
HAL Id: hal-01058019
https://hal.science/hal-01058019v1

Preprint submitted on 25 Aug 2014 (v1), last revised 16 Aug 2016 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Edge-partitioning graphs into regular and locally
irregular components

Julien Bensmail, Stevens Brett

To cite this version:
Julien Bensmail, Stevens Brett. Edge-partitioning graphs into regular and locally irregular compo-
nents. 2014. �hal-01058019v1�

https://hal.science/hal-01058019v1
https://hal.archives-ouvertes.fr


Edge-partitioning graphs into regular

and locally irregular components

Julien Bensmail and Brett Stevens

May 22, 2014

Abstract

A graph G is locally irregular if every two of its adjacent vertices
have distinct degrees. Recently, Baudon et al. introduced the notion
of decomposition into locally irregular subgraphs, where by a decom-
position we mean an edge-partition, and conjectured that almost all
graphs should admit a decomposition into at most 3 locally irregular
subgraphs. Though this conjecture involves a constant term, exhibit-
ing even a non-constant such upper bound seems tough. We herein
investigate the consequences on this question of allowing a decompo-
sition to include regular components as well. As a main result, we
prove that every bipartite graph admits such a decomposition into at
most 6 subgraphs, this constant upper bound having no equivalent in
the original context of decomposition into locally irregular components
only. This result implies that every graph G admits a decomposition
into at most 6 log(χ(G)) subgraphs whose components are regular or
locally irregular.

1 Introduction

It is a well-known fact that, in every simple graph, there have to be at
least two vertices with the same degree. If we define a totally irregular
graph as a graph whose every two distinct vertices have distinct degrees,
then this folklore result, put differently, implies that no totally irregular
simple graph with order at least 2 exists. Several works then aimed at
introducing and studying antonyms of the notion of regular graphs in the
context of simple graphs. The such notion investigated throughout this
paper is the one of locally irregular graphs, which are graphs in which every
two adjacent vertices have distinct degrees. Locally irregular graphs were
originally introduced by Chartrand et al. in [2] under a different name.

Our investigations are motivated by the work of Baudon et al. in [4]
wherein is considered the following decomposition problem. Clearly a simple
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graph G does not have to be locally irregular (consider e.g. any regular
graph). In such a situation, we would like to decompose G into locally
irregular subgraphs, where by a decomposition of G into k locally irregular
subgraphs we mean a partition E1 ∪ E2 ∪ ... ∪ Ek of E(G) such that G[Ei]
is locally irregular for every i ∈ {1, 2, ..., k}. A decomposition of G into k

locally irregular subgraphs can equivalently be seen as a k-edge-colouring
of G whose each colour class induces a locally irregular subgraph. Such an
edge-colouring is said locally irregular. As usual, we are interested in finding
the least number of colours used by a locally irregular edge-colouring of G.
This parameter, which is denoted χ′

irr(G), is called the irregular chromatic
index of G.

It is important to mention that there exist graphs whose irregular chro-
matic index is not finite (consider e.g. K2). Such graphs, called exceptions,
can be recognized easily thanks to the full characterization given in [4].
Regarding non-exception graphs, Baudon et al. conjectured the following.

Conjecture 1 ([4]). For every non-exception graph G, we have χ′

irr(G) ≤ 3.

Conjecture 1 was verified for several classes of graphs, including trees,
complete graphs, Cartesian products of graphs verifying Conjecture 1, and
regular graphs with degree at least 107, see [4]. This latter result was proved
by means of a probabilistic approach and is perhaps the most significant one
as regular graphs are in some sense the “least locally irregular” graphs. It
is worth mentioning that Conjecture 1, if true, would be tight since some
graphs have irregular chromatic index 3, like e.g. C6. There actually even
exist infinitely many trees with irregular chromatic index 3, as pointed out
in [3], though the authors noted that the irregular chromatic index of every
tree can be determined in linear time.

Theorem 2 ([3]). There exist infinitely many trees with irregular chromatic
index 3.

No weaker version of Conjecture 1 involving another (possibly big) con-
stant term has been proved at the moment, and we believe such should be
hard to prove. The only upper bound on the irregular chromatic index of
non-exception graphs given in [4] is the following.

Theorem 3 ([4]). For every non-exception graph G, we have

χ′

irr(G) ≤

⌊

|E(G)|

2

⌋

.

The upper bound in Theorem 3 was only exhibited to show the existence
of a locally irregular edge-colouring of every graph which is not exception.
So it was only raised for theoretical and existential purposes. Roughly put,
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the proof shows that every non-exception graph can be decomposed into
edge-disjoint P3’s, which is the smallest (non-trivial) locally irregular graph.
The proof actually does not take into account the fact that a locally irregular
graph can consist in several vertex-disjoint locally irregular components, so
the upper bound of Theorem 3 should be easy to improve.

The status of bipartite graphs regarding Conjecture 1 (or even a weaker
version of it) is quite intriguing. Although it can be easily shown that
Conjecture 1 is true when restricted to particular families of bipartite graphs
(including trees, complete bipartite graphs, regular bipartite graphs, see [4]),
an argument for the general case seems hard to exhibit.

Question 4. Can we prove that, for some absolute constant k ≥ 3 and every
non-exception bipartite graph G, we have χ′

irr(G) ≤ k?

Perhaps the most intuitive way to tackle Question 4 would be, given a
bipartite graph G, to remove a vertex or an edge from G, apply induction to
deduce a locally irregular edge-colouring c′ of the remaining graph G′, and
finally extend c′ to a locally irregular edge-colouring c of G. But many points
make the success of this strategy hard to ensure if c and c′ use a constant
number of colours. Among these, let us mention the following facts.

Issue 1: the subgraph G′ can be an exception (a path or cycle with odd
length in the context of bipartite graphs [4]), so c′ does not necessarily exist.

Issue 2: no colour of c can include a component isomorphic to K2 since
this graph is not locally irregular.

Issue 3: two vertices u and v which are adjacent in the subgraph of G′

induced by colour, say, i of c′ can have distinct degrees, but u and v may
have the same degree in the subgraph of G induced by colour i of c.

Our investigations are motivated by the following question: how easier
can Question 4 be tackled if we allow a locally irregular edge-colouring to
induce components isomorphic to K2? Note that K2 is actually a 1-regular
graph. So one weaker question would read as follows: what is the least
number of colours of an edge-colouring of a (not necessarily) bipartite graph
such that each colour class induces components which are regular or locally
irregular?

This paper is organized as follows. In Section 2, we start by introduc-
ing the notion of regular-irregular chromatic index of graphs, and exhibit
very first properties of it. In Section 3 we raise a conjecture on the regular-
irregular chromatic index of all graphs, and support it by showing it to
(sometimes almost) hold when restricted to particular families of graphs.
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We then focus on bipartite graphs in Section 4. As a main result, we
show that every bipartite graph has regular-irregular chromatic index at
most 6. This result implies, in Section 5.1, that every graph G has regular-
irregular chromatic index at most 6 log(χ(G)). In Section 5.2, we explain
why a promising decomposition approach introduced by Addario-Berry et
al. in [1] does not seem to be applicable to deduce a better upper bound
on χ′

reg−irr(G). To this end, we show the NP-completeness of the problem
of deciding whether a graph with a particular structure admits a particular
locally irregular subgraph. Concluding remarks are gathered in Section 6.

2 Decomposing graphs into regular or locally ir-

regular components

We say that an edge-colouring c of a graph G is regular-irregular if ev-
ery colour class of c induces components which are regular or locally ir-
regular. The first important thing to note is that, unlike locally irregular
edge-colouring, a regular-irregular edge-colouring may induce components
isomorphic to K2, which is 1-regular. Consequently, by colouring each edge
of a graph with a new colour, we get a regular-irregular edge-colouring (in-
ducing regular components only). So the regular-irregular chromatic index
of every graph G, which we define as the least number χ′

reg−irr(G) of colours
used by a regular-irregular edge-colouring of G, is finite.

Observation 5. For every graph G, we have χ′

reg−irr(G) ≤ |E(G)|.

As every locally irregular edge-colouring is clearly also regular-irregular,
all results on locally irregular edge-colouring of graphs naturally apply to
regular-irregular edge-colouring. In particular, we can improve Observa-
tion 5 thanks to Theorem 3, as it can be easily checked that every exception
graph can be made colourable by just removing one edge from it.

Corollary 6. For every graph G, we have

χ′

reg−irr(G) ≤ χ′

irr(G) ≤

⌊

|E(G)|

2

⌋

.

In a regular-irregular k-edge-colouring c of a graph G, by definition each
colour i of c can induce a subgraph whose some components are regular
(forming a regular subgraph Gr,i), and whose other components are locally
irregular (forming a locally irregular subgraph Gℓ,i). It is worth mentioning
that, from c, we can easily deduce a 2k-edge-colouring c′ of G where ev-
ery colour of c′ induces either regular components only, or locally irregular
components only. Typically c′ can be obtained from c by considering every
colour i ∈ {1, 2, ..., k} of c, and colouring the edges of Gr,i with colour i′
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and the edges of Gℓ,i with colour i′′. So all upper bounds on χ′

reg−irr exhib-
ited throughout this paper can be derived to upper bounds on this modified
edge-colouring notion.

Other relationships between the regular-irregular chromatic index and
other graph invariants and notions can be expressed. To begin with, since
a proper edge-colouring of a graph is an edge-colouring whose each colour
induces a forest of K2’s (which are 1-regular), by Vizing’s Theorem [8] we
can immediately improve Observation 5 to the following, where χ′ denotes
the classic chromatic index parameter.

Observation 7. For every graph G, we have

χ′

reg−irr(G) ≤ χ′(G) ≤ ∆(G) + 1.

The arboricity of a graph G, denoted a(G), is the least number of colours
of an edge-colouring of G where every colour induces a forest. Since ev-
ery forest has regular-irregular chromatic index at most 2, see upcoming
Lemma 10, we directly get the following.

Observation 8. For every graph G, we have χ′

reg−irr(G) ≤ 2a(G).

Of course, Observation 8 can be derived to every variant of the arboric-
ity parameter related to the decomposition of graphs into edge-disjoint sub-
graphs of which we can upper-bound the regular-irregular chromatic index.
For instance, the star arboricity of G, denoted sa(G), is the least number of
colours used by an edge-colouring of G inducing forests of stars. Since every
star is either regular (when it has order 2) or locally irregular (otherwise),
we directly get that χ′

reg−irr(G) ≤ sa(G) for every graph G.

3 On graphs with constant regular-irregular chro-

matic index

In previous Section 2, we have expressed relationships between the regular-
irregular chromatic index and generally unbounded graph invariants (up to
a constant factor). But the relationship between the regular-irregular chro-
matic index and the locally irregular chromatic index, recall Corollary 6,
and Conjecture 1 suggest that the regular-irregular chromatic index of ev-
ery graph should be at worst upper-bounded by 3. Investigations on small
graphs (in particular those with irregular chromatic index 3) even suggest
that the following stronger conjecture should be true.

Conjecture 9. For every graph G, we have χ′

reg−irr(G) ≤ 2.
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Several families of graphs supporting Conjecture 9 can be pointed out.
First, every regular or locally irregular graph has regular-irregular chromatic
index 1 and, thus, directly agrees with Conjecture 9. Among the families
of regular and locally irregular graphs of interest, let us mention complete
graphs (which were shown to have irregular chromatic index 3 in [4]), cycles
(some of which do not even admit any locally irregular edge-colouring, and
some other of which have irregular chromatic index 3, see [4]), and stars.

Of course trees are not all regular or locally irregular, so some of these
graphs have regular-irregular chromatic index at least 2. Actually it is easily
seen that trees have arboricity at most 2, and, hence, have regular-irregular
chromatic index at most 2, agreeing with Conjecture 9. We prove this
formally below as this result will be of some use in next sections.

Lemma 10. For every tree T , we have χ′

reg−irr(T ) ≤ 2.

Proof. To obtain a regular-irregular 2-edge-colouring c of T , proceed as fol-
lows. Choose an arbitrary node r of T , and perform a breath-first search
algorithm from r. This defines a partition V0∪V1∪ ...∪Vd of the nodes of T
where each part Vi contains the nodes of T which are at distance exactly i

from r. Basically, we have V0 = {r} and every edge joins two nodes located
in consecutive parts. Now, for every edge uv ∈ E(T ), set c(uv) = 1 if u ∈ Vi

with i ≡ 0 (mod 2), or c(uv) = 2 otherwise. It should be clear that, because
T is a tree, colours 1 and 2 of c induce two forests of stars, which are either
regular or locally irregular. So c is regular-irregular, as claimed.

Observation 8 can be used to show that families of graphs whose ar-
boricity is upper-bounded by some constant k have their regular-irregular
chromatic index upper-bounded by 2k. Though 2k may be larger than 2,
such constant upper bounds remain of interest, especially concerning fami-
lies of graphs of which we do not have any constant upper bound on their
irregular chromatic index. In particular, one well-known result of Schnyder
states that every planar graph has arboricity at most 3, see [7]. So, thanks
to Observation 8, we directly derive the following.

Theorem 11. For every planar graph G, we have χ′

reg−irr(G) ≤ 6.

4 On the regular-irregular chromatic index of bi-

partite graphs

In this section, we study Conjecture 9 with respect to bipartite graphs (i.e.
the counterpart of Question 4 for regular-irregular edge-colouring). As a
main result, we prove the following.

Theorem 12. For every bipartite graph G, we have χ′

reg−irr(G) ≤ 6.
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We prove Theorem 12 by showing that every bipartite graph can be
edge-partitioned into two subgraphs with regular-irregular chromatic index
at most 2 and 4, respectively, namely a forest and a bipartite graph whose
all components are Eulerian1.

We first introduce results related to Eulerian bipartite graphs.

Lemma 13. For every connected Eulerian bipartite graph G whose at least
one part has even size, we have χ′

irr(G) ≤ 2.

Proof. Assume V (G) = A ∪ B with x = |A| even, and y = |B| ≥ 2 (since
otherwise G is locally irregular and χ′

irr(G) = 1). Set A = {a1, a2, ..., ax}
and B = {b1, b2, ..., by}. We prove a stronger statement, namely that G

admits a 2-edge-colouring c such that:

Property 1: for every vertex a ∈ A, there are an odd number of edges
incident to a which are coloured 1 by c,

Property 2: for every vertex b ∈ B, there are an even number of edges
incident to b which are coloured 1 by c.

Since every vertex v of G has even degree by assumption, it should be clear
that c is locally irregular as soon as it has Properties 1 and 2, then ensuring
that G has irregular chromatic index at most 2.

Start by colouring 1 all edges of G. Clearly Property 2 is already fulfilled,
but no vertex of A satisfies Property 1. Actually, due to the parity of x, an
even number of vertices of A violate Property 1. Then repeatedly apply the
following fixing procedure to c. Let

P = a1bi1ai1bi2ai2 ...bik−1
aik−1

bika2

be a simple path (i.e. with no repeated ai’s or bi’s) of G joining a1 and a2.
Such exists as G is connected. Now just “invert” the colours used by c on
the edges of P , i.e. the colours of the edges among

{a1bi1 , bi1ai1 , ai1bi2 , ..., aik−1
bik , bika2}.

That is, colour 2 every such edge coloured 1, and vice-versa. Note that this
procedure has the property that only the endvertices of P , which are a1 and
a2, have the parity of their number of edges coloured 1 by c changed. So
a1 and a2 do not violate Property 1 any more, and no new vertex violating
either Property 1 or 2 arose from the recolouring. Repeating the same
procedure with a3 and a4 (instead of a1 and a2), then a5 and a6, and so on,
we eventually get c satisfying both Properties 1 and 2.

1An Eulerian graph is a connected graph whose all vertices have even degree.
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Note that the proof of Lemma 13 only applies to connected Eulerian
bipartite graphs involving a part with even size since the recolouring proce-
dure fixes two conflicts at a time. In particular, if the two parts of G have
odd size, then, applying the same modification scheme on A, we can only
fix an even number of conflicts while there are an odd number of them. So
we have to handle these specific bipartite graphs separately.

For this purpose, we first need to introduce a specific class of bipartite
graphs. In what follows, an almost locally irregular bipartite graph desig-
nates a bipartite graph G whose vertex set A ∪B satisfies the following:

• there is a specific vertex a ∈ A such that d(a) is even and all vertices
of A \ {a} have odd degree,

• all vertices of B have even degree.

So G can actually be locally irregular (typically when the degree of a is
different from the degrees of its neighbours), but, if it is not, then the only
adjacent vertices with the same degree of G are necessarily a and some of its
neighbours. We prove below that every connected almost locally irregular
bipartite graph has regular-irregular chromatic index at most 3.

Lemma 14. For every connected almost locally irregular bipartite graph G,
we have χ′

reg−irr(G) ≤ 3.

Proof. We use the terminology introduced above to deal with the bipartition
of G and its specific vertex a all along this proof. If G is locally irregular,
then clearly χ′

reg−irr(G) = 1, so now assume G is not locally irregular. We
show below that we can find a subset P ⊂ E(G) of edges such that G−P is
locally irregular and P induces a forest. When such a decomposition of G is
obtained, a regular-irregular 3-edge-colouring of G is obtained by colouring 1
all edges of G−P and using at most two other colours for the edges of G[P ]
(according to Lemma 10), implying the claim.

Start with P = ∅. Because of the structure of G, as mentioned earlier
necessarily the (possible multiple) conflicts why G is not locally irregular
involve a and neighbours of a with degree dG(a). Arbitrarily choose one
such vertex b1, and set P = P ∪ {ab1}. Clearly P induces a path. Besides,
note that, due to the structure of G, no neighbour of a in G−P has degree
dG−P (a) = dG(a) − 1, since this value is odd. So a cannot be involved in
any conflict making G − P being not locally irregular. Actually the only
neighbour of a in G with odd degree in G − P is b1, but a and b1 are not
adjacent in G− P .

If G− P is locally irregular, then we are done. Otherwise, since G− P

is a bipartite graph whose all vertices in A have odd degree and all vertices
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in B but b1 have even degree, it means that there is at least one vertex
a2 ∈ A such that b1a2 ∈ E(G − P ) and dG−P (b1) = dG−P (a2). Recall that
a2 6= a. So just add to b1a2 to P . For similar reasons as above, we now have
dG−P (b1) = dG−P (a) − 1 = dG(a) − 2, all vertices of B have even degree
in G − P , and all vertices of A but a2 have odd degree in G − P . Again,
if G − P is still not locally irregular, then necessarily there is at least one
vertex b3 6= b1 neighbouring a2 such that dG−P (a2) = dG−P (b3). So just add
a2b3 to P . And so on.

The important thing to note is that the degree sequence

(dG−P (a), dG−P (b1), dG−P (a2), dG−P (b3), ...)

is strictly decreasing, except for its two last values which are equal. More
precisely, because of all the successive conflicts which had to be fixed, in G

we have

dG(a) = dG(b1), dG(a2) = dG(b1) − 1, dG(b3) = dG(a2) − 1, ... .

This property has two consequences. On the one hand, because the degrees
in G of the ends of the successive edges added to P are strictly decreasing,
the fixing procedure cannot last forever. So, at some point, assuming G−P

has never been locally irregular before, an edge, say, aibi+1 with dG−P (ai) =
dG−P (bi+1) = 1 will be added to P , making bi+1 having degree 0 in the next
occurrence of G − P and, hence, impossible to be involved in any degree
conflict. Said differently, the remaining graph G − P is necessarily locally
irregular at this point.

On the other hand, the fact that the degree sequence is strictly decreasing
(except for its last two terms) implies that G[P ] has no cycle. Assume indeed
that ai1bi2ai3 ...bikai1 is one smallest cycle of G[P ]. Due to the bipartiteness
of G, this cycle has length at least 4, so k ≥ 4. According to the arguments
above, the edge bikai1 has been added to P because, at some point, we had
dG−P (bik) = dG−P (ai1). But, at this very moment, we had, say, dG−P (ai1) =
d, and hence

dG−P (bi2) = d− 1, dG−P (ai3) = d− 2, dG−P (bi4) = d− 3, ...

according to the above arguments, and, in particular,

dG−P (bik) = dG−P (aik−1
) = d− k.

But d− k 6= d since k ≥ 4, a contradiction.

So, at the end of the described above procedure, G[P ] has no cycle, and
is hence a forest. Actually it can be seen that G[P ] is a path, but forests and
paths have (in general) the same regular-irregular chromatic index, i.e. at
most 2, recall Lemma 10. Besides, G−P is locally irregular, as claimed.
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Using Lemma 14, we can now deal with connected Eulerian bipartite
graphs involving two parts with odd size.

Lemma 15. For every connected Eulerian bipartite graph G whose two parts
have odd size, we have χ′

reg−irr(G) ≤ 4.

Proof. Set V (G) = A ∪ B with |A| = x and |B| = y odd where y ≥ 1 and
x ≥ 3 (since otherwise G is isomorphic to K2, which is regular). As in the
proof of Lemma 13, we deduce a regular-irregular 4-edge-colouring of G by
modifying an initial edge-colouring c of G using first only one colour, then
two, and finally at most four. If at some point of the procedure c becomes
regular-irregular, then of course we end up the procedure immediately.

Start by colouring 1 all edges of G. Let a be an arbitrary vertex of
G which is not a cut vertex. Without loss of generality, we may sup-
pose that a ∈ A (otherwise, just relabel the parts A and B). Set A =
{a, a1, a2, ..., ax−2, ax−1} and G′ = G−{a}. Now, for every odd i ∈ {1, 3, 5,
..., x− 2}, as in the proof of Lemma 13 choose an arbitrary simple path P

of G′ starting from ai and ending at ai+1 (such exists since G′ is connected
by our choice of a), and colour 2 all edges along P coloured 1 by c, and
vice-versa.

For similar reasons as in the proof of Lemma 13, at the end of the
procedure, the edge-colouring c, which is now a 2-edge-colouring, fulfils the
following:

Property 1: every vertex in A \ {a} is incident to an odd number of edges
coloured 1 by c in G,

Property 2: every vertex in B is incident to an even number of edges
coloured 1 by c in G.

Besides, since a was removed from G before applying the above procedure,
we also have the following:

Property 3: all edges incident to a in G are coloured 1 by c.

Since G is Eulerian, note that this last property equivalently means that a

is incident to an even number of edges coloured 1 by c.

If c is already regular-irregular, then we are done. Otherwise, because of
the properties of c, the only conflicts involve a and some of its neighbours
(Properties 1 and 2), and colour 1 of c (Property 3). More precisely, the
number of edges coloured 1 by c incident to a is equal to the number of edges
coloured 1 incident to some of its neighbours. Now consider all connected
subgraphs of G induced by colour 1 of c, and let G1 be the (only) one
including a. Because of the properties of c, note that G1 is actually a
connected almost locally irregular bipartite graph. According to Lemma 14,
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there exists a regular-irregular {1, 3, 4}-edge-colouring of G1. This regular-
irregular edge-colouring of G1 and the restriction of c to G−E(G1) (which
induces two locally irregular subgraphs) form a regular-irregular 4-edge-
colouring of G.

We are now ready to prove Theorem 12.

Proof of Theorem 12. We can suppose G is connected (otherwise, indepen-
dently apply the upcoming arguments on all components of G). In case G

is Eulerian, then we directly get

χ′

reg−irr(G) ∈ {2, 4} < 6

according to Lemmas 13 and 15. Now, if G is not Eulerian, then we de-
compose G into one forest G − X and one Eulerian bipartite graph G[X],
where X ⊂ E(G) is a subset of edges of G. Independently decomposing
these edge-disjoint subgraphs into at most 2 (Lemma 10) and 4 (Lemmas 13
and 15) subgraphs including regular or locally irregular components, we ob-
tain a decomposition of G into at most 6 subgraphs including regular or
locally irregular components, implying the claim.

Set X = ∅. As long as G − X is not a forest, we repeat the following
procedure. Since G−X is not a forest, it has an induced cycle C. Then put
all edges of C in X, that is set X = X ∪E(C). At the end of the procedure,
it should be clear that every vertex of G has even degree in G[X], so G[X] is
Eulerian (and is bipartite since G is bipartite itself). Besides, the subgraph
G − X is clearly a forest because of the halting condition. This concludes
the proof.

5 From bipartite graphs to all graphs

5.1 An upper bound on χ′

reg−irr(G) depending on χ(G)

We first note that every graph G can be decomposed into at most log(χ(G))
bipartite graphs.

Lemma 16. Every graph G can be decomposed into at most log(χ(G)) bi-
partite graphs.

Proof. Set k = χ(G) and let V1, V2, ..., Vk be a proper vertex-colouring of
G. We produce a log(k)-edge-colouring c of G whose each colour induces
a bipartite graph. Consider every two distinct integers i, j ∈ {1, 2, ..., k}.
Clearly, because i 6= j, the binary representations of i and j differ in at least
one bit, say the xth one with x ∈ {1, 2, ..., log(k)}. Then just colour x all
edges of G whose one end is in Vi and other end is in Vj .

11



It should be clear that every edge of G is assigned a colour by c, and c

uses at most log(k) colours. Now assume one colour of c, say 1, induces a
subgraph with an induced cycle v1v2...v2ℓ+1v1 of odd length. Then, because
v1 and v2 are adjacent, we have v1 ∈ Vi and v2 ∈ Vj with i 6= j, and
the first bit of the binary representation of i is, say, 0 while the one of j

is 1. Similarly, we know that v3 belongs to some Vj′ , where j 6= j′ and
possibly i = j′, and the first bit of the binary representation of j, which
is 1, is different from the one of j′, which is hence 0. Repeating the same
argument, because of the length of v1v2...v2ℓ+1v1, we get that v2ℓ+1v1 is
coloured 1 while the colour classes of the proper vertex-colouring containing
v1 and v2ℓ+1, which are different, have their binary representation having
both first bit 1, a contradiction.

We are now ready to state the main result of this section.

Theorem 17. For every graph G, we have χ′

reg−irr(G) ≤ 6 log(χ(G)).

Proof. Start by decomposing G into log(χ(G)) bipartite subgraphs, and then
independently (i.e. use distinct colours) decompose each of these log(χ(G))
subgraphs into at most 6 subgraphs involving regular or locally irregular
components. Such decompositions exist according to Lemma 16 and Theo-
rem 12.

Brooks’ Theorem, which states that χ(G) ≤ ∆(G) + 1 for every graph
G, and Theorem 17 directly imply that we have

χ′

reg−irr(G) ≤ 6 log(∆(G) + 1)

for every graph G. Actually, by Brooks’ Theorem we even know that χ(G) =
∆(G) + 1 if and only if G is a complete graph or a cycle with odd length.
Since these graphs are regular, and hence have regular-irregular chromatic
index 1, we can even improve Corollary 6 to the following.

Corollary 18. For every graph G, we have χ′

reg−irr(G) ≤ 6 log(∆(G)).

5.2 On using decompositions into AB-graphs

In [4] is noted that locally irregular edge-colouring is connected to the notion
of detectable edge-colouring, where an edge-colouring c of a graph G is de-
tectable whenever every two adjacent vertices of G receive distinct multisets
of incident colours by c. Concerns regarding detectable edge-colouring are
quite the same as those considered regarding locally irregular edge-colouring.
Notably, most of the results related to detectable edge-colouring are about
the existence of a positive constant k such that every connected graph G

different from K2 has detectable chromatic index χ′

det(G) at most k, where

12



χ′

det(G) = min{k : G admits a detectable k-edge-colouring}.

Towards this direction, the best known upper bound on χ′

det(G) is 4, which
was proved by Addario-Berry et al., while the tight upper bound is believed
to be 3 (see [1]). So that we sketch the proof that 4 is an upper bound
on χ′

det(G), for the sake of clarity we first need to introduce the following
definition.

By an AB-graph we refer to a graph G whose vertex set V (G) admits a
bipartition A(G) ∪ B(G) (or simply A ∪ B when no ambiguity is possible)
such that:

• for every edge uv of G, we have uv ∈ (A×A) ∪ (A×B) ∪ (B ×A),

• for every vertex u ∈ A, we have |NB(u)|1,

• for every vertex u ∈ A, we have |NA(u)| ≤ |NB(u)|.

The mentioned above proof that χ′

det(G) ≤ 4 roughly reads as follows.
First, the authors prove this inequality to be true whenever G is 3-colourable.
Next, in the case where G is not 3-colourable, a detectable 4-edge-colouring
of G is obtained by first decomposing G into three particular AB-subgraphs,
whose edges are then independently coloured. More precisely, it is proved
that V (G) necessarily admits a tripartition V0∪V1∪V2 such that G[V0∪V1],
G[V1 ∪ V2] and G[V2 ∪ V0] are AB-graphs. Such a decomposition is quite
convenient as every AB-graph H admits a subgraph H ′ including all edges
between vertices of A(H) and satisfying dH′(u) 6= dH′(v) for every two
adjacent vertices u, v ∈ A(H) with u 6= v. A such subgraph H ′ is typically
obtained by first greedily choosing, for every vertex u ∈ A(H), an integer
d∗(u) among {dH(u), dH(u) + 1, ..., 2dH(u)} such that no neighbour v ∈
NA(H)(u) has d∗(v) = d∗(u). Then H ′ is obtained by taking all edges of
E(H[A(H)]), plus arbitrarily choosing, for every vertex u ∈ A(H), exactly
d∗(u) − dH(u) edges incident to u and vertices in B(H). There are enough
such edges due to the structure of H, by the definition of an AB-graph.

In what follows, we say that an AB-graph H underlies another AB-graph
G whenever A(H) = A(G). One direction towards Conjecture 9 could be to
adapt the strategy above by Addario-Berry et al. for regular-irregular edge-
colouring. Since the regular-irregular chromatic index of every 3-colourable
graph is upper-bounded by some constant, recall Theorem 17, the beginning
of such a proof would be unchanged. So then, considering a graph G which
is not 3-colourable, as above we can assume that we have a tripartition
V0 ∪ V1 ∪ V2 of V (G) such that G[V0 ∪ V1], G[V1 ∪ V2] and G[V2 ∪ V0] are
AB-graphs.

13



Our initial idea to get a constant upper bound on χ′

reg−irr(G) was as
follows. Consider the AB-subgraph G[V0 ∪ V1] and let G0 be a locally ir-
regular AB-subgraph underlying G[V0 ∪ V1] (assuming such exists). Typ-
ically G0 could be obtained by “conveniently” choosing, for every vertex
u ∈ V0, the edges incident to u and vertices in V1. Similarly, let G1 and
G2 be two locally irregular AB-subgraphs of G underlying G[V1 ∪ V2] and
G[V2 ∪ V0], respectively, obtained in a similar manner. Note then that each
of G[V0∪V1]−E(G0), G[V1∪V2]−E(G1) and G[V2∪V0]−E(G2) is a bipar-
tite graph. Then using at most 18 colours, we can obtain a regular-irregular
edge-colouring of G − (E0 ∪ E1 ∪ E2) according to Theorem 12. Colouring
the edges of G0 with one new colour, and similarly with those of G1 and G2,
this strategy would yield a regular-irregular 21-edge-colouring of G.

The previous idea is actually not applicable as one can construct ex-
amples showing that an AB-graph, though its strong structure, does not
have to be underlaid by a locally irregular AB-subgraph. Instead of sim-
ply exhibiting counterexamples showing this statement, we below prove this
differently, namely by showing that the following problem is NP-complete.

Underlying Locally Irregular AB-Subgraph

Input: an AB-graph G.
Question: is G underlaid by a locally irregular AB-subgraph?

Our proof of this statement is by reduction from the following well-known
NP-complete problem.

1-in-3 Satisfiability

Input: a 3CNF formula F over clauses C1, C2, ..., Cm and variables x1, x2, ..., xn.
Question: is F “1-in-3 satisfiable”, i.e. is there a truth assignment to the
variables of F under which every clause of F has only one true literal?

Before explaining our reduction, we first need to introduce a few defini-
tions and gadgets, and to point out some remarks. When considering the
disjoint union of two AB-graphs H1 and H2 (resulting in a graph G), it
should be understood that the union is always performed in such a way that
A(G) = A(H1)∪A(H2) and B(G) = B(H1)∪B(H2). Under this convention,
note that the union of two AB-graphs is also an AB-graph. Now, by a forced
edge of the AB-graph G, we refer to an edge which necessarily belongs to
every locally irregular AB-subgraph underlying G. By definition, in partic-
ular E(G[A(G)]) is a subset of forced edges. On the contrary, an edge of G
which cannot belong to any locally irregular AB-subgraph underlying G is
called bad.

The first gadget B we introduce allows us to add bad edges in an AB-
graph. This gadget B, which is depicted in Figure 1, is the AB-graph with
the following structure:

14



A(B) B(B)

u

v

r

w

Figure 1: The B gadget (with thick and thin edges) and one of its underlying
locally irregular AB-subgraphs (with thick edges only).

• V (B) = {u, v, w, r}, with A(B) = {u, v, r} and B(B) = {w},

• E(B) = {uv, uw, vw, rw}.

We refer to r and rw as the root and root edge of B, respectively. We
prove below that rw, i.e. the root edge of B, is a bad edge.

Lemma 19. The root edge of B is bad.

Proof. By definition, the edge uv belongs to every locally irregular AB-
subgraph H underlying B. Because H is locally irregular, necessarily ex-
actly one of uw and vw belongs to H so that dH(u) 6= dH(v). So we have
{dH(u), dH(v)} = {1, 2} and w is adjacent to one vertex with degree 2 in H

(see Figure 1). Then rw 6∈ E(H) since otherwise we would have dH(w) = 2,
a contradiction.

As a consequence of Lemma 19, note that the root edge of every induced B

subgraph of any AB-graph G remains bad, that is, no matter whether other
edges are incident to r in G.

The second family of gadgets we introduce is the family of B-forbidding
gadgets. Formally a (k,B)-forbidding gadget, for some k ≥ 3, is an AB-graph
F with a root vertex r ∈ A(F ) and a root edge rw with w ∈ B(F ) such that
rw is forced and w has degree k in every locally irregular AB-subgraph
underlying F .

We now give explicit examples of B-forbidding gadgets. Assume k ≥ 3
is fixed, and let Fk,B be the (k,B)-forbidding gadget defined as follows. Let
first w be a vertex in B(Fk,B), and consider the following construction.

Bi-star construction: Add two adjacent vertices x and y to A(Fk,B).
Then add edges between x and k − 3 new vertices with degree 1, which we
add to A(Fk,B). Repeat the same procedure but with y instead of x. So far

15



B(F3,B)A(F3,B)

w

r

x y

B

B

B

B

Figure 2: The F3,B gadget (with thick and thin edges) and one of its under-
lying locally irregular AB-subgraphs (with thick edges only). Edges whose
one end is marked “B” are the root edges of B gadgets.

A(Fk,B) induces a tree whose two vertices x and y have degree k − 2, while
all other vertices have degree 1. Now identify each vertex u of A(Fk,B) with
the roots of sufficiently many B gadgets so that u has as many neighbours
in B(Fk,B) than in A(Fk,B). Finally, add the edges xw and yw.

Repeat the bi-star construction above exactly k−1 times. Finally, add a
vertex r to A(Fk,B) and join it to w. Note that Fk,B is an AB-graph at the
end of the construction. We show that Fk,B is a (k,B)-forbidding gadget
with root r and root edge rw. See Figure 2 for an illustration of F3,B.

Lemma 20. Fk,B is a (k,B)-forbidding gadget for every k ≥ 3.

Proof. Let H be a locally irregular AB-subgraph underlying Fk,B. Recall
that all edges of Fk,B[A(Fk,B)] belong to H by definition, and that the root
edges of the B gadgets attached to some vertices in A(Fk,B) are bad accord-
ing to Lemma 19. Because every two vertices x and y joined to w resulting
from any bi-star construction have the same degree in Fk,B[A(Fk,B)], which
is k−2, and xy ∈ E(H), necessarily exactly one of xw and yw belongs to H

(because these edges between A(Fk,B) and B(Fk,B) are the only ones which
are not bad) so that dH(x) 6= dH(y). Repeating the same argument for all
bi-stars, we get that w has degree at least k − 1 in H and is adjacent to
vertices with degree k − 1 in H. So necessarily wr ∈ E(H) since otherwise
H would not be locally irregular (see Figure 2 for an illustration for F3,B).
Then wr is forced and w always has degree k in H, as claimed.
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We finally introduce the last family of A-forbidding gadgets used in our
upcoming reduction. For some k ≥ 3, a (k,A)-forbidding gadget is almost
the same as a (k,B)-forbidding gadget, except that the vertices with the
forced degree are located in the A side, while the root is located on the B

side. We can e.g. obtain a (k,A)-forbidding gadget Fk,A as follows. Start
from a vertex w in A(Fk,A), and identify w and the roots of k−1 (k−1, B)-
forbidding gadgets. Finally just add a vertex r in B(Fk,A) and the edge wr

to Fk,A. As above, we call r the root of Fk,A, while wr is the root edge of
Fk,A.

Lemma 21. Fk,A is a (k,A)-forbidding gadget for every k ≥ 3.

Proof. Assume H is a locally irregular AB-subgraph underlying Fk,A. Ac-
cording to Lemma 20, the root edges of the k − 1 (k − 1, B)-forbidding
gadgets attached to w belong to H. So w has degree at least k − 1 and is
adjacent to vertices with degree k − 1 in H, still according to Lemma 20.
Then wr must belong to H, and dH(w) = k.

We are now ready to prove the main result of this section.

Theorem 22. Underlying Locally Irregular AB-Subgraph is NP-
complete.

Proof. Given an AB-graph G and one of its subgraphs H, we can easily check
whether H is a locally irregular AB-graph underlying G. So Underlying

Locally Irregular AB-Subgraph is clearly an NP problem.

We show the NP-hardness of Underlying Locally Irregular AB-

Subgraph by reduction from 1-in-3 Satisfiability. Let us first raise some
remarks about the structure of F . First, it is known that the monotone
version of 1-in-3 Satisfiability remains NP-complete [6], so it can be
assumed throughout that no clause of F includes a negated variable. We
can also raise important observations about the form of the clauses in F .
For every k ∈ {1, 2, 3}, we call a clause of F a k-clause if it includes k

distinct variables. Clearly, F is not 1-in-3 satisfiable if it includes a 1-clause.
Since 1-clauses of F can be detected in polynomial time, we can assume
throughout that F has no such clause. Note furthermore that if F includes
a 2-clause C = (xi ∨ xi ∨ xj) with i 6= j, then xi and xj are necessarily set
to false and true, respectively, by every truth assignment making F 1-in-3
satisfied. In such a situation, we say that xi and xj are forced to false and
true, respectively, by C.

From F , we construct an AB-graph GF such that

17



F is 1-in-3 satisfiable
⇔

GF is underlaid by a locally irregular AB-subgraph.

For every variable xi appearing in F , add a vertex vxi
to B(GF ). Now

consider clauses of F . On the one hand, for every 2-clause Cj = (xi1 ∨ xi1 ∨
xi2) (with hence xi1 and xi2 being forced to false and true, respectively, by
Cj), first identify vxi2

with the root of one new (3, A)-forbidding gadget.
The resulting vertex adjacent to vxi2

is denoted v′Cj
. Next, add a vertex vCj

to A(GF ), identify vCj
with the roots of two new (3, B)-forbidding gadgets,

and add the edge vCj
vxi1

to GF . We have the following.

Claim 1. Assume Cj = (xi1 ∨ xi1 ∨ xi2) is a 2-clause of F . Then vCj
vxi1

is
bad, while v′Cj

vxi2
is forced.

Proof. Let H be a locally irregular AB-subgraph underlying GF . Since vCj

was identified with the roots of two (3, B)-forbidding gadgets, by Lemma 20
we know that vCj

has degree at least 2 in H, and is adjacent to vertices
with degree 3 in H. Then vCj

vxi1
cannot belong to H since otherwise we

would have dH(vCj
) = 3. Concerning v′Cj

vxi2
, this edge is the root edge of

one (3, A)-forbidding gadget, so it is forced according to Lemma 21.

On the other hand, for every 3-clause Cj = (xi1 ∨xi2 ∨xi3), add a vertex
vCj

to A(GF ), the edges vCj
vxi1

, vCj
vxi2

and vCj
vxi3

to GF , and identify
vCj

with the roots of one new (3, B)-forbidding gadget, one new (5, B)-
forbidding gadget and one new (6, B)-forbidding gadget. All edges of GF of
the form vCj

vxi
or v′Cj

vxi
are called clause edges.

Claim 2. Assume Cj = (xi1∨xi2∨xi3) is a 3-clause of F . Then exactly one
of the clause edges vCj

vxi1
, vCj

vxi2
and vCj

vxi3
belongs to a locally irregular

AB-subgraph underlying GF .

Proof. Assume H is a locally irregular AB-subgraph underlying GF . Then
the root edges of the (3, B)-, (5, B)- and (6, B)-forbidding gadgets attached
to vCj

belong to H according to Lemma 20. So vCj
has degree at least 3 and

is adjacent to vertices with degree 3, 5 and 6 in H. Because of that fact,
note that we cannot have none, two, or three of vCj

vxi1
, vCj

vxi2
and vCj

vxi3

belonging to H. So exactly one of these edges belong to H, as claimed.

For every variable xi of F , we denote n(xi) the number of distinct clauses
which contain xi. To end up the construction of GF , consider every vertex
vxi

, and identify it with the roots of four new (3, A)-forbidding gadgets,
one new (n(xi) + 4, A)-forbidding gadget, one new (n(xi) + 5, A)-forbidding
gadget, one new (n(xi) + 6, A)-forbidding gadget, and so on up to one
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(2n(xi) + 2, A)-forbidding gadget. Such forbidding gadgets exist since we
gave examples of (k,A)-forbidding gadgets for every k ≥ 3.

Claim 3. For every variable xi of F , either none or all of the clause edges
incident to vxi

belong to a locally irregular AB-subgraph underlying GF .

Proof. Assume H is a locally irregular AB-subgraph underlying GF . Since
the root edges of the four (3, A)- and the (n(xi) + 4, A)-, (n(xi) + 5, A)-, ...,
(2n(xi) + 2, A)-forbidding gadgets attached to vxi

belong to H according to
Lemma 21, the degree of vxi

in H is at least n(xi) + 3 and vxi
is adjacent

to vertices with degree n(xi) + 4, n(xi) + 5, ..., 2n(xi) + 2 in H. Then just
note that if the conditions of the claim are not met by H, then H cannot
be locally irregular.

We claim that we have the desired equivalence between F and GF . To
see this holds, assume, given a locally irregular AB-subgraph H underlying
GF , that having a clause edge incident to vxi

belonging to H simulates the
fact that xi provides true to the corresponding clause. Then Claims 1 and 2
depict the fact that a clause of F is considered satisfied if and only if it has
only one variable evaluated true by a truth assignment of F . Claim 3 depicts
the fact that, by a truth assignment, every variable provides the same truth
value to every clause which contains it. So from a truth assignment making
F 1-in-3 satisfied we can deduce a locally irregular AB-subgraph underlying
GF , and vice-versa. So the equivalence holds.

It is worth mentioning that all examples of (k,A)- and (k,B)-forbidding
gadgets we exhibited above are planar. Besides, 1-in-3 Satisfiability,
even in its monotone version, remains NP-complete when restricted to planar
graphs [5]. So performing the reduction with F being planar, we get that
the reduced graph GF is also planar. Therefore, Underlying Locally

Irregular AB-Subgraph remains NP-complete when restricted to planar
graphs.

6 Concluding remarks

In this paper, we have introduced the notion of regular-irregular edge-
colouring of graphs and mainly shown Theorem 17, which provides our best
upper bound on the regular-irregular chromatic index of graphs. Although
this upper bound should not be optimal, recall Conjecture 9, it is better
than every upper bound we know about decompositions into locally irregu-
lar subgraphs only (see Corollary 6).

One straight way to improve the multiplicative factor in Theorem 17
would be to improve Theorem 12. Showing Conjecture 9 to be true when

19



restricted to bipartite graphs would notably improve the upper bound of
Theorem 17 to 2 log(χ(G)), which would be optimal regarding the strat-
egy consisting in decomposing graphs into bipartite subgraphs, and then
independently decomposing these bipartite subgraphs.

Speaking of bipartite graphs, we actually almost proved Conjecture 9
when restricted to these graphs as we know that every bipartite graph involv-
ing a part of even size has regular-irregular chromatic index at most 2, recall
Lemma 13. An important thing to note is that, in the proof of Lemma 15,
every regular subgraph induced by a regular-irregular decomposition is actu-
ally isomorphic to K2. Set differently, we actually proved something stronger
than Lemma 15, namely that every bipartite graph admits a decomposition
into 4 subgraphs whose components are isomorphic to K2 or locally irreg-
ular. So one way to improve our results could be to check whether it is
easy to decompose bipartite graphs into locally irregular subgraphs and k-
regular graphs with k ≥ 2, e.g. vertex-disjoint cycles. This direction seems
in particular appealing in the context of Eulerian graphs.

Acknowledgements. The authors would like to thank Prof. Mariusz
Woźniak from whom came the idea to consider decompositions of graphs into
regular and locally irregular components rather than just decompositions
into K2’s and locally irregular components.
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