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The well-known Fuzzy C-Means (FCM) algorithm for data clustering has been extended to Evidential

C-Means (ECM) algorithm in order to work in the belief functions framework with credal partitions of

the data. Depending on data clustering problems, some barycenters of clusters given by ECM can become

very close to each other in some cases, and this can cause serious troubles in the performance of ECM for

the data clustering. To circumvent this problem, we introduce the notion of imprecise cluster in this

paper. The principle of our approach is to consider that objects lying in the middle of specific classes

(clusters) barycenters must be committed with equal belief to each specific cluster instead of belonging

to an imprecise meta-cluster as done classically in ECM algorithm. Outliers object far away of the centers

of two (or more) specific clusters that are hard to be distinguished, will be committed to the imprecise

cluster (a disjunctive meta-cluster) composed by these specific clusters. The new Belief C-Means

(BCM) algorithm proposed in this paper follows this very simple principle. In BCM, the mass of belief

of specific cluster for each object is computed according to distance between object and the center of

the cluster it may belong to. The distances between object and centers of the specific clusters and the dis-

tances among these centers will be both taken into account in the determination of the mass of belief of

the meta-cluster. We do not use the barycenter of the meta-cluster in BCM algorithm contrariwise to

what is done with ECM. In this paper we also present several examples to illustrate the interest of

BCM, and to show its main differences with respect to clustering techniques based on FCM and ECM.

1. Introduction

In the data clustering analysis, the credal partition based on the

belief functions theory has been introduced recently in (Denœux

and Masson, 2003, 2004; Masson and Denœux, 2004, 2008). The

credal partition is a general extension of the fuzzy (probabilistic)

(Bezdek, 1981, 2000), possibilistic partition (Krishnapuram and

Keller, 1996) and hard partition (Lloyd, 1982), and it allows the ob-

ject not only to belong to single clusters, but also to belong to any

subsets of the frame of discernmentX = {w1, . . . ,wc} by allocating a

mass of belief of each object to all elements of the power-set of X

denoted 2X. So the credal partitioning provides more refined parti-

tioning results than the other partitioning techniques. This makes

it very appealing for solving data clustering problems in practice.

The evidential clustering (EVCLUS) algorithm (Denœux and

Masson, 2004) for relational data and the Evidential C-Means

(ECM) (Masson and Denœux, 2008) for object data have been pro-

posed originally by Denœux and Masson for the credal partitioning

of data. In this paper, we focus on the problem of computing a cre-

dal partition from object data as in ECM context but using a differ-

ent approach. ECM (Masson and Denœux, 2008) has been inspired

from the Fuzzy C-Means (FCM) (Bezdek, 1981) and Dave’s Noise-

Clustering algorithm (Dave, 1991), and it can been seen as a direct

extension of FCM in the belief functions framework. The mass of

belief for each object is computed based on the distance between

the object and the barycenters of focal elements that are subsets

of X. The focal element composed by more than one singleton ele-

ment of X is called an imprecise element and its corresponding

cluster is called a meta-cluster. The cluster associated with a sin-

gleton element (a single class) is called a specific cluster (or a pre-

cise cluster). In ECM algorithm, the barycenter of a meta-cluster is

obtained in averaging the centers of the specific clusters involved

in the meta-cluster it is related with. It implies that the objects

lying in the middle of the several specific clusters will be consid-

ered to belong to the meta-cluster represented by the union (dis-

junction) of these specific clusters. This way of processing is

questionable because it can happen that the centers of different
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clusters are very close, and eventually that the centers overlap

with each other, which is not efficient of course for data clustering

with ECM. Thus, there is a serious difficulty for clustering the ob-

jects close to these similar/overlapped centers of meta-cluster

and specific clusters.

For example, let’s consider a set of data to be classified in three

distinct classes X = {w1,w2,w3} with the prototypes1 v1,v2 and v3.

In ECM, the center of the cluster w1 [ w3 is given by v1;3 ¼
v1þv3

2
,

and the ‘‘ignorance center’’ is vX ¼
v1þv2þv3

3
. However, if the centers

of v2, v1,3 and vX are very close to each other, mathematically repre-

sented by v2 �
v1þv3

2
, then v2 �

v1þv3
2
� v1þv2þv3

3
, the classification re-

sults about w2, w1 [ w3 and X will be difficult to be distinguished.

Particularly, the data close to these centers can possibly be associ-

ated with the distinct cluster w2, or with w1 [ w3, or with X by

ECM, and this seems not very reasonable.

In the new Belief C-Means (BCM) algorithm that we propose in

this paper, the mass of belief of the specific cluster for each object

is computed from the distance between the object and the center

of the cluster, and the mass of belief of a meta-cluster is computed

both from the distances between object and prototypes of the in-

volved specific clusters, and the distances among these prototypes.

In BCM, there is noneed to compute thebarycenter of themeta-clus-

ters. At the end of this paper,we give some simple examples to show

the interest of BCM with respect to FCM and ECM approaches.

2. Basics of Evidential C-Means (ECM)

ECM is a direct extension of FCM and it is based on a general

model of partitioning called credal partitioning that refers to the

framework of belief functions. The class membership of an object

xi ¼ ðxi1 ; . . . ; xip Þ is represented by a bba mi(.) over a given frame

of discernment X = {w1, . . . ,wc}, where jXj = c is known. pP 1 is

the dimension of the attribute vector xi associated with the ith ob-

ject. This representation is able to model all situations ranging

from complete ignorance to full certainty concerning the class of

xi. In ECM, the mass of belief for associating the object xi with an

element Aj of 2
X denoted by mij ,mxi ðAjÞ, is determined from the

distance dij between xi and the prototype vector �vj of the element

Aj. Note that Aj can either be a single class, an union of single clas-

ses, or the whole frame X. The prototype vector �vj of Aj, is defined

as the mean vector of the prototype attribute vectors of the single-

tons of X included in Aj. �vj is defined mathematically by

�vj ¼
1

cj

X

c

i¼1

skjvk with skj ¼
1; if wk 2 Aj;

0; otherwise;

�

ð1Þ

where vk is the prototype attribute vector of (i.e. the center of the

single cluster associated with) the single class wk, and cj = jAjj de-

notes the cardinality of Aj, and dij is defined by:

dij ¼ kxi � �vjk
2; ð2Þ

where kzk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z21 þ z22 þ � � � þ z2n

q

denotes the Euclidean norm of a n-

dimensional vector.

In ECM, the determination of mij, ¼ mxi ðAjÞ from dij is done in

such a way that mij is low (resp. high) when dij is high (resp.

low). Actually, mij is obtained by the minimization of the following

objective function under a constraint to obtain the best credal par-

titioning problem (see Masson and Denœux, 2008 for justifications

and details):

JECM ¼
X

n

i¼1

X

Aj #X;Aj–;

caj m
b

ijd
2
ij þ

X

n

i¼1

d2mb

i;: ð3Þ

Because mij must be a basic belief assignment, the following con-

straint must be satisfied for any object xi
X

Aj #X;Aj–;

mij þmi; ¼ 1 ð4Þ

The solution of the minimization of (3) under the constraint (4)

has been established by Masson and Denœux (2008) and it is given

for each object xi, (i = 1,2, . . . ,n) by:

� For all Aj # X and Aj – ;,

mij ¼
c�a=ðb�1Þj d

�2=ðb�1Þ
ij

P

Ak–;
c�a=ðb�1Þk d

�2=ðb�1Þ
ik þ d�2=ðb�1Þ

; ð5Þ

where a is a tuning parameter allowing to control the degree of

penalization; b is a weighting exponent (its suggested default value

in (Masson and Denœux, 2008) is b = 2); d is a given threshold tun-

ing parameter for the filtering of the outliers; cj = jAjj is a weighting

coefficient for penalizing the subsets with high cardinality.

� For Aj = ;,

mi; ,mxi ð;Þ ¼ 1�
X

Aj–;

mij: ð6Þ

The centers of the class are given by the rows of the matrix Vc�p

V c�p ¼ H�1c�c:Bc�p; ð7Þ

where the elements Blq of Bc�p matrix for l = 1,2, . . . ,c, q = 1,2, . . . ,p,

and the elements Hlk of Hc�c matrix for l, k = 1,2, . . . ,c are given by:

Blq ¼
X

n

i¼1

xiq
X

wl2Aj

ca�1j mb

ij; ð8Þ

Hlk ¼
X

n

i¼1

X

fwk ;wlg#Aj

ca�2j mb

ij: ð9Þ

3. Belief C-Means (BCM) approach

3.1. Basic principle of BCM

In ECM, the prototype vector (i.e. the center) of an imprecise

(i.e. a meta) cluster is obtained by averaging the prototype vectors

of the specific clusters included in it, as shown in (1). ECM method

is of course relatively easy to apply, but it yields to serious prob-

lems in some difficult cases of data clustering where the prototype

vectors of the specific clusters overlap with the meta-clusters. This

problem will cause troubles in the association of an object with a

particular specific cluster or the meta-cluster the object may also

belong to. That is why a better approach must be developed to cir-

cumvent this problem. This is the purpose of our BCM algorithm.

In BCM approach, we consider that when a data belongs to a

meta-cluster (i.e. to an imprecise class corresponding to the dis-

junction of several single classes), this means that the prototypes

of the single classes in the meta-cluster are quite difficult to be dis-

tinguished (discerned) from the object under analysis. More

clearly, if the prototype vectors of the classes included in a given

meta-cluster are close to each other and in the meantime they

are far from the object attribute vector, then it seems more reason-

able and natural to commit this object rather to the meta-cluster,

than to each of these specific classes as if they were considered

separately.

To illustrate this very reasonable BCM principle, let’s consider

only two objects x1 and x2 and three possible centers of clusters

(prototypes) v1, v2 and v3 corresponding to the classes w1, w2

and w3 as shown in Fig. 1.

1 A prototype is a typical attribute vector characterizing a class. Usually the

prototype is chosen as the center of the given class under consideration.
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Let’s explain the main differences between the different ap-

proaches from this simple figure:

� In the FCM approach, the objects x1 and x2 are considered with

equal membership for classes w2 and w3 because x1 is at the

same distance with respect to v2 and to v3, and because x2 is

also at the same distance with respect to v2 and to v3, even if

the distance of x2 to v2 (resp. to v3) is much bigger than the dis-

tance of x1 to v2 (resp. to v3).

� In ECM approach, x1 will likely be committed to the meta-clus-

ter w2 [ w3 because it is in the middle of the centers (proto-

types) of w2 and w3, whereas x2 will likely be committed to

the separate classes w2 and w3 with same mass of belief or

the meta-cluster w2 [ w3 depending on the tuning of the

parameter a in ECM.

� In BCM approach and contrariwise to ECM, we consider that v2
and v3 are clearly distinct from the object x1 position, and there-

fore the object x1 should better be committed with equal

masses of belief to the separate classes w2 and w3 rather than

to the meta-cluster w2 [ w3. Conversely, the prototypes v2 and

v3 are more difficult2 to be discerned from the object x2, since

the distance between x2 and v2 or v3 is much larger than the dis-

tance between v2 and v3. Moreover, the object x2 is farther to the

prototype v1 than to prototypes v2 and v3. So, it seems reasonable

for the object x2 to commit more mass of belief to the meta-clus-

ter w2 [ w3 than separately to classes w2 and w3 in such condi-

tions. So we see that the principle of BCM is in opposition with

ECM principle for determining the basic belief assignments and

to find the credal partition of objects with specific clusters, or

meta-clusters.

In summary, in BCM the mass of belief committed to a singleton

class for an object will depend on the distance between the object

and the center of the specific cluster of the class, whereas the mass

of belief committed to a meta-cluster will depend on the distances

between the object and the prototypes of the specific clusters

belonging to the meta-cluster, as well as on the distances between

these prototypes.

3.2. The BCM algorithm

Let’s present here the BCM approach in a general context. We

consider a set of nP 1 objects. Each object #i (called also a data

point) is represented by a given attribute vector xi of dimension

pP 1. These objects must be classified into kP 2 classes over a gi-

ven frame X = {w1,w2, . . . ,wk} with the corresponding centers

{v1,v2, . . . ,vk}. Each center vk corresponds actually to the prototype

of the class wk. Like in FCM and ECM approaches, in BCM approach

themass of belief (bba)mxi ðwjÞ of xi committed to the classwj, is as-

sumed to increase with the decrease of the distance dxivj
between xi

and the center vj. The smaller dxivj
leads to the biggermxi ðwjÞ. If the

object xi is closer
3 to the centers vj,vj+1, . . . ,vt for some j, t < k, and in

the meanwhile the distances dvjvjþ1
; . . . ; dvjvt ; . . . ;dvt�1vt between the

centers of the clusters is smaller,4 then the value committed to

mxi ðwj [wjþ1 . . . [wtÞ by BCM will naturally increase. In BCM ap-

proach, we propose to compute mxi ðwj [wjþ1 [ . . .wtÞ as the simple

average of the distances dxivj ; . . . ; dxivt and dvjvjþ1; . . . ;dvjvt
;

. . . ;dvt�1vt
. If some fewobjects (data points) are far fromall the centers

of clusters, they will be considered as outliers and committed to ; (or

to an extra class if one prefers).

It is clear that we use here in our BCM approach a simple aver-

age principle to keep algorithm as simple as possible, but more ad-

vanced techniques methods to compute bba committed to partial

ignorance from fdxivj
g and fdvlvpg could be used instead, but the

optimization problem will appear much harder to solve. Advanced

methods to compute bba is out of the scope of this paper and they

will be investigated in future research works. In our BCM approach,

the objective function JBCM that we propose to minimize, under the

same constraint (4) as for ECM, differs of JECM objective function (3).

It is defined as

JBCMðM;VÞ ¼ D1 þ D2 þ D3 ð10Þ

with

D1 ¼
P

n

i¼1

P

Aj2X;jAj j¼1

caj m
b

ijd
2
ij;

D2 ¼
P

n

i¼1

P

Aj2X;jAj j>1

caj m
b

ijd
2
ij;

D3 ¼
P

n

i¼1

d2mb

i/:

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

ð11Þ

and

d
2
ij ¼

P

wk2Aj
d
2
ik þ

P

wx ;wy2Aj
cd2

xy

jAjj þ cC
2
jAj j

: ð12Þ

The tuning parameters a, b, d and cj = jAjj have the same meaning as

in ECM; c is the weighting factor of the distances among the cen-

ters; dij , dxivj
is the distance between the data point xi and the

class wj; and dxy , dvxvy is the distance between the classes wx

and wy:C
2
jAj j
¼

jAj j!

2!ðjAj j�2Þ!
is the number of combinations of jAjj taken 2

at a time.

The quantities D1, D2 and D3 entering in JBCM objective function

are well justified since:

Fig. 1. Uncertainty versus imprecision for object association.

2 To easily understand this, we can imagine that the object x2 is very far away from

v2 and v3 and located on the line perpendicular to the line v2 and v3 line and passing

through (v2 + v3)/2.

3 This indicates that xi has potentially more chance to belong to the classes

vj,vj+1, . . . ,vt than to other classes.
4 This indicates that the precise class is more difficult to be discerned from xi.
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� D1 indicates that the belief of an object (a data point) asso-

ciated to the singleton cluster is proportional to the dis-

tance between the data point and the center of the single

cluster.

� D2 indicates that the belief of a data point associated to an

imprecise cluster is proportional to the average distance

between the data point and the centers involved in the impre-

cise cluster and also to the distances between the centers of

the elementary clusters. The weight of the distances between

the centers of the elementary clusters can be tuned according

to the applications in BCM.

� D3 indicates that if a data point is very far (according to a pre-

determined threshold d) from all the centers of elementary clus-

ters, then this data will be considered as outlier represented by

the ; ‘‘class’’.

In the JBCM objective function (10), D1 and D2 can be actually

summed into one single term as follows:

D12 ¼ D1 þ D2 ¼
X

n

i¼1

X

Aj2X

caj m
b

ijd
2
ij; ð13Þ

where d
2
ij ¼

P

wk2Aj
d
2
ik þ

P

wx ;wy2Aj
cd2

xy

jAjj þ cC
2
jAj j

: ð14Þ

As with ECM, several tuning parameters have to be set before

using BCM algorithm. For example, the number of classes c can

be determined by minimizing the validity index of a credal parti-

tion as the average normalized specificity proposed in (Masson

and Denœux, 2008):

N�ðcÞ ¼
1

nlog2ðcÞ

X

n

i¼1

X

A22Xn;

miðAÞlog2jAj þmið;Þlog2ðcÞ

2

4

3

5; ð15Þ

where 1 6 N⁄(c) 6 1.

As in FCM (Bezdek, 1981), PCM (Krishnapuram and Keller,

1996) or ECM (Masson and Denœux, 2008) approaches, b = 2

can be used as default value, and we used this value in our sim-

ulations presented in the sequel. a allows to control the number

of points assigned to focal elements of high cardinality, and it

can be tuned according to actual applications: the higher a,
the less imprecise will be the resulting partition. d is the thresh-

old of the outliers, and it is strongly data-dependent. If most

data is very near to the corresponding center, d can be small.

c plays an important role in BCM. If c is too large as c > 1, the

distances among the prototypes will take the bigger weight than

the distance between the data and the prototypes. It implies that

even the average distances between the data and the prototypes

is smaller than the average distances among these prototypes,

the data are still likely to be classified into meta-cluster. So

the higher of c will lead a more imprecise credal partition. If c
is too small, some data far from the others will still be classified

into specific clusters as the other objects, which betrays the

basic idea we follow in BCM. c should be tuned according to

the actual application, and it is generally suggested to be taken

in (0,0.7).

To implement BCM algorithm, we need to minimize JBCM crite-

rion and propose a decision-making support.

3.2.1. Minimization of JBCM
To minimize JBCM, we use Lagrange multipliers method. In the

first step, the centers of the clusters V are considered fixed. La-

grange multipliers ki are used to solve the constrained minimiza-

tion problem with respect to M as follows:

LðM; k1; . . . ; knÞ ¼ JBCMðM;VÞ

�
X

n

i¼1

ki
X

j=Aj #X;Aj–;

mij þmi; � 1

0

@

1

A: ð16Þ

M is a matrix composed by the bbamij, where the number of the ob-

jects i = 1,2, . . . ,n, and the number of the focal elements

j = 1,2, . . . ,2jXj.

By differentiating the Lagrangian with respect to themij,mi; and

ki and setting the derivatives to zero, we obtain:

@L

@mij

¼ caj bm
b�1
ij d

2
ij � ki ¼ 0; ð17Þ

@L

@mi;

¼ bmb�1
i; d2 � ki ¼ 0; ð18Þ

@L

@ki
¼

X

j=Aj #X;Aj–;

mij þmi; � 1 ¼ 0: ð19Þ

We thus have from (17)

mij ¼
ki

b

� � 1
b�1 1

caj d
2
ij

0

@

1

A

1
b�1

ð20Þ

and from (18)

mi; ¼
ki

b

� � 1
b�1 1

d2

� � 1
b�1

; ð21Þ

using (17)–(19)

ki

b

� �1=ðb�1Þ

¼
1

P

j
1

c
a=ðb�1Þ
j

d
2=ðb�1Þ

ij

þ 1
d2=ðb�1Þ

: ð22Þ

Returning in (17), one obtains the necessary condition of optimality

for M:

mij ¼
c�a=ðb�1Þj d

�2=ðb�1Þ
ij

P

Ak–;
c�a=ðb�1Þk d

�2=ðb�1Þ
ik þ d�2=ðb�1Þ

; ð23Þ

mi; ¼ 1�
X

Aj–;

mij; 8i ¼ 1; . . . ;n: ð24Þ

Note that these update equations are very similar to those of the

ECM algorithm except that the distances among the centers are

considered here and there is no need to compute the centers of

meta-clusters.

Now let us consider that M is fixed. The minimization of JBCM
with respect to V is an unconstrained optimization problem. The

partial derivatives of JBCM with respect to the centers are given by:

@JBCM
@vl

¼
X

n

i¼1

X

Al #Aj

caj m
b

ij

@d
2
ij

@vl

ð25Þ

with

@d
2
ij

@vl

¼

�2ðxi � vlÞ þ 2c
P

Ay2Aj

ðvl � vyÞ

jAjj þ cC
2
jAj j

: ð26Þ

Thus,

@JBCM
@vl

¼
X

n

i¼1

X

Al #Aj

caj m
b

ij

�2ðxi � vlÞ þ 2c
P

Ay2Aj

ðvl � vyÞ

jAjj þ cC
2
jAj j

: ð27Þ

Setting these derivatives to zero gives l linear equations in vl that

can be written as:
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X

n

i¼1

X

Al #Aj

2caj m
b

ijxi

jAjj þ cC
2
jAj j

¼
X

n

i¼1

X

Al #Aj

�

2caj m
b

ij ðcjAjj � cþ 1Þvl � 2c
P

Ay2Aj

vy

" #

jAjj þ cC
2
jAj j

:

ð28Þ

The system of linear equations can be equally represented by:

Bc�nXn�p ¼ Hc�cV c�p; ð29Þ

where

Blh ¼

P

Al2Aj
caj m

b

hj

jAjj þ cC
2
jAj j

; ð30Þ

Hll ¼
X

n

i¼1

X

Al2Aj

caj m
b

ijðcjAjj � cþ 1Þ

jAjj þ cC
2
jAj j

; ð31Þ

Hlq ¼ �
X

n

i¼1

X

Al ;Aq2Aj

caj m
b

ijc

jAjj þ cC
2
jAj j

; l– q: ð32Þ

V is the solution of the above linear system (29), and it can

be solved by using a standard linear system solver. It is worth

to note that Hc�c possibly is a matrix without full rank in few

particular cases. If so, we can make Hc�c be a full rank matrix

with the rank equal to c by the minor tuning of the parameter

c. The pseudo-code of the BCM algorithm is given in Table 1

for convenience.

Remark. The initial bba M0 can be randomly generated over 2H

(the empty set can also have a positive mass in the initial choice

of the bba) but the final clustering results are not very sensitive

to the choice of the initialization of M0 after the process of

optimization.

3.2.2. Decision-making support

For decision-making support with hard partition, belief function

Bel(.), or plausibility function Pl(.) (Shafer, 1976), or pignistic prob-

ability BetP(.) (Smets, 2005; Smets and Kennes, 1994; Smets, 1990)

are common chosen.5 The belief, plausibility functions and the

pignistic transformation are introduced as follows:

BelðAÞ ¼
X

A;B22X ;B#A

mðBÞ; ð33Þ

PlðAÞ ¼
X

A;B22X ;A\B–;

mðBÞ: ð34Þ

The interval [Bel(A),Pl(A)] is then interpreted as the lower and upper

bounds of imprecise probability for decision-making support (Sha-

fer, 1976) and the pignistic probability BetP(A) commonly used to

approximate the unknown probability P(A) in [Bel(A),Pl(A)] is calcu-

lated by:

BetPðAÞ ¼
X

A;B22X ;A#B

jA \ Bj

jBj
mðBÞ; ð35Þ

where jXj is the cardinality of the element X.

4. Examples

Example 1. The Diamond data set:We illustrate the behavior of

BCM and show the difference of BCM with respect to ECM from an

example similar to the classical data set (Windham, 1985). Objects

1 and 11 are part of Windham’s data whereas object 13 is an

outlier. Object 12 is not close to the objects 1 and 11, but it is not so

far to them as the outlier as shown in Fig. 2(a). The result of FCM

obtained by the maximal fuzzy membership is shown in Fig. 2(b).

Because the result produced by FCM is in the probability frame-

work, there is no imprecise meta-cluster involved in FCM. There-

fore, all the data including the objects 12 and 13 are just classified

into w1 or w2 with the fuzzy membership about w1 and w2 as

shown in Fig. 2(c).

In our simulation, BCM and ECM run with the same tuning

parameters: a = 1/6, b = 2, d2 = 125, � = 10�3, and in BCM one has

taken c = 0.6. A 2-credal partition was imposed so that the four fo-

cal elements have been considered in the optimization process as:

w1, w2, X, and ; for representing the unknown extra class. The

masses m(w1), m(w2), m(X) and m(;) are shown in Fig. 3(b) and

Fig. 4(b). The figures Fig. 3(a) and Fig. 4(a) show the results of clus-

tering obtained by ECM and BCM respectively based on the maxi-

mal mass of belief.

In ECM and BCM, the classified results are extended in the belief

functions framework with the meta-clusters. The points indexed

by 1–5 and 8–11 are classified into two specific clusters by both

ECM and BCM, and the point 13 is considered as an outlier. Most

mass of belief is focused on ignorance X for point 6 and point 7

by ECM as shown in Fig. 3(b), since they are near the center of X

which is the average of the centers ofw1 andw2. Whereas, the larg-

est mass of belief is respectively committed to w1 and w2 for points

6 and 7 by BCM as in Fig. 4(b). This is because the prototypes of w1

and w2 are distinct for points 6 and 7, and the point 6 is closer to

the prototype of w1 while point 7 is closer to the prototype of

w2. Therefore, the point 6 belongs to w1, and the point 7 belongs

to w2. The point 12 is committed to the same meta-cluster by both

ECM and BCM, but they follow two totally different principles. In

ECM, it is because the point 12 is close to the center of X. Whereas

in BCM, it is considered that the two prototypesw1 andw2 are hard

to be distinguished for the point 12, and the point 12 is not close to

the prototypes of w1 and w2. So it is also committed to X by BCM.

Moreover, we can observe thatX acquires a bit more mass of belief

for the point 12 with BCM than with ECM when comparing

Fig. 3(b) with Fig. 4(b). The point 13 is too far from the prototypes,

and it is of course classified as outlier (i.e. ;-’’class’’) both with ECM

and BCM. The difference of the classification results between ECM

and BCM mainly lies in the different interpretations of the meta-

clusters.

Table 1

Belief C-Means algorithm.

Input: Data to cluster: X1, . . . ,Xn in Rp

Parameters: c: number clusters, 2 6 c < n

aP 0: weighting exponent for cardinality

b > 1: weighting exponent

d > 0: distance for outlier (;-’’class’’)

� > 0: termination threshold

c > 0: weight of distances among centers

Initialization: Choose randomly initial mass M0

t 0

Repeat

t t + 1

Compute Bt and Ht by (30)–(32),;

Compute Vt by solving (29);

Compute Mt using (23), (24);

until kVt � Vt�1k < �

5 DSmP(.) transformation proposed in Smarandache and Dezert (2004-2009) that

provides a better probabilistic informational content than BetP(.) can also be chosen

instead. But DSmP(.) is more complicated to implement than BetP(.) and it has not

been tested in our application for now.
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Example 2. This example is designed to show the limitation of

ECM. The artificial data are composed by 3 � 100 + 10 = 310 points.

There are 2 � 100 = 200points generated around the centers (0,0)

and (80,80) as Gaussian noise Nð0;20Þ, and 100 points are around

(160,160) with the Gaussian noise Nð0;30Þ, and 10 points lie

around the center (�130,310) with the Gaussian noise Nð0;50Þ.

BCM and ECM have ben tested using with the same tuning

parameters: a = 1/6, b = 2, d2 = 90000, and � = 10�3. In BCM, one has

taken c = 0.45. The frequency of our CPU used for running our

simulation code (developed under MatLab 7.0) was 2.0 GHz.

In this example, the data set is generated from the four centers

and one subset of data is very small since it contains only 10

points, but the data of this subset have a very high of noise. So this

small data set is truly a particular (very noisy) data set rather than

the regular data set. In order to test in noisy conditions the BCM

with the other methods, the number of the clusters for all the

methods have been chosen c = 3.

The original data are shown in Fig. 5(a), and the classification

results obtained with FCM by maximal fuzzy membership are

shown in Fig. 5(b), and the results of the hard partition obtained

by Lloyd (1982) are shown in Fig. 5(c). Fig. 5(d) and (e) show the

results based on the maximal mass of belief obtained with ECM,

and with BCM respectively.

One can see on Fig. 5(d) that the set of the original data x2 (the

set of original green points of Fig. 5(a)) is classified into even four

meta-clusters as {w1,w2}, {w1,w3}, {w2,w3} and the total ignorance

X, and only a small part is covered by w2 in ECM. It is mainly

because the underlying centers of the four imprecise clusters lie

around (90,90), and they are close to each other, especially for

the centers of {w1,w3} and X. It implies that ECM is not suitable

in such case because the centers of the meta-clusters overlap with

those of the specific clusters. In FCM, the center of each cluster

does not correspond well with the truth because of the influence

of these 10 imprecise points, and the 10 points are all considered

to be with class w2. A part of points of x2 near the center of w3

are classified to w3, and another small part is classified to w1. In

BCM, most of the original data x1, x2, x3 can be correctly classified.

For the set of data x4 (i.e. the set of original black points of

Fig. 5(a))), two points are considered as {w1,w2}, which indicates

they cannot be distinguished by w1 and w2, and three points are

classified into {w2,w3}. Two points are committed to ignorance,

which means they are indistinguishable for the three classes. The

other three points are too far from the prototypes, and they are

considered as outliers. However, most of them are committed to

w2 by ECM.

Davies Bouldin index (DBI) (Davies and Bouldin, 1979) is com-

monly used as the clustering quality measure based on the hard

partition decision result. This index represents the system-wide

average of the similarity measures of each cluster with its most

similar cluster, and the smaller DBI generally indicates the better

clustering results. For the hard decision-making support, the mass

of the belief of the clustering in ECM and BCM can be transformed

into pignistic probability using (35) when a hard partition decision

is necessary in some applications.

For example, if the bba associated with one point to be clustered

is given by:

mðw1Þ ¼ 0:5; mðw2Þ ¼ 0:2; and mðw2;w3Þ ¼ 0:3:

then it can be transformed into a pignistic probability measure

(Smets, 2005) as:
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BetPðw1Þ ¼ mðw1Þ ¼ 0:5;

BetPðw2Þ ¼ mðw2Þ þ
mðw2;w3Þ

2
¼ 0:35;

BetPðw3Þ ¼
mðw2;w3Þ

2
¼ 0:15:

The hard decision of the cluster associated with this point is

based on the maximal pignistic probability criterion. So in our

eaxmple, the point will be clustered into w1 since max(BetP(.)) =

BetP(w1). DBI of the clustering results can be computed using this

hard cluster decision. In our simulations, we have used p = q = 2

for computing DBI (see Davies and Bouldin, 1979 for details). DBI

and execution time of the different methods are given in Table 2.

As we can see, BCM and ECM take a longer execution time than

FCM and K means, and this is the price one has to pay for acquiring

the credal partition. Moreover, ECM takes more time than BCM in

this test, since it has been observed that ECM requires a greater

number of iterations than BCM for completing the optimization

process (using the same termination threshold). DBI of BCM is sim-

ilar to that of FCM and K means, and is a bit bigger than that of

ECM. It indicates the hard partition of ECM is the best and BCM

produces better hard partition results than that of FCM and K

means from the point view of DBI. Nevertheless, ECM provides very

unreasonable credal partition. BCM produces more reasonable

classification results using the belief functions framework, which

is potentially very interesting in some applications.

Example 3. The iris flower data set (Fisher, 1936) is a typical test

case for data clustering and classification, and it is used in this

third experiment. The data set consists of 50 samples from each of

three species of Iris flowers (Iris setosa, Iris virginica and Iris

versicolor), and the number of the total samples is 3 � 50 = 150.

Four features were measured from each sample, they are the

length and the width of sepal and petal, in centimeters. In order to

show the effectiveness of BCM for dealing with the noisy data, five

additional artificial points are added in the test data set as follows:

X=[6 13 10 2; 7 6 4 3; 3 12 11 0.2; 6 8 8 0.2; 1 0.3 8 10]. The

parameters used in BCM and ECM are: a = 1/6, b = 2, d2 = 100,

� = 10�3, and in BCM one has taken c = 0.42.

The original data are shown by Fig. 6(a), and the classification

results of FCM, K means, ECM and BCM with same criterion as in

Example 2 are respectively shown by Fig. 6(b)–(e).

One can see that the classification results of FCM, K means and

BCM are similar for the original Iris data except the additional arti-

ficial data, and most of the data are correctly classified. Neverthe-

less, a lot of the original data close to the middle of the clustering

prototypes are considered as imprecise meta-cluster by ECM,

which is unreasonable, and it is difficult to get the specific and cor-

rect classification results. Now let us focus on the five additional

artificial data which is far from the other data, they are all clus-

tered into w1 by FCM and K means, since FCM and K means work

in the probability framework, and they cannot provide more useful

(specific) clustering information as the credal partition. Three of
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artificial data quite far from the other data are considered as outli-

ers by both ECM and BCM. The other two data which are not far en-

ough from the others are classified as {w1,w2} by BCM, since they

are more close to w1 and w2 than to w3. This clustering results

especially for the additional artificial data illustrate the interest

and effectiveness of this new BCM approach.

DBI of the clustering results can still be obtained by the maximal

pignistic probability criterion. DBIwith the parameters p = q = 2 and

execution time of the different methods are given in Table 3.

One can observe that the cost of execution time for BCM and

ECM is much larger than for FCM and K means, since BCM and

ECM produce the credal partitions which is more general than a

fuzzy partition. We can see moreover that ECM still takes longer

time than BCM because of the number of iteration in optimization

process. DBI of BCM seems similar to that of FCM and it is a bit big-

ger than that of ECM, but the credal partitions of ECM is obviously

worse than that of BCM. It shows the effectiveness of the proposed

method BCM.
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Fig. 5. Clustering of artificial the data set by different methods.

Table 2

DBI and execution time of different methods tested on artificial data.

K means FCM BCM ECM

Execution time (in sec) 0.0156 0.0468 0.6680 0.9961

DBI 0.8080 0.8049 0.7712 0.6581
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5. Conclusion

A new unsupervised clustering method, called BCM (Belief C-

means), has been proposed and evaluated in this paper. BCM is

an extension of FCM and an alternative of ECM. After analyzing

the limitation of ECM, we have proposed another interpretation

of meta-cluster defining bba’s. In the determination of a mass of

belief associated with the meta-cluster, not only distances between

object and prototypes of specific clusters involved in the meta-

cluster does count, but also the distances between those proto-
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types. If an object is far from the prototype of a specific cluster

compared with the distances among these prototypes, but it is still

below the threshold of outlier filtering this object, it will be consid-

ered more possible to be committed to a meta-cluster composed

by those specific classes. The mass of belief associating an object

with specific cluster is computed according to the distance be-

tween the object and the prototypes of clusters like in ECM. Some

examples have been given to illustrate the interest of BCM and to

show its difference with respect to K means, FCM and ECM.
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