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Aeroacoustic source analysis in a corrugated flow pipe using 

low-frequency mitigation 
 

Abstract 

 

Our study is focused on a phenomenon often encountered in flow carrying pipes, since 

flow instabilities caused by geometric features may generate acoustic signals and 

thereafter interact with these signals in such a way that powerful pure tones are 

produced. A modern example is found in the so-called “singing risers”, or the gas pipes 

connecting gas production platforms to the transport network. But the flow generated 

resonance in a fully corrugated circular pipe may be silenced by the addition of 

relatively low frequency flow oscillations induced by an acoustic generator. 

Experiments reported here, aimed at investigating in more detail the coupling between 

the flow in the pipe, the acoustically generated flow oscillations and the emitted 

resulting noise, are performed in a specifically designed facility. A rectangular 

transparent channel using glass walls enables us to use optical techniques to describe in 

detail the flow field in the corrugation vicinity, in addition to more standard hot-wire 

anemometry and acoustic pressure measurements with microphones, with and without 

the acoustically generated low-frequency oscillations. 
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1. Introduction 

Due to their flexibility and local stiffness, corrugated pipes are used in many engineering 
applications. It is known that if the pipes carry a flow of dry gas, whistling sounds associated 
with the pipes' length resonances may develop. This phenomenon is used positively in 
musical toys like the Hummer [1, 2], but represents a problem in engineering applications as 
high sound levels and associated structural vibrations may develop. A well-known example is 
the "singing riser" phenomenon observed on some natural gas installations in the North Sea. 
Scientific study of the phenomenon dates back almost 100 years. Burstyn [3] discussed briefly 
the phenomenon at the 1921 meeting of the German Society for Technical Physics. Around 
the same time, Cermak [4] studied the tones produced in short (0.5m) tubes having a narrow 
bore. He established that the frequencies excited are a little lower than the ones expected in 
smooth pipes, and that this could not be an effect of the end conditions. He also found that the 
frequencies heard correspond approximately to the "bump" frequencies based on flow 
velocity and corrugation pitch. More recent investigations show that the frequency effect is 
due to a lowering in the wave speed caused by the acoustic stiffness of the cavities ([5], see 
also section 3.2), and that the phenomenon occurs at a constant Strouhal number if the length 
parameter is taken as the cavity width plus the radius of curvature of the upstream cavity edge 
[6]. Examples of experimental studies giving information on Strouhal and Reynolds numbers, 
necessary flow velocities, discussions on source positions, etc, for different test pipes, are 
found in references [7 - 11]. The works cited above are performed on relatively short narrow 
bore pipes. A study directly related to the singing riser problem is the one by Belfroid et al. 
[12]. 

Theoretical work on the subject includes the work by Debut et al. [13] who modelled the 
acoustic sources as a distribution of van der Pol oscillators along the pipe, and Goyder [14] 
who studied the distribution of sources and sinks along an acoustic wavelength in a 
corrugated pipe. More direct numerical studies have also appeared in recent years. Popescu et 
al. [15] used a turbulent model in Fluent to study the aero acoustic interaction in a short pipe. 
In parts of the pipe they found a strong interaction between cavity vortices and the shear layer 
separating the cavity fluid from the free stream. Nakibouglou et al. [2, 6] modelled the flow in 
a pipe section including cavities using an incompressible Fluent version with a superposed 
oscillation corresponding to the frequency of a pipe mode. Their studies quantified the 
amount of sound power generated by the interaction of vortices shed at the cavities leading 
edges and the acoustic field.  

Related to this, a study by Kopiev et al. [16] should be noted. In their study, a broad band 
signal is generated by a loudspeaker in a plenum chamber at one end of a corrugated pipe. 
They demonstrated that the acoustic signal would increase or decrease when propagating 
through the pipe depending on frequency and flow velocity.  

Flow above single cavities with an associated sound production is a well-established field of 
study [17]. Of special interest to the present study is the finding that in cases where the pipe’s 
entry section is sharp enough for the flow to separate, a small cavity a short distance 
downstream may give rise to strong longitudinal pipe modes [18, 19]. The distance between 
the pipe’s entry section and the single cavity’s downstream corner is thought to be the 
relevant distance for Strouhal number estimations. As the corrugated test pipe used in the 
present study also has a sharp edged, partly flanged, entry section, it is expected that this will 
represent a possible source region. 

The interested reader will also benefit from the recent review by Rajavel and Prasad [20]. 
This paper summarizes the main available theories used to describe the singing phenomenon 
in corrugated pipes. It also reviews various experimental and computational works carried out 
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for this problem and highlights remaining open questions such as the missing of the 
fundamental tone of corrugated pipes and the lack of prediction tools for the whistling 
effective acoustic sound pressure level. 

The objective of the present research is to study both the acoustic and aerodynamic fields 
within a corrugated plane channel under singing conditions using both synchronised acoustic 
pressure and velocity measurements and particle image velocimetry (PIV). 

We want to investigate more fully a previously published finding, mainly that adding a strong 
signal at a frequency very much lower than the whistling frequency of the channel, under 
some conditions, will quench the whistling [21]. In this previous study, an intermittent 
residual whistling noise remained. This whistling appeared and disappeared within a cycle of 
the low frequency signal. In the present study, we want to use this residual whistling in order 
to analyse the aeroacoustic source. 

A model of the flow in a corrugated plane channel, based on a lattice Boltzmann technique, 
suitable for compressible flow modelling at low Mach numbers is faced to experimental 
results.  
 
The paper is organized in the following way: section 2 describes the experimental 
arrangement and procedures, section 3 is devoted to the identification of sound pressure field 
characteristics inside the channel, section 4 reports the corrugated channel flow main 
characteristics, section 5 presents the analysis of the experimental results, with particular 
attention to the acoustic mitigation, section 6 presents the Lattice Boltzmann simulations, 
while section 7 presents discussion of the Lattice Boltzmann results. Finally, the final 
discussion and conclusion are presented in section 8. 
 
2. Experimental arrangement 

 

The experimental facility under study is made of a low speed wind tunnel whose fan rotation 
speed ensures a flow velocity up to 25 m/s. The tunnel is connected to a corrugated 
rectangular channel of length L = 2 m, prolonged by a loudspeaker itself ended by an open 
resonator of 17 m length in order to obtain high level acoustic oscillations at low frequency.  

The rectangular corrugated channel is made of Plexiglas plates allowing direct inspection of 
the aerodynamic field by a PIV technique. The corrugated channel has lateral width 
D = 20mm and height B = 100mm. The lateral plates are machined in order to make a wall 
with a rectangular corrugation of pitch length Pt=20mm that is repeated all along the channel. 
The corrugation occupies the full height of the lateral walls of the channel. As shown in 
Figure 1, the corrugations are rectangular with a depth H=10mm, and a width w=10mm; the 
upstream corner of the corrugation is rounded with a curve with curvature radius r = 2.5mm. 
The top and bottom walls of the channel are perfectly smooth. The corrugations occupy about 
83% of the wall surface of the channel. 
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(a) 

 
 
 

 
 

(b) 

Figure 1. Geometry of the corrugated channel. a) Schematic view, b) Photography of details 
of the face to face vertical corrugated plates. 

The entry of the corrugated channel is connected to a fan, as indicated in Figure 2, using a 
rectangular coupling box (see tick  in Figure 2). This box ensures, not only air tightness of 
the system corrugated channel/fan, but also that the channel has acoustically open flanged 
ends. The exit end of the corrugated channel is connected to a loudspeaker coupling box (see 
ticks and  in Figure 2) extended by the 17 m resonator whose resonance frequency is 
around 10 Hz. This resonator ensures that there is a strong coupling between the corrugated 
channel and the loudspeaker around its resonance frequency.  

The loudspeaker is made of two push-pull sub-woofers SONIC-10MK2 (bandwidth 
f  [3,300] Hz), mounted face to face and supplied with the same in-phase signals from a 
power amplifier ECLER MPA 4-150R. 
Velocity measurements are performed by hot-wire anemometry for temporal/spectral analysis 
and by PIV  for spatial analysis. Two single hot-wires (DANTEC 55P11, 1.2mm length, 5m 
diameter) are used to characterise the flow velocity: the first one is located 10mm upstream of 
the vein entry (see tick  in Figure 2 and Figure 3) and the other one is downstream, inside 
the vein, 19mm just upstream of its exit section (see tick  in Figure 2). Hot-wire 
anemometry is controlled by the DANTEC Streamline system using the Streamware software. 
When not synchronously acquired with microphone signal by the Metravib NetdB system (24 
bits), the hot-wire analogous signals are acquired by a 12 bit acquisition data card with a 
frequency of 25 kHz. For each hot-wire, 220 samples are acquired. 

B 
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Figure 2. Photography of the experimental arrangement. Exit part of the corrugated channel 
and loudspeaker mitigation system; the fan is located on the left of the photography. 
 
Hot-wire measurements are used to obtain the relation between the fan motor rotation and the 
flow velocity inside the vein (Figure 4). The upstream hot-wire is located in the vena 
contracta that feeds the corrugated channel, so that the velocity detected by this probe is lower 
than that measured by the downstream hot-wire. 
 

Figure 3. Photography of the entry hot-wire. 
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Figure 4. Relation between the fan motor 
rotation and the mean velocity at the entry 
and exit of the corrugated channel measured 
by hot-wires. 

 
PIV is used to characterize the velocity field inside a cavity. The investigated cavity is the 35th 
one, located at 700mm from the vein entry, ie at approximately one third of the vein length. 
Since the acoustic sound pressure inside the channel shows a succession of maxima and 
minima, (see Figure 6), this particular location was chosen because it is in the vicinity of a 
minimum of the sound pressure corresponding to a maximum of the acoustic velocity for the 

 






  Hot-wire probe (upstream)

 Hot-wire probe (downstream) 

 Microphone 

 Microphone 

 Loudspeaker 

 Loudspeaker 





7	

whistling frequencies of interest. According to the axial pressure measurements presented 
hereafter, this cavity is located near a minimum of pressure level when the fan motor rotation 
is rot= 37 Hz. The PIV system includes a pulsed Yag laser (Spectra-Physics, 200mJ, 10Hz) 
and a KODAK camera with 1008 x 1018 pixels. The whole system is synchronized by a 
Stanford synchronizer. The field of view is about 12 mm x 12 mm, centred on the cavity. For 
each experiment, 1500 pairs of images are acquired with a 10Hz rate and with a time delay for 
a pair of images in the range 12-15s. 1500 velocity fields are processed with the Dynamic 
Studio software (DANTEC Dynamics). The size of interrogation windows is 32 x 32 pixels, 
with an overlap value between 50 and 75 % depending on the required accuracy in flow 
analysis. 

Acoustic pressure is measured by microphones (see ticks  and  in Figure 2). A 
microphone probe (tick ) GRAS 40-SC is located at the centre of the corrugated channel 
inside it, at various positions starting 4.9cm upstream of the exit end, up to 28.9cm upstream 
of the exit end, each one separated by 1cm. The second microphone (1/4	inch	GRAS	40BP,	
tick ) is fixed inside	 the	 box,	 at	 10	 cm	 from	 the	 top	 of	 the	 box,	 for	 continuous	monitoring	of	 the	 loudspeaker	 induced	pressure	 level. As shown below, these locations 
ensure that both probes are able to measure the maximum fluctuations of acoustic velocity 
and pressure. All pressure level acquisitions have been made by a 01-dB Metravib NetdB 
acquisition front-end unit using 12.8 kHz sampling rate and 24 bit resolution. For special 
experiments, both hot-wire signals are simultaneously acquired with similar conditions. All 
signals have been normalized so that measurements are given in physical units (Pa for 
acoustic sound pressure and m/s for velocity). 

3. Characterisation of the sound pressure field inside the pipe

3.1 Modal identification 

Both ends of the corrugated pipe can be considered as open. Acoustic boundary conditions 
can then be described as Dirichlet conditions including a classical correction length to account 
for sound radiation [21, 22]. Such pipes present a discrete set of modes. Each mode is 

associated to a frequency fn given by eff

n

c
n , n 1,2,...f

2( L 2 L )
 


. ceff  is the effective sound 

celerity in the corrugated pipe, it is slightly lower than the sound celerity inside the fluid due 
to the corrugations [26], and L is the correction length. 

To our knowledge, no theory gives a sufficiently precise value of ceff for the present 
configuration. An estimate is proposed here through experimental investigation. 

The first step consists in measuring the acoustic pressure at the 25 different positions 
described above. This is achieved by maintaining the fan rotation of 37 Hz that gives a 
constant flow speed of about 19.5 m/s inside the corrugated channel, allowing it to "whistle" 
at 592 Hz. Each record has a duration of 60 s. The 25 Lpj

 rms pressure levels are estimated

using the usual formula (1) 
i=N

2
p j ij

i=1

1
L = 10 log (p (t ))

N
 , (1) 

where pj(ti) is the acoustic pressure at instant ti, at point xj (x0 = 195.1cm, x1 = 194.1cm, …, 

x24 = 171.1cm), where the origin of abscissa x = 0 is the entry end of the channel. N = 218 

ensures a nearly perfect estimate of the rms pressure level (the difference between the 
computation made with N = 218 and with N = 219 is about 0.05 dB). 
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An example of the spectrum of the recorded signal at x = 175.1cm is given in Figure 5, 
showing that the main dominant pressure peak has a frequency of about 592 Hz with a sound 
pressure level Lp = 23.7 dB (ref 1 Pa) while the sound pressure level of the whole signal is 

close to Lp20
 = 27.4 dB (ref 1 Pa). Even if this location is close to the sound pressure 

minimum, this measurement shows that the signal to noise ratio is sufficient to ensure a good 
estimate of the whistling. The correction length L has been estimated by fitting the 
experimental results with the equation (2): 

฀

2
2
M

p

x
L = 10 log P sin 2n

2(L+2 L)



 
 
 

,                                    (2) 

where 2
MP  is the amplitude measured, n = 8 indicates that the mode under consideration is 

the 8-th channel longitudinal mode. One obtains L = 1 cm as the correction length of the 
channel.  

A comparison is presented in Figure 6 between the measured pressure and the identified one. 

 

Figure 5. Spectrum of acoustic sound pressure at position x =175.1cm  for a fan rotation of 
37 Hz. 

 
 
Figure 6. Variation of the pressure along the corrugated channel (cm) for a fan rotation of 37 

Hz, Black dots: measurement, red curve: identification. 
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This correction length is the simplest way to account for the effect of sound radiation. At low 
frequency for flanged circular pipe of radius R, the correction length is given by the well 
known result obtained by Rayleigh [23] :  

L= 0.82 R.                                                         (3) 
In the rectangular case, such a simple result is not known [24, 25]. Nevertheless, it is possible 
to obtain accurate estimate of correction length for a rectangular channel by using results 
reported by [24, 25]. For the presently considered rectangular geometry, with an aspect ratio 
B/D=5, from the numerical results presented in Figure 6 of [25], one obtains:  

L
0.35

B / 2


                                                    (4) 

from which the correction length is L ≈ 17.5mm, which is in reasonably good agreement with 
the value estimated from relation (2) if one considers that the present channel is connected to 
the loudspeaker coupling box and not to an infinite open space as assumed in [25]. This 
validates the experimental identification of the mode 8. From this, one can deduce the 
experimental effective sound celerity. 
 
3.2. Effective sound celerity 

It is well known that for acoustically rigid wall corrugated channels, the wave propagates 
along the channel at a slower, compared to a smooth one (i.e. non corrugated channel), 
apparent celerity ceff [25, 26]. This effective sound speed can easily be deduced from 

experiments. The measurements show that the dominant frequency is close to 592 Hz. Since it 
corresponds to the eighth mode, the measured effective sound speed m

effc is computed by 

m
eff

2(L+2 L)
c  = 592  299 m/s

8


 .                                      (5) 

Since the measurements are made at T = 293 °K, the true sound wave celerity is given by      
c0 ≈ 20T1/2 = 342 m/s. This apparent contradiction is based on the fact that inside the channel, 

it is difficult to define a clear propagating path for the wave since the apparent length of a 
corrugated channel is much longer than the corresponding smooth one. The simplest way to 
account for this is to use the model proposed by [26]. It considers that the corrugations act as 
if the walls of the channel were covered with spring-like, purely imaginary impedance with 
no energy loss/gain. This gives a value of ceff given, when the Mach number influence is 

neglected, by [26, p. 219, eq. 50-53] 

eff 0
c

p

1
c  = c  

VP w
1+

S Pt S

,                                               (6) 

where P = 2(B+D) is the perimeter of the tube, S= D.B the section of the tube, Vc = 2w.H.B 

is the volume cavity, Sp = 2w.B is the area presented by the cavity to the channel and Pt is the 

pitch length. With the experimental geometric data, one obtains an apparent velocity 
ceff ≈ 270 m/s that is clearly underestimated compared to the measured one, m

effc given by 

equation (5). This approximation can be improved by considering that this model supposes 
that the corrugations occupy the whole section of the channel, while in our experiments the 
corrugations occupy only 83 % of the inner surface of the channel since its top and bottom 
parts are smooth. A second improvement is obtained by noting that the spring-like effect of 
the cavity depends strongly on its size and, as the upstream edge of the cavity is rounded with 
a curvature radius r, then, the area presented by the cavity to the channel must be corrected to 
Sp = 2 (w+r).B. Then, one obtains 
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2
eff 0

1
c = c  

w.H w ( B D )
1+ 0.83

Pt w r D.B




,                           (7) 

which gives an effective sound celerity ceff ≈ 288 m/s close to that deduced from experiments, 

m
effc . 

This formula can be used to estimate the effective sound celerity in rectangular partially 
corrugated channels. 
 
4. Flow description 

Since the whistling of corrugated pipes is induced by flow inside the pipe, let us describe its 
characteristics. 

The flow velocities measured at the vein exit are varied in the range 0-25m/s according to the 
rotation frequency of the fan motor (Figure 4). For the previously described arrangement, the 
whistling begins to be detected on the upstream hot-wire signal at 16 m/s, corresponding to a 
fan rotation of around rot= 30 Hz. The upstream hot-wire captures the pure tone of the 
oscillations while the turbulence that develops all along the corrugated channel is 
superimposed to this sinusoidal oscillation on the downstream hot-wire signal (Figure 7). The 
whistling is associated to both a strong amplification of the velocity root-mean square 
measured by the upstream hot-wire and an increase of the sound pressure level from 50 up to 
110 dB (Figure 8). 
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Figure 7. Response of the corrugated 
channel to an internal flow. Velocity time 
series from hot-wires with whistling.	 Figure 8. Response of the corrugated channel 

to an internal flow. Amplification of Urms 
measured by hot wire at the vein entry and 
sound pressure level measured by microphone 
inside the vein.	

The response of the system in presence of a flow is checked to be in agreement with the 
predicted eigen-frequencies. The whistling is detected on both velocity and pressure signals 
for which spectral analyses associate the strong values observed in figure 8 to the  frequencies 
associated to 6th to 9th modes as shown in Figure 9. In this Figure, the Strouhal number based 
on these main peak frequencies f, the characteristic dimension (w+r) and the mean velocity U 
measured by the downstream hot-wire is shown to be constant around a mean value of 
St=0.36. This value is in agreement with the peak-whistling Strouhal numbers registered in 
corrugated pipes in the range 0.32-0.5 [27]. As indicated by Lattice Boltzmann simulations of 
the flow over a single cavity [19], the noise emission occurring when a corrugated pipe is 
submitted to an internal flow is associated to the formation of vortices. These vortex 
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structures are convected by the flow to the downstream edge of the cavity and contribute to 
give a non-null time averaged acoustic power. 
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Figure 9. Response of the corrugated channel to an internal flow. Whistling frequencies (from 
hot-wire measurements) and associated Strouhal numbers, St=f (w+r)/U. 
 
PIV measurements are used to investigate the flow inside a cavity and detect possible 
structures. The instantaneous PIV fields show the presence of a vortex that occupies the 
whole cavity, but no advected structures are highlighted, probably due to the low data 
acquisition rate of PIV. The statistical analysis indicates that the mean vortex is almost 
centred in the cavity (Figure 10). 
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Figure 12. Mean vortex in the cavity: associated modes detected by hot-wire measurements 
and Strouhal number based on the vortex characteristics: Stv= f Rvortex/Vmax. 
 
The profiles of the mean vertical velocity of the vortex inside the cavity are extracted for each 
flow condition and are presented in Figure 11. The maximal velocity Vmax detected on each 
profile can be related to the modal frequency by the building of a new Strouhal number,     
Stv= f Rvortex/Vmax.This Strouhal number  is almost constant around Stv=0.42 (Figure 12) when 
Rvortex= 4mm is the mean radius of the vortex deduced from the location of the extrema of V in 
Figure 11. Note that the slope l of the straight line that describes the relation between f and 
Vmax is homogeneous to a length and is estimated to l =10mm. 

 
 
 
5. Analysis of the experimental results 

5.1 How an added low-frequency single tone sound reveals the origin of the riser song 

As described in a previous study [21], a low-frequency acoustic field (around 10 Hz) leads to 
a dramatic reduction of the corrugated channel whistling. During the mitigation, as shown 
below in Figure 18, the very-low frequency carrier modulates the whistling in such a way that 
it appears only when the remaining low-frequency modulated velocity inside the channel is 
larger than a certain level. 
 
In the velocity range 20-25m/s measured by the downstream hot-wire, four modes are 
simultaneously detected by the spectral analysis of the upstream hot-wire signal (see Figure 
9). Above 17m/s, only one strong mode is highlighted that is to be related to the sudden 
increase of sound pressure level as shown in Figure 8. This pure tone is checked to be 
completely extinguishable by a low frequency signal emitted at 14 Hz by the two 
loudspeakers as shown on the downstream velocity spectral analysis, and without any obvious 
modification of the turbulence at the channel exit (Figure 13). As it can be inferred from 
Figure 13, the injected low frequency acoustic fluctuation level is rather high. In the work 
reported here, no particular optimization on both frequency and level of the signal imposed to 
loudspeakers has been performed. 
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Figure 13. Whistling mitigation (extinction) by a low-frequency acoustic field, downstream 
hot-wire velocity signal spectral analysis. 

Upon analysing this phenomenon, we have observed, as shown below for the velocity signal 
in Figure 14, very short-time “wave packets” originating at the upstream entry of the channel 
when the flow speed reaches a sufficient level. These short-time wave packets will be shown 
to propagate toward the downstream end of the channel at the effective sound celerity, reflect 
back, propagate upstream and amplify the acoustic field inside the corrugated channel by 
successive reflections. This observation confirms that a sound source lies close to the pipe’s 
entry section. It may also allow mitigation by controlling the low-frequency acoustic field to 
limit the amplification through wave superposition of the various reflected wave packets. 

Two experimental mitigations at 14 Hz and 6 Hz are considered below. In both cases, the 
rotation speed of the fan is fixed at 37 Hz, allowing an upstream velocity (at 10mm in front of 
the channel entry) of 9.5 m/s and inside the channel, near its downstream end, of 19.5 m/s. For 
the first one, the frequency of the acoustic mitigation is 14 Hz and the remaining whistling is 
significantly reduced. In the second experiment, the mitigation frequency is set to 6 Hz with a 
remaining whistling level three times higher than that of the 14 Hz case. The two signals 
analysed and compared are the fluid velocity signal delivered by the entry hot wire probe and 
the acoustic sound pressure signal given by the downstream microphone probe. The results 
given in Figure 6 show that the acoustic pressure taken at x0 = 1951mm is close to the 

maximum value and the minimum sound pressure close to the exit (the pressure acts similarly 
at the entry) ensures that the velocity fluctuation measured by the hot wire is maximum. In 
both measurements, the fluctuations created by the waves are then measured with a high 
signal to noise ratio. The analysis of signal data set is based on the comparison of the 
fluctuating parts of the flow velocity and acoustic pressure: continuous and low-frequency 
carrier contributions are removed from both signals. The remaining fluctuations are time 
frequency analysed and the time-shift correlation between velocity and acoustic pressure is 
computed. 

In both cases (14 Hz and 6 Hz), the correlation has a maximum for a propagation time of 
0.007 s very close to the time necessary for a wave to propagate from the entry to the exit at 
299 m/s. This is an obvious proof that the noise source is at the entry of the channel. The 
small fluctuations created at the entry are amplified by successive reflections toward both 
corrugated channel ends leading to a limited or strong acoustic level depending on the 
mitigation frequency. 
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5.2. Acoustic mitigation at 14 Hz 

The best mitigation results are obtained for an acoustic frequency close to 14 Hz. 

In Figures 14 and 15, as observed in our previous experiment [21], it can be seen that some 
remaining high frequency fluctuations are superposed over the velocity and pressure carriers. 
The study of these fluctuations is the core of our analysis. 

Figure 14. Time records, in s, of velocity (left) SVo(t), in m/s, and sound pressure (right) 

SPo(t), in Pa. The black curves are the original data, the red ones represent the identified 

carrier wave. 

The continuous and carrier signals for velocity Vc(t) and pressure Pc(t) are described as a 

three term (higher order terms are negligible) Fourier expansion :
Vc(t) = A0+A1cos(ft+1))+A2cos(2ft+2)), with f = 214 rad/s, A0 = 9.28 m/s,

A1 = 3.46 m/s, 1 = -6.04 rad, A2 = - 0.042 m/s, 2 = 0.13 rad and

Pc(t) = B0+B1cos((ft+1)+B2cos((ft+2), with B0 = 1.4 Pa, B1 = -1469 Pa,

1 = -4.7 rad, B2 = 84.25 Pa, 2 = -3.51 rad. The amplitude and phase coefficients are 

identified using the standard Mathematica [28] procedure. 

It is worth noting that rectified signals SVc(t) = SVo(t) - Vc(t) and SPc(t) = SPo(t) - Pc(t) in 

Figure (15) are alike. 

Figure 15. Time records, in s, of velocity (left) SVc(t), in m/s, and sound pressure (right) 

SPc(t), in Pa, of the rectified data. 
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Figure 16. Time-frequency representation of the signal using Gabor wavelet transform of 
velocity (left) SVc(t) and sound pressure (right) SPc(t). 

The time-frequency representation (using a Gabor wavelet of frequency 6 [28]) of the very 
beginning of both rectified signals is given in Figure 16. This shows, not only an obvious 
similarity between the two signals, but also a small time shift of the acoustic pressure 
compared to the velocity. A rough estimate gives this shift to be close to 0.007 s. Since 2/299 

≈ 0.0067 s, one can infer that it is precisely the time necessary for an acoustic perturbation to 
travel from the entry to the exit. To confirm this, one computes the Pearson correlation 
coefficient ([28]) between SPc(t) and SVc(t+) as a function of time delay . This correlation 

has been computed using 217 samples on both signals. As can be seen in Figure 17, the 
maximum value of correlation r, of about |r|=0.45, is reached at time  = 0.00689 s. This 
flying time is precisely that estimated by considering that the acoustic sources are located 
close to the entry of the channel. It is worth noting that the correlation fluctuates strongly at 
669 Hz that is at the frequency of the remaining whistling.  

Figure 17. Pearson's correlation coefficient for about half a second delay (left) and 0.1 second 
delay (right). The diamond marks the maximum absolute value. 

5.3. Acoustic mitigation at 6 Hz 

Here also, the continuous and carrier signals for velocity Vc(t) and pressure Pc(t) are 

described as a three term (higher order terms are also negligible) Fourier 
expansion: Vc(t) = A0+A1cos(f t +1))+A2cos(2f t +2)), with f = 26 rad/s, 

A0 = 9.34 m/s, A1 = 2.25 m/s, 1 = 2.55 rad, A2 = 0.03 m/s, 2 = -0.22 rad and 

Pc(t) = B0+B1cos(f t +1)+B2cos(f t +2), with B0 = 0.87 Pa, B1 = 582.2 Pa, 

1 =  5.93 rad, B2 = 33.56 Pa, 2 = -5.9 rad. The amplitude and phase coefficients are also 

identified using the standard Mathematica [28] procedure. It is worth noting that again 
rectified signals SVc(t) = SVo(t) – Vc(t) and SPc(t) = Spo(t) – Pc(t) in Figure 19 are alike. 
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Figure 18. Time records, in s, of velocity (left) Svo(t), in m/s, and sound pressure (right) 

Spo(t), in Pa. The black curves are the original data, the red ones represent the identified 

carrier wave. 

The frequency representation (using again a Gabor wavelet of frequency 6) of the very 
beginning of both rectified signals is given in Figure 20. This shows, not only a short shift of 
the acoustic pressure compared to the velocity similar to that observed for the 14 Hz 
mitigation, but also an interesting fine time structure of the four wave packets shown here (the 
same time structure can be observed over the complete record). As previously, each “big 
wave packet” of velocity and pressure is separated one from the others by again about 0.007 s, 
again corresponding to the time necessary for a wave to travel from the entry to the exit. Each 
big packet is made of a set of shorter packets each separated from the previous and following 
ones by a time of about 0.014 s (i.e. twice the flying time to the channel exit). Each of it has 
an intensity that increases until it reaches a maximum and decreases after that maximum. The 
explanation is that a small wave packet is emitted at the entry by the flow-cavity interaction. 
It propagates toward the exit end, at an apparent velocity of about 300 m/s (taking 0.007 s to 
reach the exit). It is reflected and back propagated to the entry. It is reflected again and 
increased in intensity by coupling with the entry source, and so on, until the entry source 
vanishes because of the flow mitigation. After that, the wave packet continues to reflect at 
both ends of the corrugated channel, but loses part of its energy by sound radiation and thus 
decreases in amplitude. For 14 Hz, this phenomenon is less evident due to the shorter time 
period of the mitigation. 

Figure 19. Time records, in s, of velocity (left) SVc(t), in m/s, and sound pressure (right) 

SPc(t), in Pa, of the rectified data. 
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Figure 20. Time-frequency representation of the signal using Gabor wavelet transform of 
velocity (left) SVc(t) and sound pressure (right) SPc(t). 

 
Figure 21. Pearson’s correlation coefficient for about one second delay (left) and 0.1 second 
delay (right). The diamond marks the maximum absolute value. 

The Pearson correlation between SPc(t) and SVc(t+) as a function of  is again computed 

using 217 samples on both signals. The result is presented in Figure 21. One obtains the 
maximum value of Pearson’s correlation r of about |r|=0.82 at time  = 0.0062 s. Again, this 
flying time is very close to that estimated if the acoustic sources are located close to the entry 
of the channel. The correlation is as twice bigger than previously. This is due to whistling that 
has much more time to be set on because the acoustic/flow mitigation is almost twice slower 
than previously and gives time to the acoustic field to take place inside the channel. It is worth 
noting that the correlation fluctuates strongly again at 669 Hz, that is at the frequency of the 
remaining whistling. 

The acoustic mitigation could be optimized according to that fact. The frequency should be 
chosen in order to limit the wave reflection at the ends of the channel. 
 
 
 
6. Lattice Boltzmann simulation 

 
This section presents a numerical study based on the use of the Lattice Boltzmann method 
(LBM) to predict the noise emission from the corrugated channel flow. The Lattice 
Boltzmann method differs from traditional patterns by numerically solving an equation based 
on the physical statistics. Today, although the Lattice Boltzmann method is well established 
in the domain of Computational Fluid Mechanics, there are few studies based on its acoustic 
performance. Although it is limited to weakly compressible flows, this method is unsteady 
and compressible; thereby it can be used to simulate the acoustic waves generated by a 
turbulent flow.  
The present approach is a pragmatic one, as it consists in using the Fourier analysis on the 
results issuing from a Lattice Boltzmann computation to extract acoustic components from the 
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flow data. This Lattice Boltzmann computation is performed by using the Palabos open 
source code (http://www.palabos.org). 
 
6.1. Geometry of the computed problem 

 
The geometry for the Lattice Boltzmann numerical simulation concerns a two-dimensional 
plane channel of 210 mm long corrugated on both inner sides with 10 square cavities of 
dimensions 10x10 mm2 and 11 square corrugations of size 10x10 mm2 (see Figure 22).  
 

 

Figure 22. Geometrical arrangement for the Lattice Boltzmann simulation. 
 
The upstream and downstream edges of the corrugations are rounded with a radius equal 
respectively to 1 mm and 3 mm. The distance between two facing corrugations is 20 mm. This 
computed channel is a two-dimensional representation of the experiment detailed in the 
previous section where the length of the corrugated part is reduced from 2 m to 210 mm in 
order to reduce the computational effort. In the upstream and downstream regions of this 
corrugated part, there are two tranquilizer chambers of 105 mm long and 50 mm high. The 
role of these tranquilizer chambers consists in introducing a flow step at the inlet and outlet 
sections of the channel to simulate a channel with acoustically open flanged ends. At the air 
inlet, this upward step reduces sharply the section of the inflow of 60%, it results in an 
acceleration of the fluid velocity and a separation of the flow from the walls: A separation 
bubble forms at the air inlet that reattaches to the wall a few centimeters downstream in the 
region of the first corrugations. The walls of the tranquilizer region are made of a multitude of 
very thin (≈ 0.1 mm) and deep (10 mm) cavities. These cavities are thin enough so that no 
flow structure can develop in their interior. Their low thickness promotes viscous effects: 
their role is to attenuate the acoustic modes in the tranquilizers. The x-axis is classically in the 
middle of the domain with its origin at the left end side. 
 
6.2. The Lattice Boltzmann Method 

 
The Lattice Boltzmann method is implemented on the domain presented in Figure 22. At the 
entrance of the domain (x = 0), there is a non-homogeneous Dirichlet boundary condition for 
the fluid velocity. The bounce-back approach is applied for this boundary condition. At the 
outlet (x = 420 mm) a Neumann boundary condition is applied for the fluid velocity. Accurate 
initial conditions are crucial in the Lattice Boltzmann simulation. Therefore, a typical 
approach is to use an equilibrium distribution function of the fluid velocity. In the present 
numerical simulation, the initial flow in the channel is given by the classical 1/7

th power law 
turbulent mean velocity profile [29]. In the upstream tranquilizer chamber the flow 
streamlines are contracted to adapt the flow to the change of section. This contraction is 
performed by using a shape-function Sy. The 1/7

th power law turbulent mean velocity profile 
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is multiplied by this shape-function whose role is to "curve" the streamlines to adapt smoothly 
the flow to the change of section. This shape function acts from the middle of the first 
tranquilizer chamber (x ≈ 50 mm) where the section height is Di = 50 mm to the entrance of 
the channel (x = 105 mm) where the section height is D = 20 mm. This shape function is 
given for the flow lowest streamline (y = -Di/2 in the entrance domain): 
 

 
i

4 4i i
D / 2

H D
S : y sin 1 ;where : 0

2 2 2

    

          
  

            (8) 

 
where Hi = 15 mm is the upward step at the entrance of the channel. A scale factor is applied 
in order to match  = 0 with roughly the middle of the upstream tranquilizer domain 

(x = 50 mm), and 4   with the entrance of the corrugated part (x = 105 mm). The 

function 
i-D /2S (  )  performs rising of the lowest streamline, equal to the value of the upward 

step Hi over the distance 50 mm. The highest streamline 
i+D /2S (  )  is the symmetric of 

i-D /2S (  )  with respect to the channel axis. For the streamlines which are between these two 

extreme streamlines, the shape-function yS (  )  , with i i-D /2 < y < D /2 , is calculated by 

linear interpolation between the functions 
i-D /2S (  )  and 

i+D /2S (  )  . The x-component Vx of 

the fluid velocity in the change of section is given by the flow conservation. The y-component 
of the velocity Vy in this change of section is given by the derivation of the shape-function 

  yS . The shape-function 
yS (  )  ensures a smooth initialization for the flow at the 

change of section and reduces the compressibility errors on this initial flow. This wariness is 
essential for providing accurate initial conditions. 
 
The collision model for the numerical simulation is the Smagorinsky eddy-viscosity model 
[30] which assumes that the turbulence small scales induce a viscosity correction proportional 

to the norm of the strain-rate tensor      2

t sx,t C S x,t  , where   ij ijS x,t S S  is the 

magnitude of the strain-rate tensor,   is the bandwidth of the LES filter and Cs is a non-

dimensional coefficient called the Smagorinsky constant: It is an adjusted parameter ensuring 
the numerical stability of the model by increasing the viscosity as the rate-of-strain of the 
flow increases. The value of this Smagorinsky coefficient ranges from 0.1 to 0.2 [31]. For our 
numerical simulation, the value of the Smagorinsky coefficient that seems to be most 
convenient in terms of flow description is Cs = 0.12. 

 
 
6.3. General data for the computed LB model 

 

The Palabos code works with specific Lattice Boltzmann discrete units [32]. As a first step, 
the physical system must be converted to a dimensionless one (Table 1 in Appendix 1). As a 
second step, this dimensionless problem is converted to discrete units. The dimensions of the 
data are in this last step specific to the Lattice Boltzmann model. A characteristic length 

0L and a characteristic time delay 0T  are defined as follows: 0 tL  P 	 is the length of one 

corrugation plus one cavity; this is the pitch herein. The characteristic time delay is 

0 t 0T  = P  /V , this is the delay for the fluid particles to cross the pitch tP . The Mach number of 

the flow is 0 effM = V  /c . Considering the sound celerity on the lattice LBc 1 / 3  and the 
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flow velocity on the lattice LBu , the Mach number is expressed in Lattice Boltzmann units as 

LB LBM u / c . The fluid velocity on the lattice LBu is thus calculated from these two 

definitions of the Mach number: LB
LB 0

eff

c
u V

c
 . 

The flow is computed during LBT =120  in the discrete Lattice Boltzmann units. The data of the 

computed problem are listed in Appendix 1 (Table 1). This computation results in 0.7 s of 
flow for five days of computation using one processor (10 cores) of a computer with eight 
processors Intel Xeon E7-8870 running at 2.4 GHz. The sampling rate for the data output 
is 37300Hz . 
 

7. Lattice Boltzmann results and discussion 

 

The results of this Lattice Boltzmann simulation consist in a fluid density ρ and a fluid 
velocity vector V at each point of the mesh grid (Table 1, Appendix 1), at each time step. All 
these results are in discrete Lattice Boltzmann units. In the present section, three observation 
domains are defined. Ω1 is a discrete set of 100 measurement points Mi = (xi,0) (i=1, …, 100) 
uniformly distributed along the axis of the channel from the entrance (x = 0) to the outlet of 
the domain (x = 420 mm). Ω1 represents an antenna of microphones partitioned on the axis, it 
is used to identify mode-shapes of the acoustic pressure inside the channel. Ω2 is a rectangular 
domain corresponding to the first cavity located at the inlet of the corrugated part. Ω3 is a 
domain covering two cavities located in the middle of the corrugated part. Ω2 and Ω3 are two 
domains on which the flow behavior is investigated and compared to the PIV measurements. 

The first comparison between the simulation and the experiment focuses on the interior 
acoustic field. Let us define an arbitrary reference point Mref located in the middle of the 
corrugated part. A Welch analysis is performed on the antenna Ω1. The results of this Welch 

analysis are the cross-spectrum for the fluid density  i refS x ,M , f  and the cross-spectrum 

for the fluid axial velocity  Vx i refS x ,M , f  between the points Mi = (xi, 0) and Mref, at 

frequency f. For the analysis of the results, the value of f issuing from this Welch analysis of 
the Lattice Boltzmann results is expressed in dimensionless units. The dimensioning factor is 
the first eigen-frequency f0	 of a corrugated domain of length TL  with Neumann-Dirichlet 

boundary conditions (here 
0 eff Tf c / ( 4L ) 178Hz  ). Figure 23 presents the sum of all the 

100 spectra of the fluid density i refi fMxS ),,(  (i=1, …, 100) calculated on the antenna Ω1 

and plotted as a function of the dimensionless frequency 0/ ff . The frequency peaks plotted 

in Figure 23 correspond roughly to the first eigen-modes of a corrugated domain of length TL  

with Neumann-Dirichlet boundary conditions. The n-th eigen-frequency of this corrugated 
domain of length TL  with Neumann-Dirichlet boundary conditions is equal to 0)12( fn   [22]. 

The three frequencies highlighted in Figure 23, corresponding to the modes 1, 4 and 6, are 
1.1 0f , 07 f , and 011 f in agreement with the expected ones according to the spectral 

resolution. This confirms that, for the first eigen-frequencies, the computed channel behaves 
as a corrugated domain of length TL  with Neumann-Dirichlet boundary conditions. 
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Figure 23. Normalized cross-spectrum of the fluid density . 
 

The frequency peaks plotted in Figure 23 do not correspond to the experimental frequency 

peaks presented in Figure 9. At the velocity used for the computation (ie 1
0V = 16ms ) Figure 

9 presents an experimental maximum sound pressure emission at the sixth mode of the 
channel ( 6/ 0 =ff ) meanwhile Figure 23 shows a maximum peak at the first mode of the 

domain 0f / f = 1.1 . There are too many differences in the geometry (length of the domains) 

and in the boundary conditions between the experiment and numerical simulation to conclude 
on these mismatches. No matter these mismatches, the numerical example proposed in the 
present paper must be considered more as a way to analyze the physical phenomena involved 
in the whistling than as an exact representation of the experiment. 
 

Figures 24, 25 and 26 present the fluid density spectrum  i refS x ,M , f  (top figures) and the 

fluid axial velocity spectrum  Vx i refS x ,M , f  (bottom figures) plotted as a function of xi at 

three frequencies: the first frequency peak observed on the system f = 1.1 f0 (mode 1), a 
medium frequency f = 7 f0 (mode 4) and a high frequency f = 11 f0 (mode 6). The vertical red 
lines appearing in Figures 24, 25 and 26 delimit the positions of the inlet tranquilizer chamber 
(x < 105 mm), the corrugated part (105 mm ≤ x ≤ 315 mm) and the outlet tranquilizer region 
(x > 315 mm). 
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Figure 24. Normalized cross-spectra for the frequency 0f f 1.1  
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Figure 25. Normalized cross-spectra for the frequency 0f f 7  
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Figure 26. Normalized cross-spectra for the frequency 0f f 11  

The sound celerity c inside the corrugated part is calculated from the measurement of the 
wavelengths λ that appear in Figures 25 and 26 by using the well-known formula c = f λ 
which gives: 

Figure 25   1 1 1

310.8 63
c f 1240 307.27m / s

1000
 

   , 

Figure 26   2 2 2

256.2 100.8
c f 1946 302.41m / s

1000
 

   . 

 
The sound celerity calculated from the wavelength measurements in Figures 25 and 26 is very 
close to the experimental value effc  = 299 m/s . This result confirms that the mode-shapes 

observed on the density power spectrum in Figures 25 and 26 are indeed acoustic modes. 
 
One of the major problems encountered in this numerical simulation comes from the fact that 
there is no acoustic absorbing boundary condition proposed in the present Palabos version. 
So, overcoming the boundary conditions of the corrugated part's outer domains is impossible. 
Moreover, these boundary conditions are described in terms of fluid mechanics and not for an 
acoustic behavior. As a result, the eigen-modes observed in Figures 24, 25 and 26 are not 
eigen-modes of a channel with open ends, but eigen-modes of a channel with unknown 
acoustic boundary conditions. Nevertheless, these acoustic boundary conditions can be 
estimated visually from the shape of the function S presented in Figures 24, 25 and 26. These 
functions S correspond to a Neumann acoustic boundary condition at the inlet of the domain 
(x = 0): the non-homogeneous bounce-back method that has been used at the inlet to create 
the incoming flow seems to induce at this section an acoustic Neumann boundary condition. 
Note that the bounce-back method is also used to model the walls of the corrugated part for 
which a Neumann boundary condition is also expected. The outflow condition is a zero-
gradient boundary condition for the fluid velocity vector V. The acoustic boundary condition 
induced by this outflow boundary condition cannot be identified clearly from the observation 
of the mode-shapes in Figures 24, 25 and 26. The velocity spectra VxS plotted on the bottom of 

Figures 24, 25 and 26 are very noisy. It is likely that the large band turbulence contribution to 
the spectrum VxS masks the much lower acoustic one. This behavior also appears on the 
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experiment: in Figure 8, the downstream hot-wire measurements (white triangles) cannot 
detect the whistling phenomenon because it is covered by the turbulent noise. As expected, 
the cross-spectra S and VxS  are significantly reduced in the regions of the tranquilization 

chambers (Figures 24, 25 and 26): the thin and deep cavities which cover the walls of these 
regions seem to actually play their role of dampers. 

The next observations concern images of the vorticity field calculated in the domains Ω2 (first 
cavity) and Ω3 (middle of the corrugated part). In Ω2 domain, Figures 27a and b illustrate the 
vena contracta phenomenon that occurs at the inlet of the corrugated part where the flow 
separates from the wall. At this flow separation, vortex structures are created in the region 
very close to the inlet. These structures grow along the separation bubble and detach at a 
somewhat regular frequency in the region close to the upstream rounded cavity edge before 
being carried downstream by the flow. Another noticeable phenomenon is the two contra-
rotating vortices inside the cavity, and the expulsion of fluid from the upstream rounded 
cavity edge that feeds the region of the separation bubble. 

 

 
(a) 

 
(b) 

Figure 27. Vorticity in the inlet section (domain 2). (a) at time 0.43124 s, (b) at time 
0.43237 s, (see associated video vorticity_inlet.avi) 
 

Figures 28 (a-b-c-d) present the vorticity field computed in the middle section of the 
corrugated part for equal time steps. Comparing Figures 27 and 28 and associated videos, it 
can be noticed that, in the middle section of the corrugated part, the vorticity is lower than in 
the inlet region, and that the vortices inside the cavity are more regular. In Figure 28a, a 
vortex structure that just enters the domain Ω3 at time t1 = 0.42785 s is observed, it crosses 
the domain Ω3 in Figures 28b and 28c and leaves it at time t2 = 0.43124 s, in Figure 28d. The 
domain Ω3 is 40mm long, so the convection velocity Uc of this vortex can be calculated: 

 cU 0.04 / 0.43124 0.42785 11.8m / s   . Similarly, the convection velocity at the cavity 

mouth can be estimated experimentally from velocity Vmax in the cavity (§4) and mean 
velocity U on the corrugated part axis (§2). In the region of cavity mouth, the velocity is 
identified as the inside vortex maximal velocity Vmax, so that in the shear layer 
Uc=(Vmax+U)/2. The results are presented in Figure 29. It is shown that the convection 
velocity deduced from the LBM simulation is quite in a good agreement with its experimental 
estimation for U=16m/s. Moreover, the convection velocity is linearly related to the velocity 
on the axis. According to numerical results, vortices are regularly emitted from the rounded 
edge and cross the cavity mouth over a distance equal to the pitch length tP . Consequently an 

emission frequency can be estimated by c tU /P  and it is experimentally obtained to be equal to 

the whistling frequency f (see Figure 29). 
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(a) (b) 

(c) (d) 

 

Figure 28. Vorticity in domain (a) at time 0.42785 s, (b) at time 0.42898 s, (c) at 
time 0.43011 s, (d) at time 0.43124 s. (see associated video vorticity_middle.avi) 

 

16 18 20 22 24

0.5

1.0

1.5

LBM

10

12

14

16

U
c
=

(V
m

a
x
+

U
)/

2

 U (m/s)

 U
c
/(

f.
 P

t)

 
Figure 29. Estimation of convective velocity Uc at the cavity mouth and agreement between 
the upstream edge vortex emission frequency Uc/Pt and experimental whistling frequency f, 
using PIV and hot-wire velocity measurements. 
 

8. Final discussion and conclusion 

 
The present experimental facility and the associated numerical tools were shown to be well 
suited for investigating flow acoustic situations. A series of combined acoustic sound pressure 
and fluid velocity measurements were conducted under different configurations of mitigation 
by a very low frequency acoustic wave. The aim of these experiments was to identify clearly 
the acoustic sound field that takes place inside the corrugated channel under the flow 
excitation. A low frequency acoustic mitigation induces a flow speed modulation around the 
mean velocity. This modulation dramatically changes the nature of the sound fields created by 
the corrugated channel, from intense tone to much quieter periodic whistling. Under this 
mitigation, a residual fluctuation was measured on both the acoustic field inside the channel 
and the flow velocity at its entry. By eliminating the low frequency forcing term on both 
signals and by correlating them, it was shown that the sound source is not only located near 
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the entry end of the corrugated channel but also that the residual acoustic field is due to the 
superposition of waves reflected at both ends of the channel.  

The strong coupling that exists between the acoustics and the flow was also investigated by 
numerical simulation using the Lattice Boltzmann Method. The results of this numerical 
simulation were analyzed by a Welch method which permits to identify acoustic eigen-modes 
of the channel. Limitations arise when analyzing the acoustic behavior because the boundary 
conditions involved in the lattice Boltzmann schemes are mainly designed	for	the description 
of	 the	 flow,	 their acoustic properties are not considered. As a result, the tranquilizer zones 
located at the inlet and at the outlet of the corrugated part participate strongly to the acoustic 
eigen-modes of the computed domain. In the present numerical simulation, a solution 
consisting in a multitude of thin and deep cavities was proposed to create two sound-
absorbing regions at the ends of the domain. This method appeared to be of limited efficiency 
because the mode-shapes present a Neumann boundary condition at the inlet of the domain in 
place of the expected Dirichlet boundary condition at the inlet of the corrugated part. 
Recently, some definitions of absorbing layers for nonreflecting acoustic boundary conditions 
appeared in the literature [33]. An outflow sponge layer is also proposed in the version 1.4 of 
Palabos,	but only for three-dimensional problems, and the present model is a two-dimensional 
one. The incorporation of such a non-reflective sponge layer in future work should improve 
greatly the accuracy of the simulation, thus allowing quantitative acoustic comparison with 
experimental data. 
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Appendix 1 

In physical units: 

Total length of the computed domain LT = 420 mm 

Length of the channel Lp Lp = 210 mm 

Distance between two facing corrugations D = 20 mm 

Length of the cavities	 w = 10 mm	
Depth of the cavities	 H = 10 mm	
Sound celerity	 ceff = 299 m/s

Density of the fluid  = 1.2 kg/m3 

Fluid velocity at the center of the channel V0 = 16 m/s 

Kinematic viscosity of the fluid (air)	  = 15.10-6 m2/s

Characteristic length (= pitch)	 Pt = 20 mm	
Mesh grid 6000x1000 

In dimensionless units: 

Reynolds number based upon the pitch length Pt Re = V0 Pt /=13293 

Reynolds number used for the Palabos simulation Re = 13000 

Time step for the Palabos output dt = 0.01 (dimensionless) 

In the discrete Lattice Boltzmann units: 

Theoretical fluid velocity at the center of the channel	 uLB = 0.03 in LB units	
Sound celerity LBc 1 / 3

Density of the fluid LB = 1 

Table 1. Data of the computed problem. 
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