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In the present paper, a new approach is developed in order to take into account the stress
gradient effect on fatigue life of structural components. The proposed approach is based on
the weakest link concept in which the shape coefficient of the Weibull distribution becomes
a function of a local damage parameter. The function simulates the experimentally observed
relationship between the shape of the fatigue life distribution and the stress level. Such an
approach allows one to calculate the global probability distribution of the fatigue life for not-
ched structural components in a wide range of fatigue life regime: 104-107 cycles typically. For
comparison purposes, the approach is applied to calculate the number of cycles to crack initia-
tion of structural elements under three probability levels: 5%, 63% and 95%. The calculated
lifetimes are compared with the lifetimes obtained from experiments performed on notched
cruciform specimens and notched round specimens subjected to constant amplitude loading.
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Nomenclature

HCF – High Cycle Fatigue (HCF, more than ∼ 106 cycles)
LCF – Low Cycle Fatigue (LCF, less than ∼ 104 cycles)
MCF – Middle Cycle Fatigue (MCF, ∼ 104 to ∼ 106 cycles)
N,Nexp – fatigue life in cycles and experimental number of cycles to failure
Pf – failure probability

Ps, P
(i)
s – survival probability and survival probability of i-th link

t – time
εn, σn – normal strain and normal stress (to the critical plane)
Ω0 – reference domain
σa, σeq – stress amplitude and equivalent stress
σaf – classical fatigue limit
σkl – stress tensor components (k, l = x, y, z)
σ0, σu,m – Weibull parameters: stress shift (or threshold stress), stress scale and shape

parameter, respectively

1. Introduction

Effect of fluctuating stresses on fatigue life of structural elements is commonly combined with the
effect of heterogeneous stress distribution (stress gradient) because of notches or both complex
geometry and loadings. These two factors lead to complex mechanisms of fatigue failure. Two of
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them should be clearly distinguished. The first mechanism concerns the case when a particular
fatigue crack, responsible for final macroscopic failure of a component, reaches its critical length
under the influence of a heterogeneous stress field. The methods that take into account this
mechanism are based on averaged stresses (strains) over a material domain. The considered
domains could be a volume (Banvillet et al., 2003; Morel and Palin-Luc, 2002), a plane (Morel
and Palin-Luc, 2002; Seweryn and Mróz, 1998; Karolczuk, 2008) or their simplifications such as
a line domain (Qylafku et al., 1998) or a point domain (Taylor, 1999). The second mechanism is
related to a defect distribution or rather to inhomogeneity of the material structure (Morel and
Huyen, 2008) and concerns the case when the fatigue failure could start at any elementary domain
within the element but the probability of such an event depends on the stress history. Thus, the
fatigue failure of the element is a function of both the cyclic stress volumetric distribution and
the size of the considered structural element. This mechanism is usually taken into account by
probabilistic methods based on the weakest link concept.

The weakest link concept has been used by many researchers (Bomas et al., 1997, 1999;
Delahay and Palin-Luc, 2006; Flaceliere and Morel, 2004; Wormsen et al., 2007) to assess the
probability distribution of the fatigue limit (Pf − σaf ) for elements in which the stress field is
inhomogeneous.

Why these models are not used to calculate the probability distribution of the fatigue life
(Pf −Nf )? There is one main reason. The weakest link concept assumes independence of failure
of each link (elementary material domain dA or dV ), and it is usually taken for granted that
the material is loaded in its pure elastic domain (at the macroscopic scale). Thus, according
to many researchers, only the probability distribution of the fatigue limits (no plastic strains)
could be determined using the weakest link concept. According to some researchers (Miller and
O’Donnel, 1999; Sonsino, 2007; Bathias and Paris, 2005), a real fatigue limit does not exist.
Consequently, to be more precise only the fatigue strength distribution at a large number of
loading cycles, e.g. N ≈ 5 · 106 or more, could be determined using the weakest link concept.
The assumption of a pure elastic material in the case of the component with an inhomogeneous
stress field even for a fatigue life close to N ≈ 5 · 106 cycles is doubtful. In Karolczuk (2008),
it is shown that macroscopic plastic strains appear within a component under a heterogeneous
stress field at a high number of cycles (at the classical fatigue limit). The existing probability
models based on the weakest link concept assume a pure elastic state of the material. This is
considered to be true under fatigue loading leading to failure around N0 = 5 · 10

6 cycles, and
this allows one to calculate the fatigue strength distribution (or the classical fatigue limit).

Why does the existence of macroscopic plastic strains exclude the application of the weakest
link concept? At the low loading level (without macroscopic plastic strains), the cracks nucleate
in the weakest places within the element (e.g. at the largest defects → largest microscopic stress
concentration). The lower loading level, the lower the number of nucleated cracks is observed
(Morel and Huyen, 2008). According to the weakest link concept, the appearance of the first
microcrack defines the failure of the whole element. However, the microcrack has a physical
length that is not infinitively small as it is assumed by the weakest link concept. The micro-
crack must grow to the size that defines the technical failure of the component (or specimen).
Usually, a few millimeters. The total fatigue life of the component includes periods of different
damage mechanisms. The application of the weakest link concept is fully justified in the regimes
where only local damage mechanisms take place. When the local damage mechanism changes
to crack growth, the weakest link concept is not applicable. Practically, the failure of a com-
ponent is usually defined by the critical crack length; but if the crack growth period is short
enough compared with the total fatigue life, then the weakest link concept could be applied and
could give good results. Higher fatigue loading could create larger plastic strains and a larger
number of nucleated microcracks that grow and link together up to the critical crack length is
obtained. The larger macroscopic plastic strains make the mesoscopic stress distribution more
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uniform which results in a less scattered fatigue life at higher loading, then it is at lower loading
(Bastenaire, 1972; Han et al., 1996; Schijve, 1994, 2005; Zheng et al., 1995, 1996). The larger
number of microcracks as a result of macroscopic plastic strains convinced many researchers of
the inapplicability of the weakest link concept in the LCF regime. However, appropriate failure
detection such as a short crack in length that presents prevailing initiation phase could justify
the assumption of a dominating period of the local damage mechanisms. Consequently, in such
a case, the application of the weakest link concept up to crack initiation should be possible.
Nevertheless, it must be remembered that plastic strains change the probability distribution

of the fatigue life. Thus, for a correct calculation of the final (global) fatigue life distribution of a
component that includes elementary domains (links) loaded by different stress histories (different
plastic strain amplitudes), it is necessary to know the correct fatigue life distribution for each
link. The coefficients of these distributions must be a function of the local damage parameters,
e.g. stress amplitudes.
The main aim of this paper is to present a method and its algorithm to simulate the fatigue

life probability distribution (Pf−σa−N) of a structural component under a heterogeneous cyclic
stress field. In other words, the probabilistic Wöhler curve of a component can be computed with
the proposed method. The calculation is performed in a wide range of fatigue life (LCF-HCF),
this is possible because the shape of the fatigue life distribution is modeled with regard to a
local damage parameter such as the equivalent stress (strain) amplitude. The scale and shape
coefficients of the Weibull distribution become functions of equivalent stress (strain) amplitudes.
This allows us to simulate the evolution of the scatter band both of the fatigue life and the
fatigue strength from LCF to HCF. The proposed functions are simple and are identified using
experimental data.

2. Weakest link concept

Foundations of the weakest link concept, being the base of the Weilbull theory, were formulated
in the twenties of the 20th century. The main assumptions of the weakest link concept are the
following: (i) a structure is seen as a series of small elements linked together which include
statistically distributed defects; (ii) failure is supposed to occur in a certain elementary area
(link) that contains the “most harmful defect” (in fatigue, and according to the authors, failure
is seen as crack initiation - technical detectable crack, around 0.2mm long for the experiments
described in Section 5); (iii) the probabilities of failure in each link are independent.
From experiments, it appears that for identical elements (at the macroscopic scale) loaded

by time dependent forces F (t), the logarithm of the number of cycles N to crack initiation is a
random variable with a given probability density distribution pf . In a set of successive specimens,
“the most harmful defect” exhibits different features, and thus crack initiation occurs under a
different number of cycles N . In the case of a heterogeneous stress field, the given specimen is
divided into subdomains (links). The probability that a crack will not occur within the life time
interval [0, N ] means that crack initiation will not occur in any elementary subdomain (weakest

link concept). Indicating that P
(i)
s is the survival probability means that no crack will initiate in

the sub-domain (i) within the number of cycles interval [0, N ]. Then the survival probability Ps

for the whole specimen (or component) is the product of all the individual probabilities P
(i)
s

because no interaction between defects is assumed, as follows

Ps =
i=k
∏

i=1

P (i)s (2.1)

where k is the total number of sub-domains (links). Assuming an exponential form of survival

probability P
(i)
s = e−f(σ) leads to substitution of product

∏

in Eq. (2.1) by summation (in-
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tegration) function Ps = P
(i)
s P

(i+1)
s . . . = e−f(σ

(i))e−f(σ
(i+1)) . . . = e−f(σ

(i))−f(σ(i+1)) . . .. Weibull
(1939) proposed such a form of survival probability distribution. The classical (Weibull) form of
failure probability Pf = 1− Ps is as follows

Pf = 1− exp

(

−
1

Ω0

∫

Ω

g(σ) dΩ

)

(2.2)

where

g(σ) =
( σ

σu

)m
or g(σ) =

(〈σ − σ0〉

σu

)m
(2.3)

Ω0 is the volume or surface of the reference domain; g(σ) is a function called by Weibull “risk
of rupture”. Its form depends on the material properties, 〈x〉 = x if x > 0 and 〈x〉 = 0 if x ¬ 0.
Weibull proposed two forms of the function g(σ): with two (Eq. (2.3)1) or three (Eq. (2.3)2)
parameters, where σ0, σu, m are parameters called the stress shift (or threshold stress), stress
scale and shape parameters, respectively. Owing to different material properties on the surface
and in volume due to manufacturing process (for instance), Weibull considered individual failure
probability for the volume V (Ω = V ) and the surface A (Ω = A). In the case of fatigue processes
in a uniaxial loaded component with an homogenous stress distribution with an amplitude σa,
the failure probability is a two dimensional function of both the stress amplitude σa and the
fatigue life N , Pf = F (σa, N). In other words, the fatigue life scatter is obtained under the
same stress amplitude σa or the same fatigue life may be achieved under different stresses σa.
Such a two-dimensional function was considered by Weibull (1949), however the mathematical
expression was not proposed. When the failure of the element is assigned to a specific fatigue
life N , then the failure probability Pf is reduced to the stress function only. This concept is
very popular to determine the fatigue limit (Bomas et al., 1997, 1999; Delahay and Palin-Luc,
2006; Flaceliere and Morel, 2004; Wormsen et al., 2007) of the element under a heterogeneous
stress distribution. In such a case, the specific fatigue life N is assigned to the lifetime (usually
around 106 − 5 · 106 cycles) which defines the beginning of the HCF fatigue regime and the
“infinite fatigue life” within an engineering point of view.

3. The proposed P-S-N curve model

3.1. Hypothesis

The method proposed hereafter is thought to be implemented under a wide range of the
fatigue life regime (i.e. from LCF to HCF, at least from MCF to HCF), it means even if there
are macroscopic cyclic plastic strains. Existence of such plastic strains may be considered not in
agreement with the Weibull (1939) statement expressed by Eq. (2.2). Indeed, the weakest link
concept has been proposed for isotropic brittle-like materials. However, it must be remembered
that this equation was proposed to describe the probability distribution of the ultimate tensile
strength for which the failure means total fracture (in two parts) of a structural component
under quasi-static monotonic tension. This kind of failure is obtained for a brittle-like material
just (or quickly) after the failure of one link (elementary sub-domain). Thus, in such a case, the
hypothesis of failure independence of each link (sub-domain of the structural element) used to
establish Eq. (2.1) and Eq. (2.2) is satisfied. In the case of fatigue loading in the fatigue life
regime higher than 104 cycles, the hypothesis of failure independence of each sub-domain is
restricted. In fact, the problem concerns the material failure definition (see explanation given
in Introduction). The most popular definition of the fatigue failure is crack length dependent.
The crack length defining the fatigue failure must be obtained in a period dominated by crack
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initiation mechanisms (local damage mechanisms) to justify the application of the hypothesis
of failure independence of each link. The existence of plastic strains changes the mechanisms of
damage, which is seen macroscopically by the change in the distribution shape of the fatigue
life. A structural element under an inhomogeneous stress field includes areas under different
stress – strain time histories, different macroscopic plastic strains and, consequently, different
distribution shapes of the local fatigue lives. These local fatigue lives must be simulated and
taken into account for a proper determination of the global probability distribution of the fatigue
life of the structural element.
The conclusion is that the weakest link concept might be applied in the fatigue life regime

higher than 104 cycles if: (i) the appropriate crack length (a physically short crack) defining
the failure as a crack initiation is clearly specified, and (ii) the shape change of the fatigue life
distribution depending on stress histories in each link is taken into account.

3.2. P-S-N curve model

Different stress courses within a structural element result in an inhomogeneous fatigue da-
mage field. For each point of the considered element, a local damage parameter ω(dΩ) may
be computed, e.g. an equivalent stress amplitude. The local value of the damage parameter is
assumed to be linked with the local probability distribution of the fatigue life, Pf (N, dΩ). As
mentioned in the previous sections, the higher local damage parameter ω(dΩ), the lower scatter
of the fatigue life. This relation must be well captured by the P-S-N curve model. If the model
does not simulate the relationship between the local probability distribution of the fatigue life
and the local value of the damage parameter, then the global probability distribution Pf (N,Ω)
obtained by using the weakest link concept is not correct. The originality of the proposed model
consists in simulating the local probability distribution of the fatigue life depending on the local
value of a damage parameter that allows us to compute the global fatigue life of a structural
element for any probability level.
The general form of the probability distribution is analogous to Weibull expression, Eq.

(2.2). However, the former stress function of the “risk of rupture” g(σ) becomes also function
of lifetime N , and the failure probability takes the general form as follows

Pf (N,ω,Ω) = 1− exp

(

−
1

Ω0

∫

Ω

h(N,ω) dΩ

)

(3.1)

The failure probability Pf increases with the increasing damage parameter ω but Pf (for a
given ω) also increases with the number of cycles N . The longer structural element is in service,
the failure probability is higher. Schijve (1993) leans towards a view that the Weibull distribution
describes well the scatter of the fatigue life (under a given stress amplitude σa) in the logarithmic
scale. It could be expressed by the following equation

Pf = 1− exp

(

−
( logN

µ

)m
)

(3.2)

where µ is the lifetime scale parameter and m is the shape parameter. Because the magnitude
of the fatigue life scatter depends on the damage parameter (stress or strain amplitude), the
distribution parameters µ and m must be functions of the damage parameter. In a natural way,
the scale parameter µ takes the form µ = logNf , where Nf is the characteristic fatigue life
(reference) for the probability value Pf = 1−e

−1 ≈ 0.63. The value of Nf is determined from the
reference fatigue curve ω−Nf (e.g. σa−Nf , if the damage parameter is the stress amplitude).
For a given damage parameter, such as the stress amplitude σa, the parameter m simulates the
shape of distribution that is for the fatigue life scatter. The shape parameter must reflect the
relation between the scatter band of the fatigue lives and the value of the damage parameter ω.



302 A. Karolczuk, T. Palin-Luc

Under loading equal to the ultimate quasi-static tensile strength, the fatigue life does not exhibit
any scatter compared with the fatigue scatter (in the fatigue sense, Nf tends to a quater of the
loading cycle). On the other hand, under loading at the fatigue limit, some specimens fail, and
some others have an unlimited fatigue life (if the concept of the fatigue limit is assumed). It
means that the scatter of fatigue lives depends on the value of the damage parameter which
could be related to logNf . This relationship is modelled by the following proposed function

m(ω) = m(Nf ) =
p

logNf
(3.3)

where p is a constant parameter. The mathematical relationship between ω and Nf is known
by the empirical reference curves (the Basquin equation for instance). In other words, the coef-
ficient p can be seen as a quality factor of both the manufacturing process of the element and
the material (internal defects for instance). Finally, the failure probability distribution of the
component takes the form

Pf = 1− exp

(

−
1

Ω0

∫

Ω

( logN

logNf

)

p

logNf dΩ

)

(3.4)

where Ω = V or Ω = A. In the case of a uniform distribution of the damage parameter ω over
the Ω0, Eq. (3.4) reduces to

Pf = 1− exp

(

−
( logN

logNf

)

p

logNf

)

(3.5)

For instance, Fig. 1a shows an example of two-dimensional failure probability distribution
according to Eq. (3.5), using the fatigue reference curve (ω − Nf ). Figure 1b illustrates the
reference curve ω −Nf along with the scatter band for Pf = 0.05 and Pf = 0.95 is shown.

Fig. 1. (a) Simulated two-dimensional distribution of the failure probability Pf ; (b) fatigue reference
curve ω −Nf with the fatigue scatter bands for Pf = 0.05 and Pf = 0.95

Crossing the two-dimensional distribution Pf (ω,N) by a horizontal plane Pf = const , the
fatigue reference curve ω−N for Pf = const is obtained. An important point is to realize that
the conventional reference curve σa−Nf obtained from experimental fatigue tests with the least
square method corresponds to Pf ≈ 0.63, if the experimental fatigue data (Nexp, σa) follow the
probability distribution expressed by Eq. (3.5), Fig. 1. This result comes from the exponential
form of the survival probability. This is discussed below.
The fatigue limit σaf is usually determined from experimental results by applying the stair-

case procedure that defines the median fatigue limit (it means for a failure probability of 0.5).
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This value is used in many probabilistic methods (Bomas et al., 1997, 1999; Delahay and Palin-
Luc, 2006; Flaceliere and Morel, 2004; Wormsen et al., 2007) that are focused on the fatigue limit
assessment. However, it must be noted that the conventional reference fatigue curve is identified
from experimental points (Nexp, σa) by the least square method (ASTM E739-91, 1998) which
unnecessary leads to results so that 50% of the experimental points (Nexp, σa) are on the left side
of the reference curve and 50% of the experimental points are on the right side. This feature comes

from the minimization of summed distances between the experimental fatigue lives N
(j)
exp and

the evaluated ones from the reference curve lives N
(j)
f , min

∑M
j=1(N

(j)
f −N

(j)
exp)2 (M is the total

number of specimens used to identify the reference curve, j is the subsequent index). Applying
failure probability distribution Eq. (3.5) to the reference specimens, i.e. N = Nf shows that the
reference fatigue curve (σa −Nf ) corresponds to a probability equal to Pf = 1− e

−1 ≈ 0.63.

4. Implementation of the two-dimensional probability distribution Pf for fatigue
life calculations

4.1. FEA and the proposed model

Let us assume that the cracks occurring on the free surface of the considered structural
element are responsible for failure (Ω = A and Ω0 = A0 in Eq. (3.4)). If the parameters of two-
dimensional probability distribution (3.4) are known, the procedure of the fatigue life assessment
for a structural element with a heterogeneous stress distribution is as follows:

• The free surface of the considered element is divided into sub-domains A(i); their sizes
allow an appropriate integration process (Fig. 2a)

• In each sub-domain A(i), any multiaxial stress state σ
(i)
kl (t) (where k, l are tensor inde-

xes) is reduced to an equivalent stress amplitude σ
(i)
eqa (where eqa means the equivalent

amplitude) by using a multiaxial fatigue crack initiation criterion

• The equivalent stress amplitude σ
(i)
eqa and the fatigue reference curve σa − Nf are used

for calculating the scale parameter logN
(i)
f for each sub-domain A

(i) (Fig. 2b). Then, the

survival probability distribution P
(i)
s is determined (Fig. 2b) as follows

P (i)s (N) = exp

(

−
1

A0

( logN

logN
(i)
f

)

p

logN
(i)
f A(i)

)

(4.1)

• For each fatigue life N, exponents of e natural logarithm are summed over all the sub-
domains A(i) and the survival probability distribution Ps(N) (Fig. 2c) for the whole struc-
tural element is obtained,

Ps(N) = exp

(

−
1

A0

i=k
∑

i=1

( logN

logN
(i)
f

)

p

logN
(i)
f A(i)

)

=
i=k
∏

i=1

P (i)s (N) (4.2)

• The fatigue life calculation Ncal is performed for Pf (Ncal) = 0.63. The fatigue life for any
other probability level can be calculated in a similar way.

It has to be noticed that the proposed method can be applied with any equivalent stress
assumption (i.e. multiaxial fatigue criterion). The equivalent stress is chosen to transform any
multiaxial stress state in a uniaxial one, which is supposed to generate an equivalent fatigue life
according to the chosen damage parameter.
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Fig. 2. Scheme of the model: (a) separated sub-domains A(i) of the structural element; (b) distributions

of survival probability P
(i)
s (N) of particular sub-domains against the fatigue reference curve;

(c) individual survival probability distributions P
(i)
s (N) in each sub-domain A(i) undergoing into

survival probability Ps(N) =
i=k
∏

i=1

P
(i)
s (N) of the structural element and failure probability distribution

Pf (N) = 1−
i=k
∏

i=1

P
(i)
s (N)

4.2. Identification of the parameters

Taking advantage of the empirical analytic equation of the reference Wöhler curve σa−Nf ,
the two-dimensional distribution given by Eq. (3.4) has only two parameters to be identified,
i.e. A0 and p. The reference surface area A0 is the free surface area of the specimen applied for
determining the reference Wöhler curve.

The parameter p characterizes the distribution of the fatigue life in the model. It can be
identified from the fatigue test results of specimens having the similar distribution of defects
(kind and morphology) as the considered element. However, the manufacturing qualities of
structural elements and specimens are usually different (the surface roughness for instance).
In such a case, the distribution parameters should be fitted on the basis of one series of tests
carried on a real element subjected to simple fatigue loadings. Such a procedure was used,
for example, by Delahay and Palin-Luc (2006) for the identification of the fatigue strength
probability distribution parameters. In the present paper, the authors apply different values
of the parameter p to find the best correlation between experimental fatigue lives Nexp and
the calculated fatigue lives Ncal. This is also an indirect way to quantify the sensitivity of the
proposed model to the value of p.

5. Experimental fatigue tests and results

Experimental results obtained from testing two steels with different specimen geometries were
used for analysing and verification of the proposed probabilistic method.

In the first set of experiments, cruciform specimens made of S355 J2G3 steel (Fig. 3 and
Table 1) with a central hole as stress concentrator (stress concentration factors in tension Kt
approaches to 3) were subjected to a biaxial fatigue loading (Karolczuk et al., 2007).

Cyclic properties of the tested steel, i.e. the relation between the number of cycles to fa-
ilure Nf and the stress amplitude σa (under load control) as well as parameters of the cyclic
hardening curve (εpa − σa under strain control) are given in Table 1 from tests on smooth spe-
cimens. The fatigue tests on notched specimens (Fig. 3) were carried out under force control
with: Fx(t) = Fxa sin(2πft), Fy(t) = Fya sin(2πft − δ) with the same frequency in each direc-
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Fig. 3. Geometry of a cruciform specimen made of S355 J2G3 steel

Table 1. Cyclic properties of S355 J2G3 steel under fully reversed tension for smooth specimens

σa = σaf (Nσ/Nf )
1/mσ εpa = (σa/K

′)1/n
′

A0

σaf [GPa] mσ Nσ [cycles] K
′ [MPa] n′ [–] [mm2]

204 8.32 1.426 · 106 1323 0.207 1256

Indices: af – fatigue limit at Nσ cycles, a – amplitude, p – plastic part

tion (f = 13Hz) and similar amplitudes Fxa and Fya with the phase shift δ = 180
◦ (Table 2).

Table 2 contains also the numbers of cycles to crack initiation Nk corresponding to the crack
length ak. The crack length ak is the length of the first registered crack. The crack lengths
were identified from pictures made with an optical microscope (magnification 7×) and a digital
camera (0.0085mm/pixel). The pictures of the specimen surface near the hole were periodically
taken in order to detect the number of cycles Nk when the crack initiation occurs and to analyse
the crack growth rate. The last photography without the visible crack was taken at N0 cycles,
which shows the measuring accuracy of the crack initiation life Nk (Table 2).

Table 2. Test conditions and results

Speci- d h Fxa Fya Nk ak N0 (no crack)
men [mm] [mm] [kN] [kN] [cycle] [mm] [cycle]

P02 3.0 1.40 13.30 13.10 39700 0.22 22500

P03 3.0 1.54 13.50 13.30 31100 0.37 20100

P04 3.0 1.86 13.55 13.30 60048 0.07 50400

P05 2.5 1.50 10.21 9.90 246695 0.25 225400

P07 3.0 1.75 11.20 10.80 140700 0.20 108200

P08 2.4 1.20 9.30 9.10 167050 0.10 156800

The second set of experimental results comes from the work of Fatemi et al. (2004). A
circumferentially notched round bar (Fig. 4) made of vanadium-based micro-alloyed forged steel,
in both as-forged (AF) and quenched and tempered (QT) conditions were subjected to a fully
reversed tension-compression loading. In the as-forged (AF) condition, two notch radii were
tested, R = 0.529mm and R = 1.588mm which generate the following stress concentration
factors in tension Kt = 2.8 and Kt = 1.8, respectively. Under the quenched and tempered (QT)
condition, only one specimen geometry with the notch radius R = 1.588mm (Kt = 1.8) was
tested. The parameters of the reference Manson-Coffin-Basquin curve are presented in Table 3.
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Fig. 4. Geometry of a round notched specimen, where R = 0.529mm (Kt = 2.8) or R = 1.588mm
(Kt = 1.8) (Fatemi et al., 2004)

Table 3. Cyclic properties of AISI 1141 steel in two conditions: as-forged (AF) and quenched
and tempered (QT)

εa = σ
′

f/E(2Nf )
b + ε′f (2Nf )

c εpa = (σa/K
′)1/n

′

A0

State E [GPa] σ′f [MPa] ε
′

f [–] b c K ′ [MPa] n′ [–] [mm2]

AF 200 1296 1.026 −0.088 −0.686 1205 0.122 162

QT 212 765 1.664 −0.041 −0.704 1133 0.134 162

The fatigue life of the notched and smooth (reference) specimens were defined as the number
of cycles endured until the specimen broke in two parts. However, Fatemi et al. (2004) observa-
tions carried out with a travelling microscope (with 30× magnification) show that macro-crack
growth life was not a significant part of the total life (Fatemi et al., 2004). Therefore, the number
of cycles up to crack initiation could be assumed equal to the total fatigue life.

6. Numerical simulations and results

The strain and stress distribution in the specimens were calculated using a 3D finite element
analysis with COMSOL software. In all the computations, a cyclic constitutive model with linear
kinematic hardening was applied. The material hardening was identified from the cyclic harde-
ning curve (from half-life hysteresis loops) expressed by the Ramberg-Osgood εpa = (σa/K

′)1/n
′

equation. The plasticity condition was defined by the conventional Huber-Mises-Hencky hypo-
thesis. Quadratic Lagrange elements (tetrahedrons order 2) with higher mesh density in the
vicinity of the notch were used in the computations. Because of both the symmetry of the lo-
ading and the geometry of the specimens, only 1/8 part of the cruciform specimens was modelled,
and 1/32 part of round notched specimen was modelled. A detailed analysis of the mesh size
influence on the fatigue life calculation has been performed. A different maximum size of the
finite element (MES) in the notch surface of the cruciform specimen (P02 in Table 2) has been
analysed. The results are shown in Table 4. The computed fatigue lives do not vary significantly
(up to 7.9%). To save computation time for further computation of other cruciform, specimens
MES = 0.15mm have been selected. Similar analysis has been performed for the round spe-
cimen whose results were obtained with MES = 0.10mm for R = 0.529mm (Kt = 2.8) and
MES = 0.20mm for R = 1.588mm (Kt = 1.8).

The reference curves (amplitudes of normal stress or strain versus lifetime) were obtained
under a simple loading condition, i.e. push-pull, which has generated a uniaxial stress state in the
smooth-reference specimens. The same kind of loading was applied to notched specimens where
the notch generated a multiaxial stress state. Because in both cases (i.e. the smooth reference
and notched specimens) the loadings were similar, the multiaxial stress/strain state at every
point in specimen volume was reduced to normal stress/strain as used in the reference curves.
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Table 4. Effect of maximum element size on stress and fatigue life calculation (for p = 580 and
Pf = 0.63)

Max Element
maxiA

(i)

[mm2]

Solution Ncal
Size (MES) time (Pf = 0.63) Ncal/43030
[mm] [s] [cycle]

0.10 0.0056 542 43030 1.000

0.15 0.0134 304 43337 1.007

0.25 0.0264 204 41565 0.966

0.30 0.0309 204 43734 1.016

0.40 0.0670 184 46418 1.079

Indeed, fatigue tests on theses specimens showed that the fracture plane was also perpendicular
to the maximum principal stress. Thus, the fatigue criterion of the maximum normal stresses
(cruciform specimens) or strains (round specimen) on the critical plane was assumed to be the
criterion of multiaxial fatigue crack initiation (Karolczuk and Macha, 2005).

The equivalent stresses or strains are calculated according to the following equations

σeq(t) = σn(t) = σij(t)ninj

εeq(t) = εn(t) = εij(t)ninj
(6.1)

where ni are the components of the unit normal vector to the plane experiencing the maximum
normal stress max

t,n
σn(t) or strain max

t,n
εn(t). Under the considered cyclic reversal loadings, the

equivalent stress/strain amplitude Eq. (6.1) at each point on the notch surface is equal to the
maximum principal stress/strain in the considered loading period. Owing to that, numerical
calculations become easier. Surfaces of the finite elements were understood as sub-domains A(i)

described in Section 2. Fatigue lives to crack initiation Ncal were calculated for three failure
probability levels: Pf = {0.05; 0.63; 0.95} and for different values of the p parameter (Figs. 5
and 6). The upper Pf = 0.95 and lower Pf = 0.05 bands of failure probability are marked
by plus (+) in Figs. 5 and 6. The fatigue life attained for the failure probability Pf = 0.63 is
indicated by a filled black circle (•). Two additional scatter bands (×2 and ×3) around the solid
line for the perfect result (Ncal = Nexp) consistency are also shown in Fig. 5a. For AISI 1141 steel
in both condition (AF) and (QT), the best agreement between the calculated and experimental
fatigue lives was obtained for p = 340 (Fig. 6b). It must be noted that independently on the
notch radius R (Fig. 5) and specimen state (AF) or (QT), the best agreement between Nexp
and Ncal was obtained for only one value of p (p = 340). Since the surface qualities of specimens
are similar in these cases, the obtained results are in agreement with the assumption that the
p coefficient is a manufacturing quality dependant factor. For S355 J2G3 steel, the best fatigue
lives correlation was attained for p = 580, see Fig. 5. A comparison Fig. 5a and Fig. 5b shows
the influence of parameter p on the calculated fatigue life and on the fatigue life range included
between Pf = 0.05 and Pf = 0.95. A greater value of p leads to a higher calculated fatigue life
Ncal(Pf = 0.63) and a lower calculated scatter band Ncal(Pf = 0.95)/Ncal(Pf = 0.05).

The results presented in Fig. 7 concerning S355 J2G3 steel subjected to push-pull loading (the
reference curve) show that for a large range of fatigue life the experimental points σa −Nf are
included in the scatter band defined by Pf = {0.05; 0.95}. Only for Nf > Nσ = 1.24 · 10

6 cycles
(Nσ corresponding to the experimental fatigue limit) the fatigue life scatters are greater than
the defined band because the applied reference curve is not able to capture asymptotic nature
of S-N curve tendency when N tends to infinity.
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Fig. 5. Comparison of the experimental fatigue lives Nexp with the calculated lives Ncal for (a) p = 400
and (b) p = 580 for the cruciform specimens in S355 J2G3 steel under out of phase (−180◦) biaxial

tension

Fig. 6. Comparison of the experimental lives Nexp with the calculated lives Ncal for (a) p = 200 and
(b) p = 340 for the notched round specimens in AISI 1141 steel under fully reversed tension

Fig. 7. Fatigue reference curve σa −Nf (S355 J2G3 steel) with experimental points and fatigue scatter
bands for Pf = 0.05 and Pf = 0.95 (p = 580)

7. Conclusions

The weakest link concept has been applied to simulate both the fatigue life and the failure
probability of structural elements under an inhomogeneous cyclic stress field. In the proposed
model, the shape of the probability distribution of the fatigue life for each link of the structural
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element is a function of the local damage parameters such as the equivalent stress or strain
amplitude. The introduced relation simulates the experimentally observed relationship between
the distribution shape of the fatigue life and the loading level. Proposed function (3.3) relates
the scale and shape coefficients of the Weibull distribution.
The presented probability distribution Eq. (3.4) has a general form. It can be used with

different fatigue damage parameters (stress, strain or energy) and also under a variable amplitude
loading.
The calculated fatigue lives Ncal for failure probability equal to 63% are well correlated with

the experimental fatigue lives Nexp for notched round specimens made of AISI 1141 steel (with
p = 340) independently of the notch radius and material state (QT or AF) and for the notched
cruciform specimens made of S355 J2G3 steel (with p = 580).
To compute the proposed probability distribution function given by (3.4) of the fatigue life,

the identification of only one additional parameter p is needed. This parameter can be seen as
a quality factor of both the element manufacturing process and the material (internal defects,
size and morphology for instance). Such a simple form is suitable for the considered two types of
notched specimens. However, it should be expected that other elements made of the same steels
but with different qualities (manufacturing process, surface roughness, etc.) would reveal other
values of the parameter p.
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36. Wormsen A., Sjödin B., Hrkegrd G. Fjeldstad A., 2007, Non-local stress approach for
fatigue assessment based on weakest-link theory and statistics of extremes, Fatigue Fract. Engng
Mater. Struct., 30, 1214-1227
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Modelowanie efektu gradient naprężeń na trwałość zmęczeniową przy zastosowaniu funkcji

bazującej na rozkładzie Weibulla

Streszczenie

W artykule zaprezentowano nową koncepcję uwzględnienia wpływu gradientu naprężeń na trwałość
zmęczeniową elementów konstrukcyjnych. Przedstawione podejście bazuje na koncepcji najsłabszego ogni-
wa, w której współczynnik kształtu rozkładu Weibulla jest funkcją lokalnego parametru uszkodzenia.
Zaproponowana funkcja symuluje obserwowany eksperymentalnie związek między kształtem rozkładu
trwałości zmęczeniowej a amplitudą naprężenia. Podejście takie umożliwia wyznaczenie globalnego roz-
kładu prawdopodobieństwa zniszczenia dla elementów z karbem w szerokim zakresie trwałości: 104-107

cykli. Dla celów porównawczych zaproponowane podejście zostało zastosowane do obliczenia liczby cykli
do inicjacji pęknięcia dla trzech poziomów prawdopodobieństwa, tj. 5%, 63% oraz 95%. Obliczone trwa-
łości zmęczeniowe zostały porównane z trwałością eksperymentalną otrzymaną dla próbek krzyżowych
z karbem oraz dla próbek cylindrycznych z karbem obrączkowym.
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