and

Walsh [2, Section 7], is recalled in Section 12. We show that this technique
can be combined with any of the CSR schemes described in Section 3.

2. Preliminaries

2.1. Walks in weighted digraphs

Let us recall the optimal walk interpretation of matrix powers in max alge-
bra. This is the fact that the entries of a matrix power At are equal to maximum
weights of walks of length t in the digraph associated to matrix A.

To a square matrix A = (aij) ∈ R
n×n
max we associate an edge-weighted digraph

D(A) with set of nodes N = {1, 2, . . . , n} and set of edges E ⊆ N×N containing
a pair (i, j) if and only if aij 6= 0; the weight of an edge (i, j) ∈ E is defined
to be p(i, j) = aij . A walk W in D(A) is a finite sequence (i0, i1, . . . iL) of
adjacent nodes of D(A). We define its length l(W ) = L and weight p(W ) =
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ai0,i1 ⊗ ai1,i2 · · · ⊗ ait−1,it . A closed walk is a walk whose start node i0 coincides
with its end node iL. Closed walks are often called circuits in the literature.
There exists an empty closed walk at every node of length 0 and weight 0.

The multiplicity of an edge e in W is the number of k’s such that (ik, ik+1) =
e. A subwalk of walk W is a walk V such that the edges of V appear in W with
larger multiplicity. A subwalk of W is a proper subwalk if it is not equal to W .

A closed walk is a cycle if it does not contain any nonempty closed walk as
a proper subwalk. A walk is a path if it does not contain a nonempty cycle as
a subwalk.

An elementary result of graph theory states that a walk can always be split
into a path and some cycles. Reciprocally, union of edges of one path and some
cycles can always be reordered into a walk provided the graph with all the edges
and nodes of those walks is connected. The best way to see this is in terms of
multigraph M(W ) defined by a walk W .

For a set W of walks, we write p(W) for the supremum of walk weights
in W. Denote by Wt(i → j) the set of all walks from i to j of length t and write

At = (a
(t)
ij ). It is immediate from the definitions that

a
(t)
ij = p

(
Wt(i → j)

)
. (6)

When we do not want to restrict the lengths of walks, we define the setW(i →
j) of all walks connecting i to j. An analog of (I −A)−1 in max-plus algebra is
the Kleene star

A∗ = I ⊕A⊕A2 ⊕A3 ⊕ . . . , (7)

where I is the max-plus identity matrix. It follows from the optimal walk
interpretation (6) that series (7) converges if and only if p(Z) ≤ 0 for all closed
walks Z in D(A), in which case it can be truncated as A∗ = I ⊕A⊕ . . .⊕An−1.
If we denote A∗ = (a∗ij), it is again immediate that

a∗ij = p
(
W(i → j)

)
. (8)

The maximum cycle mean of A ∈ R
n×n
max is defined by

λ(A) = max{p(Z)⊗1/l(Z) | Z is a nonempty cycle in D(A)} . (9)

Because every closed walk is composed of cycles, we could replace “cycle” by
“closed walk” in definition (9). The maximum cycle mean λ(A) is equal to the
greatest max-algebraic eigenvalue of A, i.e., a µ ∈ Rmax such that there exists a
nonzero vector x satisfying A⊗x = µ⊗x. Nonempty closed walks of weight λ(A)
are called critical, and so are the nodes and edges on these wlks. The subgraph
of D(A) consisting of the set of critical nodes Nc and the set of critical edges Ec

is called the critical graph of A and is denoted by Gc(A) = (Nc, Ec). A useful
fact (used throughout the paper) is that every nonempty closed walk in Gc(A)
is critical.

As we will see, the behavior of max-algebraic matrix powers is eventually
dominated by the walks that visit the critical graph. The set of such walks in
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Wt(i → j) will be denoted by Wt(i
Gc

−→ j) More generally, for a node k and a
subgraph D of D(A) we write

Wt(i
k
−→ j) =

⋃

t1+t2=t

{
W1W2|W1 ∈ Wt1(i → k),W2 ∈ Wt2(k → j)

}
,

Wt(i
D
−→ j) =

⋃

k∈D

Wt(i
k
−→ j) and W(i

D
−→ j) =

⋃

t≥0

Wt(i
D
−→ j) .

2.2. Cyclicity of digraphs

A digraph G = (N,E) is strongly connected if there exists a walk from i
to j for all nodes i, j ∈ N . A strongly connected component (s.c.c.) of G is
a maximal strongly connected subgraph of G. Digraph G is called completely
reducible if there are no edges between distinct s.c.c.’s of G. The critical graph
Gc(A) will be the most important example of this.

Matrix A is called irreducible if its associated digraph is strongly connected,
and reducible otherwise. Further, it is called completely reducible if so is the
associated digraph.

The cyclicity γ(G) of a strongly connected digraph G is the greatest common
divisor of the lengths of its closed walks. If G is not strongly connected, its
cyclicity γ(G) is the least common multiple of the cyclicities of its s.c.c.’s. It
is well-known that any two lengths of walks on G both starting at some node i
and both ending at some node j are congruent modulo γ(G). Moreover, if G is
strongly connected, there is walk from i to j of all lengths that are large enough
and that are congruent to some tij modulo γ(G).

We call a subgraph G of Gc(A) a representing subgraph if G is completely
reducible and every s.c.c. of Gc(A) contains exactly one s.c.c. of G. The cyclic-
ity γ(G) of a representing subgraph of Gc(A) is always a multiple of γ

(
Gc(A)

)
.

Hence Equation (2) also holds with γ = γ(G) instead of γ
(
Gc(A)

)
.

2.3. Visualization and max-balancing

The maximum cycle mean λ(A) also appears as the least µ ∈ Rmax such
that there exists a finite vector x satisfying Ax ≤ µ ⊗ x. When µ = λ(A), we
can take xi =

⊕n
j=1(λ

−(A)⊗A)∗ij , that is, the component-wise maximum of all

columns of (λ−(A)⊗A)∗. Setting D, resp. D−, to be the diagonal matrix with
entries dii = xi and dij = 0 for i 6= j, resp. d−ii := x−

i and dij = 0 for i 6= j, we
obtain for B = D−(λ− ⊗A)D that Gc(B) = Gc(A) and

bij ≤ 1 for all i, j ,

bij = 1 for all i, j in Gc(B) .
(10)

When (10) holds we say that B is visualized: it exhibits the edges of the critical
graph. A diagonal matrix X such that B = D−(λ−(A)⊗A)D is visualized and
Gc(B) = Gc(A) is also called a Fiedler-Pták scaling [12] of A. In this case, we
call B a visualization of A.

6



Fiedler-Pták scalings were described in more detail by Sergeev, Schneider
and Butkovič [25] using Kleene stars and max algebra. Butkovič and Schnei-
der [6] described applications to various kinds of nonnegative similarity scal-
ings. A Fiedler-Pták scaling, particularly interesting to us, is called the max-
balancing. It was described by Schneider and Schneider [21]:

Theorem 2.1 (Schneider and Schneider [21]). For all A ∈ R
n×n
max exists a

visualization B of A satisfying the following equivalent properties:

1. (Cycle cover) For all edges (i, j) in D(B) there exists a cycle Z in D(B)
containing (i, j) such that all edges of Z have weight at least bij.

2. (Max-balancing) For all sets M ⊆ {1, . . . , n}, we have: max
i∈M,j 6∈M

bij =

max
i6∈M,j∈M

bij .

2.4. CSR expansions, Weak CSR expansions

For any A ∈ R
n×n
max and any subgraph G of Gc(A) with no trivial s.c.c., we

set M =
(

(λ(A)− ⊗A
)γ(G)

)∗

and define the matrices C, S,R ∈ R
n×n
max by

cij =

{

mij if j is in G

0 otherwise,
rij =

{

mij if i is in G

0 otherwise,

sij =

{

λ(A)− ⊗ aij if (i, j) is in G

0 otherwise.

(11)

When the dependency on G needs to be emphasized, we write CG , SG and RG

instead of C, S and R.
Essentially C and R can be regarded as sub-matrices of M extracted from

the columns, resp. the rows of M with indices in G. If A is visualized, then
matrix S is exactly the associated Boolean matrix of G. The matrices C, S, and
R are called the CSR terms of A with respect to G.

The following is a CSR version of the Cyclicity Theorem.

Theorem 2.2 ([20, 23]). Let A ∈ R
n×n
max be irreducible and let C, S,R be the

CSR terms of A with respect to Gc(A). Then for all t ≥ T (A):

At = λ(A)⊗t ⊗ CStR

As it is shown below, Theorem 2.2 also holds with Gc(A) replaced by some
representing subgraph G of Gc(A).

Note that this theorem implies periodicity of At after T (A), because the
sequence of matrices CStR is purely periodic, i.e., periodic from the very begin-
ning. In fact, this statement is more generally true for all completely reducible
(and hence also for all representing) subgraphs of Gc(A):

Proposition 2.3 ([24]). Let A ∈ R
n×n
max be irreducible and C, S,R be the CSR

terms of A with respect to some completely reducible subgraph G of the critical
graph Gc(A). Then the sequence of matrices CStR is purely periodic.
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This fact was shown by Sergeev and Schneider [24], where CSR terms with
respect to completely reducible subgraphs of Gc(A) were studied in detail. It
can also be deduced from Theorem 6.1 proved below.

A weak CSR expansion of A is an expansion of the form (4) where C, S,R
are CSR terms with respect to some representing subgraph of Gc(A) and D(B)
is a subgraph of D(A) disjoint to Gc(A). In particular, the result of Theorem 2.2
is also a weak CSR expansion (take B equal to the max-plus zero matrix).

By iteration of weak CSR expansions, we recover the CSR decomposition
of A introduced in [24]. Bounds on T1 give bounds on the time from which At

admits such a decomposition. (See Corollary 4.3).

3. Weak CSR Schemes

In this section, we introduce our three schemes for weak CSR expansions
and discuss their relation. We define them in terms of the subgraph D of D(A)
whose edges denote the indices that are set to 0 in the subordinate matrix B.
More explicitly:

bij =

{

0 if i or j is a node of D

aij else
(12)

The three schemes are:

1. Nachtigall scheme. Here, the subgraph D = Gc(A). We denote the result-
ing matrix B by BN.
This scheme is consistent with the expansions introduced by Nachtigall [19],
which was studied by Molnárová [18] and Sergeev and Schneider [24]. It
was used by almost all authors who studied matrix transients [2, 4, 8, 27],
excluding Hartmann and Arguelles [14].

2. Hartmann-Arguelles scheme. This scheme is defined in terms of the max-
balancing V = (vij) of A. Given µ ∈ Rmax, define the Hartmann-Arguelles
threshold graph T ha(µ) induced by all edges (i, j) in D(A) = D(V ) with
vij ≥ µ. For µ = λ(A) = λ(V ) we have T ha(µ) = Gc(A) = Gc(V ). Let
µha be the maximum of µ ≤ λ(A) such that T ha(µ) has a s.c.c. that does
not contain any s.c.c. of Gc(A). If no such µ exists, then µha = 0 and
T ha(µha) = D(A).
The subgraph D = Gha defining B in the Hartmann-Arguelles scheme is
the union of the s.c.c of T ha(µha) intersecting Gc(A). We denote this
matrix B by BHA. Observe that λ(BHA) = µha and the graphs T ha(µ),
for all µ, are completely reducible due to max-balancing (more precisely,
the cycle cover property).

3. Cycle threshold scheme. For µ ∈ Rmax, define the cycle threshold graph
T ct(µ) induced by all nodes and edges belonging to the cycles in D(A)
with mean weight greater or equal to µ. Again, for µ = λ(A) we have
T ct(µ) = Gc(A). Let µct be the maximum of µ ≤ λ(A) such that T ct(µ)
has a s.c.c. that does not contain any s.c.c. of Gc(A). If no such µ exists,
then µct = 0 and T ct(µct) is equal to D(A).
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The subgraph D = Gct defining B in the cycle threshold scheme is the
union of the s.c.c of T ct(µct) intersecting Gc(A). This matrix B will be
denoted by BCT. We again observe that λ(BCT) = µct.

Remark 3.1. Since Gc(A) ⊂ D, we see that λ(B) < λ(A).
In particular, if A is an irreducible Boolean matrix, then Gc(A) = D(A)

and B = (0) for all schemes, thus T1(A,BN) = T1(A,BHA) = T1(A,BCT) =
T (A).

The weak CSR thresholds hence are generalizations of the transient of irre-
ducible Boolean matrices, which has been investigated in the literature under
the name index (of convergence) of A, or also exponent in case of primitive
matrices. See Section 11 for a brief account.

Proposition 3.2. The matrices BN and BHA can be computed in polynomial
time. The computation of the threshold graphs T ct(0) is NP-hard.

Proof: The computation of BN relies on the computation of Gc(A) = (Nc, Ec),
for which we can exploit the well-known criterion aija

∗
ji = 1 ⇔ (i, j) ∈ Ec(A)

(when λ(A) = 1). This yields complexity at most O(n3).
Concerning BHA, Schneider and Schneider [21] proved that a max-balancing

of A can be computed in polynomial time (at most O(n4)). The same order of
complexity is added if we “brutally” examine at most n2 threshold graphs (for
each of them, the strongly connected components found inO(n2) time). A better
complexity result can be derived from the work of Hartmann-Arguelles [14].

To show NP-hardness of the computation of T ct(µ), we reduce the Longest
Path Problem [13, p. 213, ND29] to it. Consider the Longest Path Problem as
a decision problem that takes as input an edge-weighted digraph with integer
weights, a pair of nodes (i, j) with i 6= j in the digraph, and an integer K. The
output is YES if there exists a path of weight at least K from i to j. The output
is NO if there is none. Observe that if i 6= j, then by inserting the edge (j, i)
with weight −K, the Longest Path Problem can be polynomially reduced to the
problem of calculating T ct(0) by checking whether the new edge (j, i) belongs
to T ct(0). �

The relation between these schemes is as follows. The cycle threshold scheme
is most precise, while the Nachtigall scheme is the coarsest. We measure this in
terms of the size of B and the value λ(B).

Proposition 3.3. BCT is subordinate to BHA, which is subordinate to BN. In
particular,

λ(BCT) ≤ λ(BHA) ≤ λ(BN) .

Proof: Evidently both D(BCT) and D(BHA) are subgraphs of D(BN), which
is extracted from all non-critical nodes. This implies λ(BCT) ≤ λ(BN) and
λ(BHA) ≤ λ(BN).

We show that D(BCT) is a subgraph of D(BHA). For this we can assume that
the whole digraph is max-balanced, and notice first that T ha(µ) ⊆ T ct(µ) for
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any value of µ. We also have that T ha(µ1) ⊇ T ha(µ2) and T ct(µ1) ⊇ T ct(µ2)
for any µ1 ≤ µ2. Now consider the value µct. The components of T ct(µct) which
do not contain the components of Gc(A), have the property that any other cycle
intersecting with them has a strictly smaller cycle mean. It follows that all
edges of these components have cycle mean µct. Indeed, suppose that there is
a component containing an edge with a different weight. In this component,
any cycle that contains this edge also has an edge with weight strictly greater
than µct. The cycle cover property implies that there is a cycle containing this
edge, where this edge has the smallest weight. The mean of that cycle is strictly
greater than µct, a contradiction. But then T ha(µct) contains these components
as its s.c.c.’s. In particular they do not contain the components of Gc(A), hence
µct ≤ µha.

If µ := µct = µha then T ha(µ) ⊆ T ct(µ), while we have shown that the com-
ponents of T ct(µ) not containing the components of Gc(A) are also components
of T ha(µ). It follows that Gha ⊆ Gct.

If µct < µha then we obtain that

Gct ⊇ T ct(µha) ⊇ T ha(µha) ⊇ Gha,

thus Gha ⊆ Gct in any case, hence D(BCT) ⊂ D(BHA). �

The following example shows that all three schemes can differ and, moreover,
that the thresholds T1(A,BN), T1(A,BHA) and T1(A,BCT) can all differ.

Example 3.4. Consider a matrix

A =









0 0 −1 −∞ −7
0 0 −1 −∞ −7
−1 −1 −1 −3 −7
−3 −∞ −∞ −2 −7
−7 −7 −7 −7 −3









(13)

In this example we have λ(A) = 0, it is visualized and, moreover, max-balanced.
The matrices BN, resp. BHA and BCT are formed by setting the first 2 rows
and columns, resp. the first 3 and 4 rows and columns to 0 = −∞, and the
corresponding values are λ(BN) = −1, λ(BHA) = −2 and λ(BCT) = −3. The
corresponding thresholds are T1(A,BN) = 2, T1(A,BHA) = 3 and T1(A,BCT) =
4: all different. The periodicity threshold of (A⊗t)t≥1 is equal to T (A) = 5,
which is the same as T2(A,BN) = T2(A,BHA) = T2(A,BCT).

Let us provide a class of examples that generalizes the example above to
arbitrary dimension. For any matrix A in this class of examples, all three
schemes are different but the corresponding thresholds T1(A,B) may coincide.

Consider a matrix A such that the node set N of D(A) is partitioned into
N = Nc ∪ Nn ∪ Nha ∪ Nct, see Figure 1. For each x ∈ {c, n, ha, ct}, the nodes
in Nx form a strongly connected graph where all edges have weight λx. We set
λc > λn > λha > λct. For each set Nx with x ∈ {n, ha, ct}, we assume that
there is at least one edge from Nx to some set Ny with λy > λx, and one edge
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λct
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δct

δct

δha

δct
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Figure 1: A schematic sketch of D(A) of Example 3.4 (the general case)

from one of such Ny to Nx. With this assumption, it can be shown that D(A)
is strongly connected. Let us also assume that all such edges (from Nx and to
Nx) have the same weight δx. Observe that for the matrix of (13), we have
Nc = {1, 2}, Nn = {3}, Nha = {4} and Nct = {5}; λc = 0, λn = −1, λha = −2
and λct = −3; δn = −1, δha = −3 and δct = −7.

Assume that δx satisfies

δx ≤ min(λx, min{δy | λy > λx}). (14)

Then D(A) is also max-balanced (since it can be shown that each edge (i, j)
with i 6= j is on a cycle where it has the smallest weight).

We also see that λc = λ(A), λn = λ(BN), while λha and λct are “candi-
dates” for λ(BHA) and λ(BCT), respectively. To enforce the correct behaviour
of threshold graphs and ensure that λ(BHA) = λha and λ(BCT) = λct, we set:
1) δn = λn,
2) δha = λha − s, where s is chosen in such a way that the inequality

(ℓ(Z)− 2) · λn + 2(λha − s) ≥ ℓ(Z) · λha

holds at least for one cycle Z containing a node in Nha and a node in Nc ∪Nn;
3) δct not greater than δh (for the sake of max-balancing) and such that the
mean weight of each cycle containing a node of Nct and a node of N\Nct is
strictly less than λct.
Observe, in particular, that condition 2) ensures that T ct(µ) does not gain any
new component as µ decreases from λc to λha so that λct < λ(BHA), and that
condition 3) ensures λct = λ(BCT). Note that (13) satisfies conditions 1)-3).

11



4. Main Results

In this section, we present the main results of this paper. These bounds of
this section use the following graph parameters of a digraph D:

• size |D|: the number of nodes of D,

• circumference cr(D): the greatest length of a cycle in graph D,

• cab driver’s diameter cd(D): the greatest length of a path in D,

• max-girth ĝ(G): the greatest girth, i.e., shortest cycle length, of strongly
connected components of D

• max-cyclicity γ̂(G): the greatest cyclicity of strongly connected compo-
nents of D.

The computation of the circumference cr(D) and the cab driver’s diame-
ter cd(D) are both NP-hard in the number of nodes of D. However, they can
be upper bounded by |D| and |D| − 1, respectively.

Denote by ‖A‖ the difference between the largest and the smallest finite (i.e.,
6= 0) entry of A, and by nB the size of the smallest submatrix of B containing
all its finite entries.

We explained in the introduction that T (A) ≤ max
(
T1(A,B), T2(A,B)

)
.

Our main results are bounds on T1 and T2. All of them are mutually incompa-
rable.

Theorem 4.1. For any matrix A ∈ R
n×n
max , if B = BN or B = BHA, we have

the following bounds

T1(A,B) ≤ Wi(n) (15)

T1(A,B) ≤ ĝ(n− 2) + n (16)

T1(A,B) ≤ (ĝ − 1)(cr−1) + (ĝ + 1) cd (17)

where γ̂ = γ̂(Gc(A)), ĝ = ĝ(Gc(A)), cr = cr(D(A)), cd = cd(D(A)).

T1(A,B) ≤ γ̂(n− 1) + n− nc + ep(Gc(A)) (18)

T1(A,B) ≤ (γ̂ − 1)(cr−1) + (γ̂ + 1) cd+ ep(Gc(A)) (19)

where nc = |Gc(A)| (i.e., the number of critical nodes) and ep(Gc(A)) is the
exploration penalty of Gc(A) (see Definition 6.4).

The exploration penalty ep(Gc(A)) is a quantity that depends only on the
critical graph and can be bounded by its index, see Section 11 for further details.

Remark 4.2. As we noted in Remark 3.1, those bounds apply to the transient
of Boolean matrices. We thus recover the bound of Wielandt [28] in (15) and the
bound of Dulmage and Mendelsohn [11] in (16). Notice that (16) implies (15)
if ĝ ≤ n− 1. The remaining case is trivial for Boolean matrices because there is

12



only one such matrix, but in the non-Boolean case we need a different strategy.
(Proposition 9.4 below).

Bound (15) is optimal in the sense that the bound is reached for any n, as
was already noted in [28], while bound (16) is reached if and only if ĝ and n are
coprime (see [26]).

Iterating the process of weak CSR expansion, we get the following improve-
ment of [24][Theorem 4.2]:

Corollary 4.3 (CSR decomposition). For any matrix A ∈ R
n×n
max , there are

some matrices Ci, Si, Ri defined by induction with Si diagonally similar to Boolean
periodic matrices and some scalars λi ∈ R, where i varies between 1 and K ≤ n
such that we have:

∀t ≥ min (Wi(n), (n− 2) cr(D(A)) + n) , At =

K⊕

k=1

λ⊗t
i CiS

t
iRi.

Theorem 4.4. For any matrix A ∈ R
n×n
max , we have the following bounds

T1(A,BCT) ≤ Wi(n) (20)

T1(A,BCT) ≤ (n− 1) cr+min(n, cd+ cr+1) (21)

T1(A,BCT) ≤ (cd+ cr−1) cr+ cd+1 (22)

where cr = cr(D(A)) and cd = cd(D(A)).

The proof of those theorems is explained in Section 6 and performed in
Sections 7 and 8. Now we also state bounds on T2(A,B) and on T2(A,B, v).

Theorem 4.5. Let A ∈ R
n×n
max be irreducible and let B be subordinate to A.

Denote cdB := cd(D(B)) and γ̂ = γ̂(Gc(A)).
If λ(B) = 0, then T2(A,B) ≤ cdB +1 ≤ nB. Otherwise, we have the following
bounds

T2(A,B) ≤
(n2 − n+ 1)(λ(A)−minij aij) + cdB(maxij bij − λ(B))

λ(A)− λ(B)

≤
n2 − n+ 1

λ(A)− λ(B)
‖A‖+ cdB

(23)

T2(A,B) ≤
(γ̂(n− 1) + n) (λ(A)−minij aij) + cdB(maxij bij − λ(B))

λ(A)− λ(B)

≤
γ̂(n− 1) + n

λ(A)− λ(B)
‖A‖+ cdB

(24)

T2(A,B) ≤
((γ̂ − 1) cr+(γ̂ + 1) cd) (λ(A)−minij aij) + cdB(maxij bij − λ(B))

λ(A)− λ(B)

≤
(γ̂ − 1) cr+(γ̂ + 1) cd

λ(A)− λ(B)
‖A‖+ cdB .

(25)

13



If A has only finite entries, then we have:

T2(A,B) ≤
2(λ(A)−minij aij) + (λ(B)−minij bij)

λ(A)− λ(B)
≤

3‖A‖

λ(A)− λ(B)
(26)

T2(A,B) ≤
2(λ(A)−minij aij)

λ(A)− λ(B)
+ cdB ≤

2‖A‖

λ(A)− λ(B)
+ cdB . (27)

The following theorem generalizes Proposition 5 of [8] and Theorem 3.5.12
of [27].

Theorem 4.6. Let A ∈ R
n×n
max be irreducible, B be subordinate to A and v be a

vector with only finite entries, i.e., v ∈ R
n.

If λ(B) = 0, then T2(A,B, v) ≤ T2(A,B) ≤ cdB +1 ≤ nB. Otherwise, we
have the following bound:

T2(A,B, v) ≤
‖v‖+ (n− 1)‖A‖

λ(A)− λ(B)
(28)

If A has only finite entries, then we have:

T2(A,B, v) ≤
‖v‖+ (λ(A)−minij aij) + (λ(B)−minij bij)

λ(A)− λ(B)
≤

2‖A‖+ ‖v‖

λ(A)− λ(B)
.

(29)

The proofs of Theorems 4.5 and 4.6 are deferred to Section 10.

Remark 4.7. The bounds on T1 are quadratic in n, but even if one fixes the
size of the entries (for instance entries are −∞, 0 or 1), the general bounds on T2

have degree 4, because 1
λ(A)−λ(B) can be as big as ‖A‖(n2 − 1)/4. (Take two

cycles with length (n+ 1)/2 and (n− 1)/2 which both have weight 1).
For the same reason, both bounds are quadratic if all entries are finite.

5. Comparison to Previous Transience Bounds

Hartmann and Arguelles [14] proved one transience bound for irreducible
max-plus matrices and one for irreducible max-plus systems with finite initial
vector. These two bounds are, respectively,

max

(

2n2 ,
2n2

λ(A)− λ(BHA)
‖A‖

)

and max

(

2n2 ,
‖v‖+ n‖A‖

λ(A)− λ(BHA)

)

.

Combination of our bounds in (20) and (23), respectively (28), yields bounds
that are strictly lower than that of Hartmann and Arguelles. Note that our
results, being more detailed, allow a considerably more fine-grained analysis of
the transient phase. For instance, there exist matrices for which λ(BCT) = 0
but λ(BHA) 6= 0 (cf. Example 3.4). Our bounds show in particular that the
transients of these matrices and systems are at most Wi(n), which cannot be
deduced from previous bounds, including that of Hartmann and Arguelles.
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Bouillard and Gaujal [4] and Akian et al. [2] gave transience bounds for
irreducible matrices in the case that the cyclicity of the critical graph is equal
to 1. They explained how to extend their bounds to arbitrary cyclicities, but
that reduction involves multiplying the bound by the cyclicity of the critical
graph or its subgraph. Akian et al. [2] derive bounds for the periodicity transient

of {a
(t)
ij }t≥1 for fixed i, j instead of the whole matrix powers, and show that their

bounding techniques extend to the case of matrices of infinite dimensions. We
discuss the relation of this approach to weak CSR expansions in more detail in
Section 12.

Soto y Koelemeijer [27] (Theorem 3.5.12) established a transience bound for
matrices whose entries are all finite. In our notation, it reads

max

(

2n2 ,
2‖A‖

λ(A)− λ(BN)
+ n+ 1

)

.

Combination of our bounds in (20) and (27) yields a bound of
max

(
Wi(n) , 2‖A‖/(λ(A) − λ(BCT)) + cdB

)
, which is strictly lower. In many

cases, it is even better to use (26).
Charron-Bost et al. [8] gave two transience bounds for systems. They also ex-

plained how to transform transience bounds for systems into transience bounds
for matrices. Combination of our bounds (17), (19), and (28) yields bounds that
are strictly lower than those of [8].

6. Proof Strategy

In this section, we outline the proof of the bounds on T1 stated in Theo-
rems 4.1 and 4.4. Moreover, we provide some general statements that can be
used to get a better bound if more information on the matrix is available.

In all proofs, we assume λ(A) = 1 (replacing A by λ(A)− ⊗A if necessary).
The first stage of the proof is the following representation theorem for CStR

expansions.

Theorem 6.1 (CSR and walks). Let A ∈ R
n×n
max be a matrix with λ(A) = 1

and C, S,R be the CSR terms of A with respect to some completely reducible
subgraph G of the critical graph Gc(A).

Let γ be a multiple of γ(G) and N a set of critical nodes that contains one
node of every s.c.c. of G.

Then we have, for any i, j and t ∈ N:

(CStR)ij = p
(

Wt,γ(i
N
−→ j)

)

(30)

where Wt,γ(i
N
−→ j) :=

{

W ∈ W(i
N
−→ j)

∣
∣ l(W ) ≡ t (mod γ)

}

The proof of this theorem is deferred to Section 7.
Observe that it implies Proposition 2.3 as well as the following corollary.
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Corollary 6.2. CStR depends only on the set of s.c.c.’s of Gc(A) intersecting
with G.

Let G1, . . . ,Gl be the s.c.c. of Gc(A) with node sets N1, . . . Nl, and let CG1
,

SG1
, RG1

be the CSR terms defined with respect to G1. For ν = 2, . . . , l, we
define a subordinate matrix A(ν) by setting the entries of A with rows and
columns in N1 ∪ . . . ∪ Nν−1 to 0, and let CGν

, SGν
, RGν

be the CSR terms
defined with respect to Gν in A(ν).

Corollary 6.3. If G1, · · · ,Gl are the s.c.c.’s of Gc(A), then we have:

CStR =
l⊕

ν=1

CGν
St
Gν
RGν

. (31)

Proof: Using Theorem 6.1, observe that the set of walks Wt,γ(i
Gc(A)
−−−−→ j),

where γ is the cyclicity of Gc(A), can be decomposed into the sets Wν consisting

of walks in Wt,γ(i
Gν−−→ j) that do not visit any node of G1, . . . ,Gν−1, for ν =

1, . . . l (in particular, W1 = Wt,γ(i
G1−→ j)). �

Corollary 6.3, which will be useful in the final section of the paper, and Corol-
lary 4.3 are different examples of the CSR decomposition schemes considered
by Sergeev and Schneider [24].

If D is the graph defining B in (12), it contains Gc(A) and by the optimal
walk interpretation (6), we have:

a
(t)
ij = b

(t)
ij ⊕ p

(

Wt(i
D
−→ j)

)

= b
(t)
ij ⊕ p

(

Wt(i
Gc(A)
−−−−→ j)

)

⊕ p

(

Wt(i
D
−→ j) \Wt(i

Gc(A)
−−−−→ j)

)

.

The proof that T1(A,B) ≤ T has two parts:

1. Scheme-dependent part: show that for t ≥ T we have

p

(

Wt(i
D
−→ j) \Wt(i

Gc(A)
−−−−→ j)

)

≤ p

(

Wt,γ(i
Gc(A)
−−−−→ j)

)

. (32)

2. Scheme-independent part: show that for t ≥ T we have

p

(

Wt,γ(i
Gc(A)
−−−−→ j)

)

≤ p

(

Wt(i
Gc(A)
−−−−→ j)

)

. (33)

By Theorem 6.1, we have p

(

Wt(i
Gc(A)
−−−−→ j)

)

≤ p

(

Wt,γ(i
Gc(A)
−−−−→ j)

)

=

(CStR)ij . Thus, (32) implies At ≤ Bt ⊕ CStR, while (33) implies At ≥ Bt ⊕
CStR.

Let us go deeper into the strategy for each part.
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1. The scheme-dependent part goes as follows

(a) For B = BN, D = Gc(A) and there is nothing to prove.

(b) For B = BHA, we take a walk W with maximal weight in Wt(i
D
−→

j)\Wt(i
Gc(A)
−−−−→ j) and a closed walk V from a node ofW to Gc(A) and

back whose edges have weight greater than or equal to the greatest
weight of the edges in W . Then, we insert V γ(Gc(A)) (i.e., γ(Gc(A))
copies of V ) in W , and remove as many cycles of the new walk as pos-
sible, preserving the length modulo γ(Gc(A)) until we get a walk W̃
with length at most t.
As a result, we thus replaced some edges of W by edges with greater
weight and removed other edges, so p(W̃ ) ≥ p(W ).

(c) ForB = BCT, we also take a walkW with maximal weight inWt(i
D
−→

j) \ Wt(i
Gc(A)
−−−−→ j) but now we replace some cycles of W by some

copies of a cycle with greater mean weight, to get a new walk with
length t. We therefore introduce the concept of a “staircase” of cy-
cles, and Lemma 8.4 will ensure us that we can iterate this process
and eventually reach a critical node.
Note that we need to remove cycles before we replace them and to
have some steps with non-critical cycles, which explains why the
bound for T1(A,BCT) are larger than the one for T1(A,BHA) and T1(A,BN).
However, the worst case remains Wi(n).

2. By Theorem 6.1, to have (33), it is enough to prove that for each s.c.c. H
of Gc(A) there is a γ ∈ N and a set of nodes N ⊂ H such that

p
(

Wt(i
H
−→ j)

)

≥ p
(

Wt,γ(i
N
−→ j)

)

. (34)

To ensure that Equation (34) is satisfied, we use the following steps:

(a) For each s.c.c. H of Gc(A), choose N ⊂ H and γ a multiple of γ(H)

and take a walk W such that p(W ) = p(Wt,γ(i
N
−→ j)).

(b) Remove as many cycles as possible from W , keeping it in Wt,γ(i
N
−→

j).
(c) Insert critical cycles so that the new walk has length t.

Since λ(A) ≤ 1, steps 2b and 2c cannot strictly increase the weight of the
walk, so (34) is satisfied.

It is clear from the strategy that the main point is to remove closed walks
from a given walk, while preserving the length modulo some given integer. This
will be the subject of Section 9. We will use three different tactics, one of them
is completely new. Different bounds depending on different parameters arise
from different choices of N and γ in step 2a and different tactics in step 2b. To
reach the (optimal) Wielandt number Wi(n), we have to combine two of them.

To state general results, we introduce two graph-theoretic quantities.

Definition 6.4. Let D be a subgraph of D(A) and γ ∈ N.
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1. The cycle removal threshold T γ
cr(G), (resp. the strict cycle removal thresh-

old T̃ γ
cr(G)) of G is the smallest nonnegative integer T for which the fol-

lowing holds: for all walks W ∈ W(i
G
−→ j) with length ≥ T , there is a walk

V ∈ W(i
G
−→ j) obtained from W by removing cycles (resp. at least one

cycle) and possible inserting cycles of G such that l(V ) ≡ l(W ) (mod γ)
and l(V ) ≤ T .

2. The exploration penalty epγ(i) of a node i ∈ Gc(A) is the least T ∈ N

such that for any multiple t of γ greater or equal to T , there is a closed
walk on Gc(A) with length t starting at i.
The exploration penalty epγ(G) of G ⊆ Gc(A) is the maximum of the epγ(i)
for i ∈ G. We further set ep((Gc(A)) = maxl ep

γ(Gc

l
)(Gc

l ), which is the
quantity used in Theorem 4.1.

Obviously, T γ
cr(G) ≤ T̃ γ

cr(G) ≤ T γ
cr(G) + 1 but it will be useful to have both

definitions.
Bounds on epγ are given in Section 11 while T γ

cr is investigated in Section 9
We can already notice the following.

First, epγ(i) is finite if and only if γ is a multiple of the cyclicity of its
s.c.c. in Gc(A). Second, if γ is multiplied by an integer, then epγ(i) decreases
but T γ

cr(G) increases. Third, for fixed γ, epγ(G) decreases when G increases.
Finally, epγ(i) = 0 if and only if there is a critical closed walk with length γ
at i. Especially, for any cycle Z, we have

epl(Z)(Z) = 0.

This gives two extremal choices for G and γ: either G is a s.c.c. of Gc(A)
and γ is its cyclicity, or G is a critical cycle and γ is its length.

The first choice is used in [4], the second one in [14] and both choices in [8].
Here we systematically test those two choices. The first one is used to prove the
bounds in Theorem 4.1 that depend on ep(Gc(A)). The second one is used for
the other bounds on T1.

If other choices prove to be useful under additional assumptions on D(A),
one can apply Proposition 6.5 with other parameters.

The strategy explained in this section leads to the following proposition,
which implies Theorems 4.1 and 4.4, except for (20).

Proposition 6.5 (From cycle removal to Weak CSR). Let A be a square
matrix and G be a representing subgraph of Gc(A) with s.c.c.’s G1, · · · ,Gm, and
let γl be multiples of γ(Gl).

(i) If B = BN or B = BHA, then T1(A,B) ≤ maxl (T
γl

cr (Gl)− γl + 1 + epγl(Gl)) .

(ii) If B = BCT, then T1(A,B) ≤ max
{

T̃
l(Z)
cr (Z) | Z cycle in Gct

}

This proposition is proved in Section 8. The bounds of Theorem 4.1 with γ̂(Gc(A))
and ep(Gc(A) can be improved if one knows more of the structure of Gc(A).
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7. Proof of Theorem 6.1

Let A,G,N , γ, t, i, j be as in the statement of Theorem 6.1.
We first prove:

(
CStR

)

ij
≤ p

(

Wt,γ(i
N
−→ j)

)

. (35)

By definition of C, S and R, there are walks W1, W2 and W3 such that
(CStR)ij = p(W1W2W3) and

l(W1) ≡ l(W3) ≡ 0 (mod γ(G)), W2 ⊂ G and l(W2) = t. (36)

Let k be the start node of W2. By hypotheses, k is critical and there is a
node l of N in the same s.c.c. H of Gc(A) as k. Thus there are walks W4 and W5

with only critical edges, going from k to l and from l to k respectively. Thus,
W4W5 is a circuit of Gc(A) and p(W4) + p(W5) = 0.

Let G be the s.c.c. of k in G. As G ⊆ H, γ(H) divides γ(G), thus also γ(G)
and γ. Hence γ(H) divides l(W1) and l(W3). It also divides l(W4W5) and we
have

L = l(W1) + l(W3) + l(W4) + l(W5) ≡ 0 (mod γ(H)).

Therefore, for m ∈ N large enough, there is a closed walk W6 on H starting at k
with length mγ − L.

Set W = W1W4W6W5W2W3. By construction W ∈ Wt,γ(i
N
−→ j) and

p(W ) = p(W1W2W3) = (CStR)ij , so (35) is proved.
It remains to show:

(
CStR

)

ij
≥ p

(

Wt,γ(i
N
−→ j)

)

. (37)

By definition of Wt,γ(i
N
−→ j) there are a node l ∈ N and two walks V1

and V2 going from i to l and from l to j respectively such that l(V1V2) ≡ t

(mod γ) and p(V1) + p(V2) = p
(

Wt,γ(i
N
−→ j)

)

.

Let k be a node of G in the same s.c.c H of Gc(A) as l. As above, there are
critical walks W4 and W5, going from k to l and from l to k respectively and
γ(H) divides γ.

Let V3 be a closed walk in G with start node k, whose length is ≥ t + γ.
Let V4 be its shortest prefix such that l(V1)+ l(W5)+ l(V4) ≡ 0 (mod γ) and V5

be the complementary (i.e., V3 = V4V5). Let W2 be the prefix of length t of V5

and V6 be its complementary (V5 = W2V6, V3 = V4W2V6).

Set W1 = V1W5V4 and W3 = V6V
(γ−1)
3 (W4W5)

(γ−1)W4V2. By construction
W1,W2 satisfy (36). Moreover, we have

W1W2W3 = V1W5V4W2V6V
(γ−1)
3 (W4W5)

(γ−1)W4V2 = V1W5V
γ
3 (W4W5)

(γ−1)W4V2

so l(W1W2W3) ≡ l(V1) + l(V2) ≡ 0 (mod γ) and W3 also satisfies (36).
On the other hand W5V

γ
3 (W4W5)

(γ−1)W4 is a critical closed walk, so it

has weight 0 and p(W1W2W3) = p(V1) + p(V2) = p
(

Wt,γ(i
N
−→ j)

)

, so (37) is

proved.
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8. Proof of Proposition 6.5

In this section, we prove Proposition 6.5, following the strategy described in
Section 6.

8.1. Scheme independent part

In this section, we prove the following lemma.

Lemma 8.1 (Scheme independent part). Let A be a square matrix with
λ(A) = 0 and G be a representing subgraph of Gc(A) with s.c.c. G1, . . . ,Gm

and γl be multiples of γ(Gl), for l = 1, . . . ,m.
For any t ≥ maxl (T

γl

cr (Gl)− γl + 1 + epγl(Gl)) and any i, j, inequality (33),
with G instead of Gc(A), holds for γ = lcml γl.

Proof: Indeed, any walk W ∈ Wt,γ(i
G
−→ j) is in Wt,γl(i

Gl−→ j) for some l.

By definition of T γl

cr (Gl), there is a walk V ∈ Wt,γl(i
Gl−→ j) with length at

most T γl

cr (Gl) and p(V ) ≥ p(W ).
If t ≥ T γl

cr (Gl)−γl+1+epγl(Gl), then t−l(V ) ≥ epγl(Gl)−γl+1. Since t−l(V )
and epγl(Gl) are both multiples of γl, it implies t− l(V ) ≥ epγl(Gl), so there is
a closed walk on Gc(A) with length t− l(V ) at each node of Gl. Inserting such a

walk in V where it reaches Gl, we get a new walk W̃ ∈ Wt(i
Gl−→ j) ⊆ Wt(i

G
−→ j)

with p(W̃ ) = p(V ) ≥ p(W ). �

8.2. Hartmann and Arguelles scheme

In this section, we perform step 1 of the strategy in the case B = BHA. We
prove the following lemma.

Lemma 8.2. Let A be a square matrix with λ(A) = 0 and G be a representing
subgraph of Gc(A) with s.c.c. G1, · · · ,Gm and γl be multiples of γ(Gl) for l =
1, . . . ,m.

For any t ≥ maxl (T
γl

cr (Gl)− γl + 1) and any i, j, inequality (32) holds with γ =
lcml γl and D = Gha (the graph defining BHA in Section 3).

Proof: We assume without loss of generality that A is max-balanced.

Let W be a walk with maximal weight in Wt(i
D
−→ j) \ Wt(i

Gc(A)
−−−−→ j) We

show that there exists a walk W̃ ∈ Wt,γ(i
Gc(A)
−−−−→ j) with p(W̃ ) ≥ p(W ).

Denote the maximum weight of edges in W by µ(W ). Define the graph

D̃ :=

{

Gha if µ(W ) ≤ µha ,

T ha(µ(W )) otherwise .
(38)

By the definition of Hartmann-Arguelles threshold graphs, Gc(A) ⊆ D̃ ⊆ Gha. In
both cases of (38), walk W contains a node k of digraph D̃, which is completely
reducible (due to the max-balancing).
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Let W = W1 · W2 with W1 ending at node k. By definition of D̃, there
exists a critical node ℓ in the same s.c.c. H of D̃ as k. Moreover, H contains a
whole s.c.c. Gc

l (A) of G
c(A), and hence also a component Gl of the representing

subgraph G. Hence we can choose ℓ in Gl.
Let V1 be a walk in D̃ from k to ℓ and V2 be a walk in D̃ from ℓ to k. Set

V = V1V2 and W3 = W1 · V
γl ·W2. By the definition of the cycle replacement

threshold, there exists a walk W̃ ∈ Wt,γl(i
Gl−→ j) obtained from W3 by removing

cycles and possibly inserting cycles in Gl such that l(W̃ ) ≤ T γl

cr (Gl) ≤ t+ γl − 1.
Since l(W3) ≡ t (mod γl), it implies l(W̃ ) ≤ t.

Recall that since A is max-balanced and λ(A) = 0, all edges have nonpositive
weights, and the weight of each edge of D̃ is not smaller than that of any edge
of W . Each edge of W is either removed, kept or replaced by an edge of D̃ in W̃ ,
thus we conclude that p(W̃ ) ≥ p(W ). This shows

p

(

Wt(i
D
−→ j) \Wt(i

Gc(A)
−−−−→ j)

)

≤ max
l

p
(

Wt,γl(i
Gl−→ j)

)

.

However, Theorem 6.1 implies that

p
(

Wt,γl(i
Gl−→ j)

)

= p

(

Wt,γ(i
Gc

l
(A)

−−−−→ j)

)

for each l and hence

max
l

p
(

Wt,γl(i
Gl−→ j)

)

= max
l

p

(

Wt,γ(i
Gc

l
(A)

−−−−→ j)

)

= p

(

Wt,γ(i
Gc(A)
−−−−→ j)

)

,

and this concludes the proof. �

Proposition 6.5 part (i) now follows from Lemmas 8.1 and 8.2.

8.3. Cycle threshold scheme

In this section, we perform step 1 of the strategy in the case B = BCT. We
prove the following lemma.

Lemma 8.3. Let A be a square matrix with λ(A) = 0.

For any t ≥ max
{

T̃
l(Z)
cr (Z)|Z cycle of Gct

}

and any i, j, inequality (32)

holds with γ = γ(Gc(A)) and D = Gct the graph defining BCT in Section 3.

A finite sequence of cycles Z1, . . . , Zm in G is called a staircase in G if, for
all 1 ≤ s ≤ m − 1, Zs and Zs+1 share a node, p(Zs)/l(Zs) ≤ p(Zs+1)/l(Zs+1)
and, moreover, the cycle mean of Zs+1 is the greatest among all the cycles
sharing a node with Zs.

Lemma 8.4. Let µ > µct and Z be a cycle in T ct(µ) or µ = µct and Z be a
cycle in Gct(µ) with p(Z)/l(Z) = µ. Then there exists a staircase Z1, . . . , Zm in
T ct(µ) such that Z1 = Z and Zm is critical.
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Proof: Suppose by contradiction that no such staircase exists. Let Z1, . . . , Zm

be a staircase in T ct(µ) such that Z1 = Z and p(Zm)/l(Zm) is maximal.
Denote µ′ = p(Zm)/l(Zm), so µ′ < λ(A). If the s.c.c. of T ct(µ′), in which

Zm lies, contains a cycle of mean weight strictly greater than µ′, then we can
build a staircase with a greater cycle mean of the final cycle, a contradiction.
So that component of T ct(µ′) does not contain a cycle of mean weight strictly
greater than µ′, which is a contradiction to the definition of µct and the fact
that µ′ ≥ µct. Thus we must have µ′ = λ(A). �

Proof:[Proof of Lemma 8.3 and Proposition 6.5 part (ii)]
Let t ≥ maxZ T̃cr(Z) and let W ∈ Wt(i → j) visiting a node of Gct but no

critical node.
Denote by ν(W ) the largest cycle mean of subcycles of W . We assume in the

following that ν(W ) is maximal among all W ∈ Wt(i → j) with p(W ) = a
(t)
ij .

We prove Lemma 8.3 by showing ν(W ) = λ(A). Assume that ν(W ) < λ(A),
and define

D̃ :=

{

Gct if ν(W ) ≤ µct ,

T ct(ν(W )) otherwise .
(39)

By the definition of cycle threshold graphs, Gc(A) ⊆ D̃ ⊆ Gct.
By Lemma 8.4, there exists a staircase Z1, . . . , Zm in D̃ such that Z1 has

p(Z1) = ν(W ) and shares a node with W , and Zm is critical. We induc-
tively define walks W0, . . . ,Wm as follows: Set W0 = W . For 1 ≤ ℓ ≤ m,
let G be the subgraph of D(A) induced by Zℓ. By definition of T̃cr, there is

a walk V ∈ Wt,l(Zℓ)(i
Zℓ−→ j) obtained from Wℓ−1 by removing at least one

cycle and inserting at least one cycle in G (i.e., one copy of Zℓ) such that

l(V ) ≤ T̃
l(Zℓ)
cr (Zℓ) ≤ t. Now define Wℓ as walk V after inserting enough copies

of Zℓ, to have l(Wℓ) = t. Thus Zℓ is a subwalk of Wℓ for all ℓ, and walk Wm

contains a critical node.
We now show that p(Wℓ) ≥ p(Wℓ−1) on each step. For this we will prove by

induction that, on each step, the mean weight of Zℓ+1 is not less than that of
any cycle (and hence closed walk) in Wℓ. The base of induction (ℓ = 0) is due
to the definition of D̃. In general, observe that the cycles in Wℓ are 1)Zℓ and
cycles using the edges of Zℓ, 2) cycles that were already in Wℓ−1. For the latter
cycles we use the inductive assumption, while the cycles using edges of Zℓ share
a common node with it and hence their mean weight does not exceed that of
Zℓ+1 by the definition of staircase.

Setting W̃ = Wm we obtain W̃ ∈ Wt(i
Gc(A)
−−−−→ j) and p(W̃ ) ≥ p(W ), thus

Lemma 8.3 and Proposition 6.5 part (ii) are proved. �
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9. Cycle Removal

9.1. Cycle removal threshold

In this section, we state some bounds on T γ
cr(G) for some subgraphs G

of D(A). Those bounds are achieved by three different methods, one of them is
new. Recall cr(D(A), cd(D(A)) and other parameters (Section 4).

Let us first recall an elementary application of the pigeonhole principle. The
origins of this lemma were briefly discussed by Aigner and Ziegler [1], p. 133. In
the context of max-algebraic matrix powers, it was considered for the first time
by Hartmann and Arguelles [14]. It is in the heart of almost all of our cycle
reductions.

Lemma 9.1. Let a1, . . . , am be integers. Then there exists a nonempty subset
I ⊆ {1, . . . ,m} of indices such that the sum

∑

i∈I ai is a multiple of m.

One of the bounds that we use is in fact proved in [7] (see also [8], Theorem
2). The proof is recalled for the reader’s convenience.

Proposition 9.2. (Lemma 20 of [7]) For any A ∈ R
n×n
max , any node i and any

integer γ, we have:

T γ
cr({i}) ≤ (γ − 1) cr+(γ + 1) cd, (40)

where cd = cd(D(A)) and cr = cr(D(A)).

Proof: Let W be a walk going through i. Write this walk as W = W0 · Z1 ·
· · · · Zm ·Wm where (i) all Zs are nonempty cycles, (ii) node i is a node of the
walk Wr, and (iii) m is maximal. Write also Wr = V0V1 so that i is the end of
V0 and the start of V1. The whole configuration is shown on Figure 2.

If a subset S ⊆ {1, . . . ,m} of indices such that γ divides
∑

s∈S l(Zs) cannot
be chosen, then by Lemma 9.1m < γ−1, and the walksW1, . . . ,Wr−1, V0, V1,Wr+1, . . . ,Wm

are paths (otherwise m is not maximal), which implies that l(W ) ≤ (γ −
1) cr+(γ + 1) cd.

If l(W ) > (γ − 1) cr+(γ + 1) cd, then such a subset of cycles can be chosen,
and a strictly shorter subwalk of the same length modulo γ is obtained by cycle
deletion, hence the claim. �

i

W1 = WrW0

V0 V1

W2 W3

Z1 Z2 Z3

Figure 2: Walk W in the proof of Proposition 9.2 (m = 3 and r = 1).

Proposition 9.2 implies that T
l(Z)
cr (Z) ≤ (l(Z) − 1) cr+(l(Z) + 1) cd and

T
γ(Gc)
cr (Gc) ≤ 2γ(Gc)(n − 1) + γ(Gc) − 1 for any s.c.c. Gc ⊂ Gc(A) but both

bounds can be improved using various methods.
The first bound is improved in Section 9.2, following a method used in [14],

which leads to:
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Proposition 9.3. For A ∈ R
n×n
max , Z a cycle of D(A) and γ a divisor of l(Z),

we have:
T γ
cr(Z) ≤ (n− 1− l(Z) + γ) cr+ cd+l(Z), (41)

where cd = cd(D(A)) and cr = cr(D(A)).

This method also leads to:

Proposition 9.4. For A ∈ R
n×n
max and Z a cycle with length n of D(A), we have

T̃n
cr(Z) ≤ n2 − n+ 1.

The second bound, is improved in Section 9.3 thanks to a new method, which
leads to:

Proposition 9.5. For A ∈ R
n×n
max and G a subgraph of D(A) with n1 nodes, we

have:
∀γ ∈ N, T γ

cr(G) ≤ γn+ n− n1 − 1.

Tables 1 and 2 show the bounds obtained for a critical cycle Z or a s.c.c Gc

of Gc(A). Here the first column contains proposition number, γ = γ(Gc), and
other parameters refer to D(A). Note that l(Z) = n in the case of Proposi-
tion 9.4.

Prop. T
l(Z)
cr (Z)− l(Z) + 1 T̃

l(Z)
cr (Z)

9.2 (l(Z)− 1)(cr−1) + (l(Z) + 1) cd (l(Z)− 1) cr+(l(Z) + 1) cd+1
9.3 (n− 1) cr+ cd+1 n cr+ cd+1
9.4 Wi(n) n2 − n+ 1
9.5 l(Z)(n− 2) + n l(Z)(n− 1) + n

Table 1: Expressions of Proposition 6.5 (with l(Z))

Prop. T
γ(Gc)
cr (Gc)− γ(Gc) + 1

9.2 (γ − 1)(cr−1) + (γ + 1) cd
9.5 γ(n− 1) + n− |Gc|

Table 2: Expressions of Proposition 6.5 (with γ)

Proof:[Proof of Theorems 4.1 and 4.4] Theorems 4.1 and 4.4 are combinations
of the bounds in Tables 1 and 2 with Proposition 6.5. For each s.c.c. Gc of Gc(A),
Table 3 explains which choices of N , γ and proposition to bound T γ

cr(N ) should
be made.

To obtain bounds (15)–(17) we take, for the representing subgraph G in
Proposition 6.5, any collection of critical cycles such that each s.c.c. of Gc(A)
contains exactly one cycle of the collection and each cycle has the minimal length
in the corresponding s.c.c. In the case of (18) and (19), we set G = Gc(A).
Bounds (21) and (22) can be obtained from the last column of Table 3. Note
that (21) is obtained as the minimum of two bounds.
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Bound on T1(A,B) N γ Prop.
(15) Z s.t. l(Z) = g(Gc) l(Z) = g(Gc) 9.4, 9.5
(16) Z s.t. l(Z) = g(Gc) l(Z) = g(Gc) 9.5
(17) i ∈ Z s.t. l(Z) = g(Gc) l(Z) = g(Gc) 9.2
(18) Gc γ(Gc) 9.5
(19) i ∈ Gc γ(Gc) 9.2
(21) Z in staircase or Z critical l(Z) 9.3, 9.5
(22) any i in any Z l(Z) 9.2

Table 3: How to deduce the bounds on T1

The only difficult case is bound (20). Indeed, in the worst case, cycle Z with
length n, we only get T̃n

cr(Z) ≤ n2−n+1 by Proposition 9.4. instead of Wi(n).
Thus, Proposition 6.5 would give T1 ≤ n2−n+1 instead of T1 ≤ Wi(n) and we
have to go into more details. The proof of (20) is thus postponed to the end of
the next subsection. �

9.2. Cycle removal by cycle decomposition

In this section, we present and improve the method of [14] to prove Propo-
sitions 9.3 and 9.4. It will also be used to prove that T1(A,BCT) ≤ Wi(n)
(Equation (20)) at the end of the next subsection. For any set of walks Wα

with α ∈ S for S a subset of natural numbers, let us denote by G(∪α∈SWα) the
subgraph of D(A) consisting of all nodes and edges that belong to some walk
Wα, α ∈ S.

Proof:[Proof of Propositions 9.3 and 9.4]

To any walk W ∈ W(i
Z
−→ j), we apply the following procedure, adapted

from [14].

1. We choose a decomposition of the walk W ∈ W(i → j) into a path P and
a set of cycles Zα for α ∈ S (with S a subset of natural numbers). Note
that P may be empty. If it is, walk W is closed. Then, it has the same
start and end node.
We denote by nW the number of nodes that appear at least once in W
and by cdW the maximum length of an acyclic walk whose edges belong
to W .

2. We take a subset R1 of S with |R1| ≤ n−l(Z) such that G(P ∪Z∪α∈R1
Zα)

is connected and contains all nodes appearing in W . This is possible
because the connection of G(P ∪Z) with all the nodes of W can be ensured
by adding at most n− l(Z) edges of W to P ∪Z, and hence by adding to
it at most n− l(Z) cycles Zα, for α ∈ S.

3. Let R2 be a result of recursively removing from S\R1 sets of indices whose
corresponding cycles have a combined length that is a multiple of γ.
By Lemma 9.1, |R2| ≤ γ − 1. Let R be R1 ∪R2.
Set crW = maxα∈R l(Zα) (circumference of the walk W ).
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4. If G0 = G(P ∪
⋃

α∈R Zα) is connected, then we build a walk V ∈ W(i
Z
−→ j)

by starting from P and successively inserting (in some order) all cycles
Zα with α ∈ R.

5. Otherwise, we build V ∈ W(i
Z
−→ j) by starting from P and successively

inserting (in some order) all cycles Zα with α ∈ R, and Z.

By construction, l(V ) ≡ l(W ) (mod γ) in both cases. Let us bound the
length of W .

If G0 is connected,

l(V ) = l(P ) +
∑

α∈R

l(Zα)

≤ cdW +crW (n− l(Z) + γ − 1) = crW (n− l(Z) + γ − 2) + (cdW +crW )

(42)

If G0 is not connected, we have l(V ) ≤ crW (n− l(Z)+γ−2)+(cdW +crW )+
l(Z).

But there is some α̂ ∈ R such that l(P )+ l(Zα̂) ≤ nW −1, because otherwise
every Zα with α ∈ R would share a node with P . Because |R \ {α̂}| ≤ n −
l(Z) + γ − 2, we have

l(V ) = l(Z) + l(P ) + l(Zα̂) +
∑

α∈R
α6=α̂

l(Zα)

≤ l(Z) + (nW − 1) + (n− l(Z) + γ − 2) crW

(43)

Finally, we have l(V ) ≤ l(Z)+(n−l(Z)+γ−2) crW +min(nW−1, crW +cdW )
ifM0 is not connected, and l(V ) ≤ l(Z)+(n−l(Z)+γ−2) crW +(crW +cdW −l(Z)).

This gives the following

Lemma 9.6. For any cycle Z, any divisor γ of l(Z) and any walk W ∈ W(i
Z
−→

j), there is a walk V ∈ W(i
Z
−→ j) with length at most l(Z) + (n − l(Z) + γ −

2) crW +max(min(nW −1, crW +cdW ), crW +cdW −l(Z)) obtained by removing
cycles from W and possibly inserting Z such that l(V ) ≡ l(W ) (mod γ).

Moreover, if no copy of Z is inserted then l(V ) ≤ crW (n−l(Z)+γ−1)+cdW

Using that crW ≤ cr(D(A)) and cdW ≤ cd(D(A)), we get Proposition 9.3.

When l(Z) = γ = n, R1 is empty and the cycles in R2 have length at
most n−1 (otherwise they would be removed). So we use (42) with crW ≤ n−1,
and we obtain l(V ) ≤ (n− 1)(n− 1) + n− 1 = n2 − n. Hence Tn

cr(Z) ≤ n2 − n
and T̃cr(Z) ≤ n2 − n+ 1. Proposition 9.4 is proved. �

9.3. Cycle removal by arithmetic method

In this section, we present a new method to bound Tcr leading to Proposi-
tion 9.5.

We begin with:
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Lemma 9.7. Let γ ∈ N and let W ∈ W(i → j). Then there exists a walk
W ′ ∈ W(i → j) obtained from W by removing cycles such that l(W ′) ≡ l(W )
(mod γ) and each node appears at most γ times in W ′.

Proof: Consider W as a sequence of adjacent nodes (i0, · · · , iL), where L is
the length of the walk.

If a given node appears twice, first as ia and then as ib and if a ≡ b (mod γ),
then the subwalk (i0, · · · , ia, ib+1, · · · , iL) is strictly shorter than W and has the
same length modulo γ.

Iterating this process, we get a sequence of subwalks of W . Since the se-
quence of length is strictly decreasing, the sequence is finite and we denote the
last walk by W ′.

Obviously, l(W ′) ≡ l(W ) (mod γ) and a node does appear twice as ia and
ib only if a 6≡ b (mod γ), so the pigeonhole principle implies that it appears at
most γ times (otherwise there would exist ia and ib with a ≡ b (mod γ)). �

Proof:[Proof of Proposition 9.5] We take W ∈ W(i
G
−→ j) and construct a

subwalk V with length at most γn+ n− n1 − 1 by the following steps.
1. Find the first occurrence of a node of G in W , and denote this node by k.

Let W1 be the subwalk of W connecting i to k, and let W2 be the remaining
subwalk. So we have

W1 ∈ W(i → k), W2 ∈ W(k → j), l(W1) + l(W2) = l(W ) (44)

2. As long as there is a node ℓ that appears twice in W1 and at least once
in W2, we can write W1 = U1 · U2 · U3 and W2 = V1 · V2, where U1, U2, V1 end
with ℓ and U2, U3, V2 start with ℓ. Thus, we can replace W1 by U1 · U3 and W2

by V1 · U2 · V2. Equation (44) still holds, but now i appears only once in W1.
Step 2 is over when all nodes that appear more than once in W1 do not appear
in W2. Let us denote the resulting walks by W3 and W4 respectively.

3. Apply Lemma 9.7 to W3 and W4, obtaining W ′
1 and W ′

2 respectively.
4. Set V = W ′

1 ·W
′
2.

Obviously, l(V ) ≡ l(W1) + l(W2) ≡ l(W ) (mod γ).
Now we take a node of V and bound the number of its appearances.

(1) If it is a node of G \{k}, then it appears only in W ′
2, thus at most γ times.

k appears once in W ′
1, as ending node, and at most γ times in W ′

2. In the
concatenation of the walks, one occurrence disappears, so all nodes of G
appear at most γ times.

(2) If it is a node of W ′
2, then it is also a node of W4, it appears at most once

in W3, thus also in W ′
1. Therefore it appears at most γ + 1 times in V .

(3) If it is not a node of W ′
2, then it appears only in W ′

1, thus at most γ times.

The total number of appearances of all nodes in V is at most (γ + 1)(n −
n1)+ γn1 = γn+(n−n1), so l(V ) is bounded by γn+(n−n1 − 1), as claimed.
�
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Proof:[Proof of Bound (20)] To prove bound (20), we apply Lemma 8.1 as
before and the difficulty only comes from Lemma 8.3 that is not good enough.

To prove that inequality (32) holds with t ≥ Wi(n) and D = Gct, we do as in
the proof of Proposition 6.5: we remove cycles from a walk W to replace them
by cycles with greater weight, following the staircase given by Lemma 8.4. In
this process, the walks to reduce have no critical node.

We apply Lemma 9.6 with γ = l(Z) and we obtain

l(V ) ≤ (n− 2) crW +l(Z) + max(nW − 1, crW +cdW −l(Z))

≤ nW − 1 + n = (n− 1)nW + n− 1.

Since W has no critical node, nW ≤ n − 1, and this bound is less than Wi(n)
except when nW = n− 1.

But in this last case one has a critical loop on the only critical node and the
rest of the nodes are in W . Let Z be the penultimate cycle of the staircase,
it shares nodes with W and contains the unique critical node. The weight
of this cycle is greater than or equal to that of all cycles in W . Applying
Proposition 9.5 with G = Z and γ = 1, it is possible to reduce the walk to
a length at most 2n − l(Z) − 1, insert Z and then as many critical loops as
necessary to get back to a walk with length t.

This is possible if t ≥ 2n−1. Thus, Equation (20) holds true for any n. �

10. Proof of Theorems 4.5 and 4.6

Theorem 4.5 follows from the bounds on Tcr together with the following
proposition.

Proposition 10.1. Let A be an irreducible matrix, G be a representing subgraph
of Gc(A) with cyclicity γ and B be subordinate to A such that λ(B) 6= 0. Then

T2(A,B) ≤
T γ
cr(G)(λ(A)−minkl akl) + (maxkl bkl − λ(B)) cd(D(B))

λ(A)− λ(B)
.

If moreover A has only finite entries, then equations (26) and (27) hold.

We begin with the following lemmas.

Lemma 10.2. Let A ∈ R
n×n
max be an irreducible matrix, and C, S,R be defined

relative to any completely reducible G ⊆ Gc(A). For any B subordinate to A and

any t, if b
(t)
ij is finite, then (CStR)ij is finite too.

Proof: If b
(t)
ij is finite, so is a

(t)
ij , By the optimal walk interpretation (6), there

is a walk W connecting i to j, of length t, such that p(W ) = a
(t)
ij . As A is

irreducible, there is a closed walk V containing i and a node k of G. If γ is the

cyclicity of G then V γW ∈ Wt,γ(i
G
−→ j), and (CStR)ij 6= 0 by (30). �
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Lemma 10.3. For any B ∈ R
n×n
max and any t ∈ N, let B̃ be B− λ(B), we have:

Bt ≤ tλ(B)⊗ B̃∗ and b̃∗ij ≤ cd(D(B))

(

max
kl

bkl − λ(B)

)

≤ (nB − 1)‖B‖

If B has only finite entries, then b̃∗ij ≤ (λ(B)−minkl bkl).

Proof: The first part of the claim immediately follows from the optimal walk
interpretation (6) and (8).

For the second part, observe that b̃∗ij is equal to p(W )− λ(B)l(W ) for some
walk W connecting i to j in B. As bji 6= 0 we have p(W ) ≤ λ(B)(l(W )+1)−bji,

hence b̃∗ij ≤ λ(B)− bji and the second part of the claim. �

Lemma 10.4. Let A ∈ R
n×n
max be a matrix with λ(A) = 1, C, S,R be defined

relatively to Gc(A), let G be a representing subgraph of Gc(A) and γ be a multiple
of the cyclicity of G.

For any t ∈ N, the finite entries of CStR satisfy

(CStR)ij ≥ T γ
cr(G)min

kl
akl (45)

If A has only finite entries, then for all i, j we have:

(CStR)ij ≥ 2min
ij

aij (46)

(CStR)ij ≥ 2min
ij

aij + b̃∗ij + cdB λ(B) (47)

(CStRv)i ≥ min
ij

aij +min
j

vj (48)

Before proving this lemma, let us state another one to use for the matrices
with finite entries.

Lemma 10.5. Let A be a matrix with λ(A) = 1, then for any integer m there
is a walk W0 with length m and nonnegative weight on D(A).

Proof: Let Z be a critical cycle of A. Since l(Zm) = l(Z)m, there are
walksW1, · · · ,Wl(Z) of lengthm such thatW1 · · ·Wl(Z) = Zm. Since

∑

l p(Wl) =
p(Z)t = 0, there is a Wk with nonnegative p(Wk). �

Proof:[Proof of Lemma 10.4] We first show inequality (45). By the optimal

walk interpretation (30) we have (CStR)ij = max{p(W ) : W ∈ Wt,γ(i
G
−→ j)}

for any walkW . If (CStR)ij is finite then the walk setWt,γ(i
G
−→ j) is non-empty

and contains a walk with the length bounded by T γ
cr(G), hence (45).

To prove inequality (46), let us assume that A has only finite entries, and
that t ≥ 2 + n (using that the sequence {CStR}t≥1 is periodic).

Apply Lemma 10.5 with m = t− 2 and set W = (i, r) ·W0 · (s, j), where r,
resp. s, are the beginning node, resp. the end node of W0. By the optimal walk
interpretation (30), we get (CStR)ij ≥ p(W ) ≥ air + asj ≥ 2minkl akl.
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The inequalities (47) and (48) are proved similarly. For (47), select a walk V
with minimal length among those with weight b̃∗ij on D(B̃) and a walk W0 with
nonnegative p(W0) and length t − l(V ) − 2. Set W = (i, r) ·W0 · (s, i) · V and
get

(CStR)ij ≥ p(W ) ≥ air + asi + p(V ) ≥ 2min
kℓ

akℓ + b̃∗kℓ + λ(B) cdB .

For (48), select a walk W0 with nonnegative p(W0) and length t− 1 and set
W = (i, r) ·Wk (where r is the beginning node of W0). �

Proof:[Proof of Proposition 10.1 and Theorem 4.5] Assume that λ(A) = 0 and
t is greater than one of the bounds. We want to prove that equation

tλ(A)⊗ (CStR)ij ≥ tλ(B)⊗ b̃
(t)
ij (49)

holds for all i, j.
By Lemma 10.2, if (CStR)ij = 0 then b̃tij = 0 and there is nothing to

prove. So we can assume that (CStR)ij is finite, in which case we can use the
inequalities of Lemmas 10.4 and 10.3, which show that (49) follows when we
have

tλ(A) + T γ
cr(G)

(

min
kl

akl − λ(A)

)

≥ tλ(B) + cd(D(B))(max
kl

bkl − λ(B)),

tλ(A) + 2(min
kl

akl − λ(A)) ≥ tλ(B) + (λ(B)−min
kl

bkl),
(50)

in the general case (the first inequality) and in the case of finite entries (the
second inequality). If t is greater than one of the required bounds, then one of
the inequalities (50) holds, and (49) follows.

To obtain Theorem 4.5 it remains to deduce the shorter parts of (23)-(25)
from the longer ones. Observe that all the longer parts of the bounds are of the
form

n1(λ(A)− aij) + cdB(akl − λ(B))

λ(A)− λ(B)
(51)

for some i, j, k, l, where n1 is greater than cdB . Using n1 > cdB , expression (51)
can be bounded by

(n1 − cdB)(λ(A)− aij) + cdB(akl − aij + λ(A)− λ(B))

λ(A)− λ(B)

≤
(n1 − cdB)‖A‖+ cdB(‖A‖+ λ(A)− λ(B))

λ(A)− λ(B)
= n1

‖A‖

(λ(A)− λ(B)
+ cd(D(B)).

This completes the proof of all the bounds of Theorem 4.5. �

It remains to prove Theorem 4.6. We do it by generalizing the proof of [8,
Proposition 5].

Proof:[Proof of Theorem 4.6] The case λ(A) = 0 is trivial. In the rest of the
prove, we assume λ(A) = 1 by replacing A with λ(A)− ⊗A.
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We denote by ∆ and δ the greatest and smallest edge weight in D(A), re-
spectively. We have ‖A‖ = ∆ − δ. If ∆ = δ, then Gc(A) = D(A) and hence
Bt ≤ At ≤ CStR by the optimal walks interpretations (6) and (30).

We hence assume ∆ 6= δ in the rest of the proof. The assumption λ(A) = 0
implies δ ≤ λ(B) ≤ 0 ≤ ∆.

Denote by vmax and vmin the greatest and smallest entry of v, respectively.
It is ‖v‖ = vmax − vmin.

Let t ≥ (‖v‖+ (n− 1)‖A‖)/(−λ(B)). We show CStRv ≥ Btv.
Let i be a node of D(A). Let V be a walk in D(B) of length t starting at i,

and let Ṽ be the remaining walk after repeated cycle deletion. Let W2 be a
shortest path connecting some node k′ of Ṽ to a critical node k and let W1 be
the prefix of Ṽ ending at k′ and let Ṽ = W1 ·W

′
1. See Figure 3 for an illustration

of these walks. We obtain

p(V ) ≤ p(Ṽ ) + λ(B) ·
(
t− l(Ṽ )

)
≤ p(W1 ·W

′
1)− δ · l(W1 ·W

′
1) + λ(B) · t

≤ p(W1) + ‖A‖ · l(W ′
1)− δ · l(W1)− ‖v‖ − ‖A‖ · (n− 1),

(52)

using that λ(B)t ≤ −(||v||+ ||A||(n− 1)).
Let Z be a critical cycle starting at k and set r =

⌊(
t− l(W1 ·W2)

)
/l(Z)

⌋
.

Then let W3 be the prefix of Z of length t− l(W1 ·W2 ·Z
r), which is between 0

and l(Z)− 1. Setting W = W1 ·W2 · Z
r ·W3, we have

p(W ) ≥ p(W1 ·W2 ·W3) ≥ p(W1) + δ · l(W2 ·W3) (53)

and hence, because l(W1) + l(W2) + l(W3) + l(W ′
1) ≤ n− 1,

p(V ) ≤ p(W1)− ‖A‖ ·
(
l(W1) + l(W2) + l(W3)

)
− δ · l(W1)− ‖v‖ (54)

≤ p(W1) + δ · l(W2 ·W3)− ‖v‖ ≤ p(W )− ‖v‖ . (55)

Since p(W ) + vmin ≤ (CStRv)i by the walk interpretation (30) of CSR terms,
we have (CStRv)i ≥ (Btv)i, which concludes the proof.

The claim for the case that all entries of A are finite follows from Lem-
mas 10.3 and 10.4. �

11. Cycle Insertion

In this section, we state some bounds on epγ .
The exploration penalty has been introduced in [8], where the following is

proven.

Proposition 11.1 (Theorem 3 of [8]). Let G be a strongly connected graph
with cyclicity γ and girth g. Its exploration penalty epγ satisfies:

epγ ≤ 2
g

γ
|G| −

g

γ
− 2 g+γ

Since epγ(G) is bounded by ind(G), it is also possible to use the following
bounds.
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W1
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W ′
1

Figure 3: Walks Ṽ = W1W
′

1
and W = W1W2Z

rW3 in proof of Theorem 4.6.

Proposition 11.2. Let G be a strongly connected graph. Its index ind(G) is
related to its girth g and its cyclicity γ by the following inequalities:

(i) ind(G) ≤ Wi(|G|), where Wi(1) = 0 and Wi(r) = (r − 1)2 + 1 otherwise.

(ii) ind(G) ≤ γWi(r) + s, where r is the quotient of the division of |G| by γ
and s its remainder.

(iii) ind(G) ≤ |G|+ (|G| − 2) g

Bound (i) can be traced back to a work of Wielandt [28]. Bound (ii) is due
to Schwarz [22], but a more comprehensive explanation was given by Shao and
Li [16]. Bound (iii) was originally proved by Dulmage and Mendelsohn [11]
for primitive matrices but the case of a non-primitive matrix also follows (for
instance) from Theorem 4.1 by Remark 4.2. Other bounds on ind(D) can be
also found in the literature.

As noticed by Kim [17], the same method as in the proof of (11.2) by Shao
and Li [16] applied to (11.2) instead of (11.2) gives:

ind(G) ≤ γr + (r − 2) g+s ≤ |G|(1 +
g

γ
)− 2 g .

Bouillard and Gaujal [4] implicitly derive from (11.2) the following:

Proposition 11.3. If Gc(A) has nc nodes, h s.c.c.’s and maximal girth ĝ, then
any s.c.c. Gc of Gc(A) satisfies epγ(G

c)(Gc) ≤ nc + (nc − 2h)ĝ.

Indeed, if the s.c.c. Gc
l of Gc(A) has nl nodes, for any node i in Gc

l , we have

epγ(G
c

l
)(i) ≤ ind(Gc

l ) ≤
h∑

l=1

ind(Gc
l ) ≤

h∑

l=1

(ni + (ni − 2)ĝ) ≤ nc + (nc − 2h)ĝ.

Together with this bound, Equation (18) generalizes and improves the bound
of [4].
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12. Local Reductions

Every weak CSR expansion gives rise to local weak CSR expansions that can
take the following forms:

a
(t)
ij = (CStR)ij ⊕ b

(t)
ij , for t ≥ τ̃(i, j),

a
(t)
ij = (CSlR)ij ⊕ b

(t)
ij , for t ≡ l(mod γ) and t ≥ τ̃(i, j, l),

(Atv)i = (CSlRv)i ⊕ (Btv)i, for t ≥ τ̃(i, v),

(Atv)i = (CSlRv)i ⊕ (Btv)i, for t ≡ l(mod γ) and t ≥ τ̃(i, l, v),

(56)

In connection with these schemes, define the following subsets:

J(i, j) := {s : a∗isa
∗
sj < min

l
(CSlR)ij},

J(i, j, l) := {s : a∗isa
∗
sj < (CSlR)ij},

J(i, v) := {s :
⊕

j

a∗isa
∗
sjvj < min

l
(CSlRv)i}

J(i, l, v) := {s :
⊕

j

a∗isa
∗
sjvj < (CSlRv)i}

(57)

Remark 12.1. Unless i = s = j, a∗isa
∗
sj is the biggest weight of a walk connect-

ing i to j via s. It follows from Theorem 6.1 and this optimal walk interpretation
that i, j /∈ J(i, j), J(i, j, l) and i /∈ J(i, v), J(i, l, v). Moreover, if some critical s
belongs to one of the sets defined here, then all its s.c.c. in Gc(A) does, since
for each pair of nodes in the same s.c.c. of Gc(A) we can find a closed walk in
Gc(A) containing both of them.

Note that i, j /∈ J(i, j), J(i, j, l) and i /∈ J(i, v), J(i, l, v), by the optimal
walk interpretation (8) of A∗ and CSR terms (30).

Now let G̃c(A) be the remainder of the critical graph, without the s.c.c. with
indices in J , for J = J(i, j), J(i, j, l), J(i, v) or J(i, l, v).

Redefine C̃, S̃ and R̃ using G̃c(A) instead of Gc(A), and the subordinate
matrix’ Ã of A where all rows and columns with indices in J are canceled,
instead of A. Redefine B̃ as a subordinate of Ã whose indices are in D(B) (but
not in J). This procedure will be referred to as local reduction of a weak CSR
expansion. When J = J(i, j), or resp. J = J(i, j, l), J = J(i, v) or J = J(i, v, l),
this will be called i, j-reduction, or resp. i, j, l-reduction, i, v-reduction or i, l, v-
reduction.

Theorem 12.2. Let A ∈ R
n×n
max , B subordinate to A and the integer numbers

τ̃(i, j), τ̃(i, j, l), τ̃(i, v) and τ̃(i, l, v), for i, j ∈ {1, . . . , n} and v ∈ R
n
max, sat-
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isfy (56). Corresponding to the definitions of J given in (57), we have

a
(t)
ij = (C̃S̃tR̃)ij ⊕ b̃

(t)
ij , for t ≥ τ̃(i, j),

a
(t)
ij = (C̃S̃lR̃)ij ⊕ b̃

(t)
ij , for t ≡ l(mod γ) and t ≥ τ̃(i, j, l),

(Atv)i = (C̃S̃lR̃v)i ⊕ (B̃tv)i, for t ≥ τ̃(i, v),

(Atv)i = (C̃S̃lR̃v)i ⊕ (B̃tv)i, for t ≡ l(mod γ) and t ≥ τ̃(i, l, v),

(58)

with C̃, S̃, R̃ and B̃ defined in the local reduction procedure.

Proof: We prove the theorem only in the case of i, j-reduction, i.e., in the
first case of (58) corresponding to the first case of (56) and (57). The rest is
analogous. Let NB , resp. Nc be the set of nodes of D(B), resp. Gc(A).

Define the subordinate matrix A′ of A formed by setting to 0 all rows and
columns with indices in J(i, j)∩NB . We first show that the first equation of (56)

for a
(t)
ij holds also with CSR terms and B defined from A′ instead of A. First,

recall that the weights of walks going through s ∈ J(i, j) ∩ NB are less than
minl(CSlR)ij , and (CSlR)ij is the greatest weight of any walk with certain
length constraint, connecting i to j via a critical node. Defining (CSlR)ij
from A′ amounts to canceling all walks going through s ∈ J(i, j) ∩ NB and
contributing to (CSlR)ij . Since such walks have low weight, (CSlR)ij does
not decrease, for any l, when defined from the subordinate matrix A′, so it is
exactly the same. Next, observe that (since the weights of walks going through

s ∈ J(i, j) ∩ NB are less than minl(CSlR)ij) we can replace b
(t)
ij by b̃

(t)
ij in the

first equation of (56).
We next show that the CSR term defined from A′ can be reduced. Use expan-

sion (31) of the CSR terms defined from A′, where the first terms in (31) are de-
fined from the components of Gc(A) with indices in J(i, j) (these components can

be taken in any order). The sum of these terms expresses p(Wt(i
J(i,j)∩Nc

−−−−−−→ j))
(with walk sets defined in D(A′)) for all large enough t. Since these walk weights
are strictly less than the entries of CSR, all those terms in expansion (31) with
indices in J(i, j) can be canceled. The remaining part of expansion (for the en-
try i, j) sums up to the reduced CSR term defined from the subordinate matrix
Ã (as defined in the reduction procedure). �

Notice that the proofs of the Theorems 4.5 and 4.6 in Section 10 work with
walks in Wt(i → j). Hence the corresponding bounds can be combined with all
reductions of Theorem 12.2. In particular, local reductions may lead to smaller
B and λ(B) when i and j or i and v are fixed. Moreover, they can also result in
decrease of the initial bounds on τ̃ based on the cycle removal threshold, since
some of the critical components get removed.

We now also recall a bound of a type that can be found in Akian, Gaubert
and Walsh [2], and Bouillard and Gaujal [4], formulated here for the case of
(i, j, l)-reduction.
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Proposition 12.3. Suppose that A ∈ R
n×n
max is irreducible, with λ(A) = 1, and

take i, j ∈ {1, . . . , n} and l > 0. Let γ be the cyclicity of Gc(A), and let τ̃(i, j, l)
be an integer such that

a
(t)
ij = (C̃S̃lR̃)ij ⊕ b̃

(t)
ij , t ≡ l(mod γ), t ≥ τ̃(i, j, l) , (59)

where the terms C̃, S̃, R̃ and matrix B̃ are obtained by the i, j, l-reduction of
some weak CSR expansion. Let

T (i, j, l) = min
{

t : λ⊗t(B̃)⊗ (λ−(B̃)⊗ B̃)∗ij ≤ (C̃S̃lR̃)ij

}

. (60)

Then the transient τ(i, j, l) for which

a
(t)
ij = (C̃S̃lR̃)ij , t ≡ l(mod γ), t ≥ τ(i, j, l) , (61)

satisfies τ(i, j, l) ≤ max(τ̃(i, j, l), T (i, j, l)).

Proof: We only need to show that b̃
(t)
ij ≤ λ⊗t(B̃)⊗(λ−(B̃)⊗ B̃)∗ij . Indeed, this

follows after dividing both parts of this inequality (in max-plus sense) by λ⊗t(B̃)
and using the optimal walk interpretation of (λ−(B̃)⊗ B̃)t and (λ−(B̃)⊗ B̃)∗.
�
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