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Abstract This article is a continuation of previous work on the cohomology of Krichever-

Novikov algebras [18]. We extend here the main result of [18] to the non-algebraically

trivializable case and generalize it to higher dimensions. We note some consequences

and examples, and survey related topics.

Introduction

0.1 In string theory, elementary objects are strings evolving in space, sweeping out

real surfaces. Two dimensional conformal field theory describes the physics of such

strings by an action with conformal symmetry, leading to the realm of complex ge-

ometry. The symmetry Lie algebra admits a central extension (corresponding to an

anomaly on quantum level), called the Virasoro algebra. It is a central extension of the

Lie algebra of vector fields W (like Witt algebra) whose coefficient functions are Laurent

series C[z, z−1]. Questions about the existence and uniqueness of central extensions can

be answered studying the cohomology of the given Lie algebra.

The local point of view of interpreting the apparition of W in conformal field theory

is as the Lie algebra of symmetry of the circle (string). The global point of view looks

at it as the Lie algebra of vector fields on the punctured Riemann surface CP
1 \{0,∞}.

It is in this global interpretation that the Lie algebra (and also its central extension)

is called a Krichever-Novikov algebra. This point of view is easily generalized to other
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compact Riemann surfaces instead of CP
1 and more points. After seminal papers of

Krichever-Novikov [8] [9], Schlichenmaier and Schlichenmaier-Sheinman [14] [15] (more

references can be found in the latter articles) studied the cases of higher genus and more

punctures. Results in this direction include a Sugawara construction, a construction

of the sheaf of conformal blocks on moduli space and of a flat projective connection.

A nice introduction to these matters can be found in [13]. In the present article, our

goal is to study the generalization of this approach to conformal field theory to higher

dimensions, the first step being obviously the study of the Lie algebras of meromorphic

vector fields on complex manifolds X of dimension dim X > 1. It follows a more

technical introduction.

0.2 Let Σ be a compact connected Riemann surface of genus g, or alternatively a

complex smooth projective algebraic curve. Fix some distinct points {p1, . . . , pk} on Σ,

and denote by Σk the open Riemann surface or affine algebraic curve Σ \ {p1, . . . , pk}.
The holomorphic tangent bundle of Σk is trivial, because on an open Riemann sur-

face, all holomorphic vector bundles are holomorphically trivial. The algebraic tangent

bundle on the affine curve Σk is in general (even generically) not trivial.

Let Merk(Σ) denote the space of meromorphic vector fields on Σ, having possibly

poles of an arbitrary order in {p1, . . . , pk}. Let Hol(Σk) be the space of holomorphic

vector fields on Σk. We regard Hol(Σk) as space of vector fields having possibly poles of

arbitrary order or even essential singularities in {p1, . . . , pk}. As Σk is holomorphically

trivializable, Hol(Σk) can be holomorphically identified with the space of holomorphic

functions on Σk, but Merk(Σ) cannot in general be identified with the subspace of

meromorphic functions.

Being a space of sections of a coherent sheaf on a Stein manifold, Hol(Σk) carries

a canonical Fréchet, i.e. locally convex, complete, metrizable topology. This topology

can be identified with the topology of uniform convergence on compact sets by identi-

fication of holomorphic fields and holomorphic functions. The subspace Merk(Σ) can

be equipped with the induced topology, and is certainly a locally convex metrizable

topological vector space. It is not complete.

The main goal of the present article is to show that Merk(Σ) is dense in Hol(Σk)

and to study its consequences.

Theorem 1 Merk(Σ) is dense in Hol(Σk) in its induced topology.

0.3 In case Merk(Σ) can be identified with the subspace of meromorphic func-

tions in Hol(Σk) (this occurs for some special configurations of points {p1, . . . , pk},
namely for the associated divisor being a multiple of the divisor of the tangent line

bundle), the proof of the Theorem is fairly easy. The density result for functions instead

of vector fields is known since work of Behnke and Stein in 1943 [1] Satz 13, see e.g. [5]

p. 245 or [18] for a modern account. Whereas in [18] the special case of an algebraically

trivializable Σk is treated, the present article treats the general case.

As a corollary of this Theorem, the continuous cohomology of the two Lie al-

gebras are isomorphic. This establishes a weak (because continuous) version of the

Feigin-Novikov conjecture stating that Merk(Σ) has H∗
sing(Map(Σk, S3)) as its al-

gebraic cohomology. Here, Map(Σk, S3) is the topological space of continuous maps

from Σk to the 3-sphere S3 in the compact-open topology and H∗
sing(Map(Σk, S3))

is its singular cohomology. It is known since work of Kawazumi [7] that Hol(Σk) has

H∗
sing(Map(Σk, S3)) as its continuous cohomology.

0.4 Furthermore, we generalize the above Theorem in three directions: inspection

of the proof shows that the Theorem generalizes to manifolds X where the divisor,
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given by a union of codimension one subvarieties Y , where the meromorphic fields are

supposed to have poles is ample, the complex dimension 1 of Riemann surfaces being

inessential. But in dimension n > 1, the Lie algebra of holomorphic vector fields on

a Stein manifold X \ Y does not have any non-trivial (continuous) central extensions

cf. [19], so this also holds for the Lie algebra of meromorphic vector fields on X with

possible poles along Y .

Also, further inspection of the proof shows that any holomorphic vector bundle

having a short exact sequence like the one linking tangent and normal bundle of a

subvariety of C
N can be treated in exactly the same way. Furthermore, the algebraic

structure (here Lie algebra structure for the tangent sheaves) does not play a rôle:

the cohomological isomorphy result about dense subobjects applies equally well to

continuous Hochschild, continuous cyclic or any other continuous cohomology.

For example, as continuous cyclic cohomologies of the algebra A of holomorphic

functions on X \ Y and meromorphic functions on X having possibly poles on Y co-

incide, one is led to conjecture that the holomorphic current algebra A ⊗ g where g

is a simple, finite dimensional Lie algebra, should have an universal central extension

by Ωan, 1(X \ Y )/dA (where Ωan, 1(X \ Y ) denotes the Fréchet space of holomorphic

1-forms on X \ Y ) while the case of the meromorphic current algebra reduces to the

algebraic case. This is indeed the case as discussed in work with K.-H. Neeb [12].

Acknowledgements The author thanks K. H. Neeb, S. Nemirovski, O. Mathieu, L. Menichi,
A. Reiman and C. Sorger for discussion at different levels of progression of the present article.

Notations - conventions

We will benefit from viewing an algebraic variety X over the complex numbers

in some situations as a complex analytic variety Xan, i.e. instead of considering the

Zariski topology on the set X, we will consider the complex topology. Starting from

these two topologies, one can associate to X many interesting geometrical tools both

in the algebraic and in the analytic category. As all our algebraic varieties will be

smooth, Xan will be a complex manifold in the usual sense. This change of point of

view is sometimes called transcendental methods or GAGA theory after Serre’s famous

paper entitled “Géométrie algébrique et géométrie analytique”.

We will adopt the following notations in order to emphasize these different points of

view: for an algebraic variety X over the complex numbers, we will denote by OX the

algebraic structure sheaf, OX(X) its space of global sections on X, and more generally

F a coherent sheaf of OX -modules. For example, Ω1
X will denote the sheaf of regular

(i.e. Kähler) 1-forms.

Concerning the corresponding complex analytic variety Xan, we will denote by

Oan
X the structure sheaf of the complex analytic variety, i.e. the sheaf of holomorphic

functions on X. More generally, Fan will be a coherent sheaf of Oan
X -modules. For

example, Ωan
X will denote the sheaf of holomorphic 1-forms on X.

We will feel free to suppress the superscript “an” for the manifolds, i.e. for example

to write Σ (and Σk := Σ \ {p1, . . . , pk}) instead of Σan (resp. Σan
k ) for the projective

complex curve Σ viewed as a compact Riemann surface (resp. the affine complex curve

Σk viewed as an open Riemann surface).

The other exception from our convention concerns the tangent sheaf viewed as a

sheaf of (Lie algebras of) vector fields: along with TX , we will also denote the algebraic

tangent sheaf of X as Mer in case X is an affine variety obtained from a projective
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variety by extracting some subvariety. Furthermore, along with T an
X , we will also denote

the complex analytic tangent sheaf of Xan as Hol.

1 Continuous Lie algebra cohomology

In this Section, we show the fact that a dense Lie subalgebra of a topological Lie

algebra has isomorphic continuous cohomology. The following notions are understood

to be linear over the reals or the complex numbers.

1.1 Let g be a topological Fréchet nuclear Lie algebra. This means that the vector

space underlying the Lie algebra structure of g carries a topology (in which the bracket

is continuous), and that with respect to the latter it is a topological vector space which

is locally convex, metrizable and complete (the last three properties constitue what we

call Fréchet).

Furthermore, the topological vector space underlying g is supposed to be nuclear

which means that two rather natural topologies on the algebraic tensor of g with

another separated locally convex space (namely the ǫ and the π topology) coincide.

In this sense, the algebraic tensor powers of g carry a canonical topology. We write

g⊗g for the algebraic tensor product and for the topological tensor product (using the

canonical topology); the context decides which one we consider. We denote g⊗̂g the

completion of g ⊗ g (with respect to the canonical topology).

The space of continuous p-cochains Cp(g) of g (with values in the trivial g-module)

is the continuous dual (Λp(g))∗cont of the pth exterior power Λp(g) of g. Λp(g) is a

closed subspace of g⊗̂ . . . ⊗̂g
| {z }

p−times

and carries the subspace topology.

For c ∈ Cp(g), we define the usual coboundary operator

dc(ξ1, . . . , ξp+1) =
X

1≤i<j≤p+1

(−1)i+jc([ξi, ξj ], ξ1, . . . , ξ̂i, . . . , ξ̂j , . . . , ξp+1),

where ξ̂i means that ξi is omitted. d is surely continuous, but has no reason to be

a closed operator.

Finally, the pth continuous cohomology space of g is defined as usual to be

Hp(g) =
ker d : Cp(g) → Cp+1(g)

im d : Cp−1(g) → Cp(g)
.

As the image of d is in general not closed, the quotient topology on Hp(g) is in

general not separated and Hp(g) is here regarded only as a vector space.

1.2 Now let h →֒ g be a Lie subalgebra. We look at h as a topological Lie algebra

with its subspace topology. Thus, h is a metrizable, locally convex, nuclear topological

Lie algebra, but in general not complete.

As h is not complete, we change slightly the definition of continuous cochains for

h. Thanks to nuclearity, we still have a canonical topology on the algebraic tensor

powers of h, and we simply define the space of continuous p-cochains Cp(h) to be the

continuous dual (Λp(h))∗cont of the pth exterior power Λp(h) of h, where here Λp(h) is

a closed subspace of h ⊗ . . . ⊗ h
| {z }

p−times

and still carries the subspace topology.
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With these cochains, we define cohomology as above. As a remark after the main

lemma of the Section, we shall see that it does not matter whether to take completed

or non-completed tensor products for h in case h is dense in g. This is the situation

which is most important here.

1.3 We now come to the main lemma of this Section. Suppose given a Fréchet

nuclear Lie algebra g and a subalgebra h as above.

Lemma 1 If i : h →֒ g is dense in the subspace topology, then we have an isomorphism

of graded vector spaces

C∗(g) → C∗(h),

induced by i, and consequently an isomorphism of their continuous cohomologies.

Proof:

1) First let us consider the case p = 1. Here, the restriction map

i∗cont : C1(g) = g
∗cont → C1(h) = h

∗cont

is surjective by the Hahn-Banach Theorem on extension of continuous linear forms

and injective by density.

2) h ⊗ h ⊂ g⊗̂g is easily seen to be dense, thus the reasoning in 1) also applies for

p > 1. Reference for the used facts is found in [17], prop. 43.9, p. 441 and Ex. 43.2, p.

445. �

Remark: 1) This lemma handles classical cases like

V ectpol(S1) = span{en |n ∈ Z, [en, em] = (m − n)en+m} ⊂ V ect(S1),

V ect(S1) being the Lie algebra of smooth vector fields on the circle S1, and shows thus

that their continuous cohomologies coincide. The same is true for C[z] d
dz ⊂ C[[z]] d

dz ,

etc.

2) In case h ⊂ g is dense, it does not matter whether to take completed tensor

products or ordinary tensor products in the definition of continuous cochains (for h

and g !). Indeed, in any case the non-completed products are dense in the completed

one’s, and passing by the completed versions, one establishes the isomorphism of vector

spaces as in the lemma. This is an important point, because it means that continuous

cohomology is independent on the completion (which is purely topological), whereas

homology is dependent on whether to take completed or ordinary tensor products.

2 Density of meromorphic in holomorphic vector fields

In this Section, we show the density of meromorphic vector fields in holomorphic vector

fields, showing in conjunction with the previous Section that their continuous Lie alge-

bra cohomologies are isomorphic. This gives an affirmative answer to Feigin-Novikov’s

conjecture in the framework of continuous cohomology.

2.1 Let X be a connected, compact, complex manifold and Y ⊂ X a complex,

codimension 1 submanifold which is not necessarily connected. Suppose Y is the sup-

port of an effective ample divisor DY . Let LDY
be its associated line bundle. By

definition, LDY
is an ample line bundle, and therefore Lm

DY
is very ample and can be

used to embed X into projective space. But for the bundle Lm
DY

= LmDY
and the
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divisor mDY also has support Y . Hence we may assume that our divisor is already

effective and very ample.

Then X embeds into some projective space P
N via an embedding i : X →֒ P

N . One

way to give the embedding i is by fixing a basis of the global sections of the bundle

and evaluating them at the points. We can take as first element of the basis the section

which has as divisor exactly DY (recall DY is very ample). Then H is the hypersurface

defined by the vanishing of the first coordinate. Then i(X)∩H = i(Y ), and we obtain

that X \Y is embedded as an affine subvariety in C
n = P

n \H. X is thus a projective,

complex algebraic variety and the affine subvariety X \ Y ⊂ C
n is Stein.

An example for this situation is given by a compact connected Riemann surface

Σ as X, p1 + . . . + pk = DY meaning that Y = {p1, . . . , pk} for some distinct

points p1, . . . , pk ∈ Σ (k ≥ 1), and the associated affine algebraic curve X \ Y =

Σ \ {p1, . . . , pk} =: Σk.

2.2 Now, denote by Hol(X \ Y ) the Lie algebra of holomorphic vector fields on

the Stein manifold X \ Y , and MerY (X) the Lie algebra of meromorphic vector fields

on X with possible poles along Y . General GAGA theory shows that MerY (X) can

be identified with the Lie algebra of rational vector fields on X, regular on X \ Y .

In the example, let Merk(Σ) denote the space of meromorphic vector fields on Σ,

having possibly poles of an arbitrary order in {p1, . . . , pk}. Let Hol(Σk) be the space

of holomorphic vector fields on Σk. As Σk is holomorphically trivializable, Hol(Σk)

can be holomorphically identified with the space of holomorphic functions on Σk and

carries the topology of uniform convergence on compact sets which is Fréchet nuclear.

The subspace Merk(Σ) can be equipped with the induced topology. In general, any

space of sections of a holomorphic vector bundle carries a canonical Fréchet topology

given locally componentwise by uniform convergence on compact sets.

Theorem 1 MerY (X) is dense in Hol(X \ Y ) in its induced topology.

The following corollary is the main result of this paper:

Corollary 2

H∗(MerY (X)) ∼= H∗(Hol(X \ Y )),

in particular

H∗(Merk(Σ)) ∼= H∗(Hol(Σk)).

Remark: 1) The corollary permits to give a detailed description of H∗(Merk(Σ)),

because Kawazumi [7] showed a vector space isomorphism

H∗(Hol(Σk)) ∼= H∗
sing(Map(Σk, S3))

and the latter space is a Hopf algebra which will be described more explicitely in

§3.1. Here, Map(Σk, S3) denotes the topological space of continuous maps from Σk to

the 3-sphere S3 with the compact-open topology, and H∗
sing(Map(Σk, S3)) its singular

cohomology.

2) This corollary answers Feigin and Novikov’s conjecture cf. [11] in the positive, in

the setting of continuous cohomology. They conjectured the description of the cohomol-

ogy algebra of Merk(Σ) given above. The H2-part of the conjecture (in the algebraic

setting) follows from Skryabin’s article [16].

2.3 The proof of the Theorem proceeds with two lemmas:
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Lemma 2 A holomorphic field X on a Stein manifold M can be lifted to a holomorphic

field X̃ on C
N for some N ∈ N. In particular, this is true for M = X \ Y or M = Σk

in the above notations.

Proof:

In this lemma, all notions refer to the holomorphic category.

It is known that a Stein manifold M can be embedded as a closed submanifold i : M ⊂
C

N for some N , [4] Ch. V, §1.1. The lemma follows now from the surjectivity of the

restriction map Oan
CN (CN ) → Oan

M (M) in case of a closed subvariety M ⊂ C
N [4] thm.

4, Ch. V, §4, because the components of the vector field can thus be extended to C
N .

�

By this first lemma, we can lift our holomorphic field X from Σk to a holomorphic

field X̃ on C
N . There, it is just a holomorphic function, and can be approximated

uniformly on compact sets by polynomial functions, or vector fields on C
N .

Using the map

H0(CN , TCN ) → H0(CN , i∗(i
∗TCN )) ∼= H0(X \ Y, i∗TCN ),

where i : X \Y →֒ C
N is the embedding, we can restrict these polynomial vector fields

on C
N to meromorphic vector fields on X \ Y , but still having values in the tangent

space of C
N restricted to X \ Y , i.e. to elements of i∗(TCN ). Let us show in a second

lemma that one can project these fields from the tangent space of C
N to the tangent

space of X \ Y :

Lemma 3 The sequence

0 → TX\Y → i∗TCN → NCN /(X\Y ) → 0

defining the normal bundle of X \ Y splits (in the algebraic category), and thus there

is a way to project an algebraic field with values in i∗TCN to an algebraic vector field

on X \ Y .

Proof:

As indicated in parenthesis, the proof of this lemma takes place entirely in the algebraic

category, and all notions refer to this category.

The reason for the sequence of sheaves of OX\Y -modules

0 → TX\Y → i∗TCN → NCN /(X\Y ) → 0

to be split is clearly that X\Y is affine. Indeed, this sequence is equivalent to a sequence

of B-modules, where Spec(B) = X \ Y ,

0 → TX\Y → TCN ⊗A B → NCN /(X\Y ) → 0.

where A = C[t1, . . . , tN ]. This last sequence defines an element in

Ext1B(NCN /(X\Y ), TX\Y ).

But as NCN /(X\Y ) and TX\Y are finitely generated projective B-modules1, this Ext-

group must be zero, hence the splitting result. �

1 This is easily proved directly in the sheaf setting from the definition of projectivity by
passing to stalks and using the fact that the modules are locally free, see for example (for
this “local criterion of projectivity” in a general commutative algebra setting) [2] p. 109, §5.2,
Theorem 1
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This completes the proof of the Theorem. �

2.4 The above Theorem and corollary can be seen as a GAGA Theorem stating

that the continuous cohomology of a Lie algebra defined on the algebraic variety (i.e.

the Lie algebra MerY (X) of regular vector fields on X\Y ) is isomorphic to the one of a

Lie algebra defined on the corresponding complex analytic manifold (i.e. the Lie algebra

Hol(X\Y ) of holomorphic vector fields on X\Y ). The Lie algebras MerY (X) constitue

from our point of view the natural generalization of Krichever-Novikov algebras to

higher dimensions. Notice that the continuous Lie algebra cohomology of Hol(X \ Y )

is known in principle (to the same extend as in the case of differentiable vector fields)

thanks to [19], cf. §3.4 where we compute an example explicitely.

3 Consequences and examples

As a consequence of corollary 2, we will discuss the cohomology of Krichever-Novikov

algebras and central extensions of higher dimensional analogues of Krichever-Novikov

algebras in this Section.

3.1 As indicated in the introduction, Krichever-Novikov, generalized later by

Schlichenmaier, Schlichenmaier-Sheinman, invented a global approach to conformal

field theory by defining central extensions on the one hand of the Lie algebra of mero-

morphic vector fields Merk(Σ) on a compact Riemann surface Σ with possible poles

in k distinct points p1, . . . , pk ∈ Σ, and of the corresponding current algebra of mero-

morphic functions Mer(Σk, g) on Σk with values in a simple complex Lie algebra g on

the other hand. The central extension of Merk(Σ) is given by a cocycle of the type

cω
0 (f, g) =

c

24πi

Z

Σk

„

1

2

˛

˛

˛

˛

f g

f ′′′ g′′′

˛

˛

˛

˛

− 2R

˛

˛

˛

˛

f g

f ′ g′

˛

˛

˛

˛

«

dz ∧ ω.

Here ω is a holomorphic 1-form on Σk, f, g are coefficient functions of meromorphic

vector fields in Merk(Σ) and R is a projective connection assuring by its transfor-

mation behaviour that the term in parenthesis is a globally defined holomorphic 1-

form. These cocycles (for ω running through H1(Σk)) form a basis for the second

cohomology of Hol(Σk) [7], so by corollary 2 this is also true for Merk(Σ). Actually

H∗
sing(Map(Σk, S3), the singular cohomology algebra of the space of smooth maps from

Σk to the 3-sphere S3, is a Hopf algebra generated by dim(H1(Σk)) classes in degree

two and one class (called θ) in degree three. Let us describe this latter class in the next

paragraph.

3.2 Three dimensional cohomology corresponds to (equivalence classes of) crossed

modules, see for example [20] [22], so here we present a crossed module representing the

cohomology class θ ∈ H3(Hol(Σk)). Indeed, the Lie algebra Hol(Σk) acts naturally

by Lie derivative on differential forms on the universal covering U of Σk (i.e. by the

uniformization Theorem either the complex plane C or the hyperbolic half-space H).

We can define a crossed module by its associated 4-term exact sequence and the latter

is obtained by splicing together an abelian extension of Hol(Σk) by the space of holo-

morphic 1-forms Ωan, 1(U) and a short exact sequence of Hol(Σk)-modules involving

Ωan, 1(U): the 2-cocycle [21], evaluated on f, g ∈ Hol(Σk),

c1(f, g) =

˛

˛

˛

˛

f ′ g′

f ′′ g′′

˛

˛

˛

˛

− T

˛

˛

˛

˛

f g

f ′′ g′′

˛

˛

˛

˛

+ (R −
1

2
T 2)

˛

˛

˛

˛

f g

f ′ g′

˛

˛

˛

˛
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with values in Ωan, 1(U), where R is a projective and T an affine connection on the

open Riemann surface U (and where the second and third term serve to make the

formula a globally defined 1-form), defines an abelian extension

0 → Ωan, 1(U) → Ωan, 1(U) ×c1
Hol(Σk) → Hol(Σk) → 0.

The de Rham sequence

0 → C → Ωan, 0(U)
ddR→ Ωan, 1(U) → 0

is an exact sequence of Hol(Σk)-modules. The splicing together of the two sequences

gives

0 → C → Ωan, 0(U)
ddR×0
→ Ωan, 1(U) ×c1

Hol(Σk) → Hol(Σk) → 0

where Ωan, 1(U) ×c1
Hol(Σk) acts on Ωan, 0(U) via the Lie derivative of the second

factor and Ωan, 0(U), Ωan, 1(U) are abelian Lie algebras. The compatibility conditions

for a crossed module (cf [22]) are easily checked. The crossed module evidently works

- mutatis mutandis - for meromorphic vector fields.

3.3 The Lie algebras MerY (X) in the setting of §2.1 with dim(X) > 1 are natural

analogues of Krichever-Novikov algebras in higher dimensions. Unfortunately, they do

not posess non-trivial continuous central extensions:

Theorem 3 Let X and Y be as in §2.1 with dim(X) > 1. Then the Lie algebra

MerY (X) does not posess any non-trivial central extension given by a continuous co-

cycle.

Proof:

This follows from corollary 2 in the following way: indeed, first of all

H∗(MerY (X)) ∼= H∗(Hol(X \ Y )).

Then the main result of [19] implies that the continuous cohomology of H∗(Hol(X\Y ))

is isomorphic to the singular cohomology H∗
sing(Γ (B)) of the topological space (with

respect to the compact-open topology) Γ (B) of continuous sections of some bundle B

on X \Y with typical fiber Xn. Xn is a simply connected manifold which depends only

on the dimension n of X and which incarns just some fixed rational homotopy type.

We won’t give the definition (see [3] p. 79) of Xn here. For example, X1 = S3 cf. §2.2,

and in general, Xn is known to have no rational cohomology (strictly) below 2n + 1,

see [3] p. 89. From a rational model for (the singular cohomology of) Γ (B) it is known

(see [6] §3.1) that the degrees from H∗
sing(Xn) and H∗

sing(X \ Y ) substract to give the

degree of H∗
sing(Γ (B)), but in order to descend as much as possible, the lowest degree

in H∗
sing(X \ Y ) is 2n + 1 and the highest degree in H∗

sing(X \ Y ) is n, so that one can

descend at most to n + 1. When n > 1, this is strictly greater than 2, meaning that

there is no continuous 2 cohomology. �

3.4 As a last application, let us compute the cohomology of MerY (X) in one

easy example with dim(X) = n = 2.

Let X be the projective algebraic variety CP
1 ×CP

1. Its projectivity is most easily

seen by the Segré embedding X →֒ CP
3 given in homogeneous coordinates by forming

all possible products of the coordinates on the two factors:

([z1 : z2], [w1 : w2]) 7→ [z1w1 : z1w2 : z2w1 : z2w2]
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Let Y be the divisor Y := {[0 : 1]}×CP
1∪{[1 : 0]}×CP

1∪CP
1×{[0 : 1]}. Then X \Y

is the Stein manifold X \ Y = C
∗ × C = {(z, w) ∈ C

2 | z 6= 0}. Thus MerY (X) is the

Lie algebra of vector fields on CP
1×CP

1 having possible poles along Y and Hol(X \Y )

is the one of holomorphic vector fields on C
∗ × C. Obviously, X \ Y is homotopically

equivalent to the unit circle S1, so that we have

H∗(MerY (X)) ∼= H∗(Hol(X \ Y )) ∼= H∗
sing(Map(S1, X2)).

Here X2 is the simply connected manifold of dimension 8 from §3.3 defined in [3] p. 79

having the following singular cohomology spaces [3] p. 89

H∗
sing(X2) =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

0 for ∗ ≤ 4

C
2 for ∗ = 5

0 for ∗ = 6

C for ∗ = 7

C
2 for ∗ = 8

0 for ∗ ≥ 9

All products and Massey products on H∗
sing(X2) are trivial. As X2 is homotopically

equivalent to a reduced suspension, Theorem 27 of [10] (which is due to Sullivan and

Vigué in our framework) shows that the graded vector space H∗
sing(Map(S1, X2)) is iso-

morphic to the graded vector space of tensor powers on H∗
sing(X2) (i.e. the Hochschild

homology of an algebra with zero product). This gives a clear picture of the continuous

cohomology of H∗(MerY (X)).

4 Generalizations

In this Section, we investigate generalizations of Theorem 1, namely the density of

meromorphic sections of a vector bundle E on a complex manifold X, having poles on

a submanifold Y given by an ample divisor, in the holomorphic sections of E on X \Y .

4.1 Now let us generalize from vector fields to sections in an arbitrary vector

bundle. For this, we maintain the above setting from §2.2 for Y ⊂ X.

Let Ean be a holomorphic vector bundle on X. As X is projective, general GAGA

theory affirms that Ean can be identified with an algebraic vector bundle E on the

algebraic variety X. We assume that there is an algebraic vector bundle F on P
N , on

C
N algebraically trivial2, such that under the embedding i : X → P

N , E becomes a

subbundle of F . This gives rise to the short exact sequence

0 → Ean → i∗F an → Qan → 0 (1)

of sheaves of sections on X \ Y (Qan denotes the sheaf of sections of the quotient

bundle). Note that it is not important whether Ean is a subbundle or a quotient bundle

of some holomorphic vector bundle on P
N , i.e. the condition of the existence of

0 → Ian → i∗F an → Ean → 0 (2)

instead of the sequence (1) is also sufficient for the application of our methods.

2 This is automatic: indeed, by the celebrated Theorem of Quillen and Suslin (1976), any
finitely generated projective module over C[t1, . . . , tN ] is free, meaning that any algebraic
vector bundle over CN is algebraically (globally) trivial.
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Indeed, as X \ Y is affine, the short exact sequence of sheaves gives rise to a short

exact sequence of global sections, and in any case, we can either include or lift a section

of Ean on X \ Y to one of i∗F an on X \ Y .

The second lemma from Section 2 stays the same - mutatis mutandis - and hence

the proof of Theorem 1 remains unchanged. Thus, denoting Ean(X \ Y ) the space of

sections of Ean (i.e. of holomorphic sections of E) on the affine variety X \ Y , and

E(X \ Y ) the space of sections of E on X \ Y (which is the space of regular sections

of E on X \ Y or meromorphic sections of Ean on X with possible poles along Y ), we

get:

Theorem 4 Let Y ⊂ X be as in §2.1, and let E denote an algebraic vector bundle

the affine algebraic variety X \ Y . Assume that there is an algebraic vector bundle F

on P
N such that one of the sequences (1) or (2) holds.

Then, E(X \ Y ) ⊂ Ean(X \ Y ) is dense (in the induced topology).

Corollary 5 Let Σ and Σk be as in Section 2.

The subspace of meromorphic 1-forms on Σ with possible poles on {p1, . . . , pk} (or

Kähler differentials on the algebra O(Σk) of regular functions on Σk) are dense in the

holomorphic 1-forms on Σk (in the subspace topology).

Indeed, we can take in this case the dual sequence of the sequence defining the

normal bundle.

There is a natural generalization of the above corollary to higher dimensions in the

setting of §2.1.

4.2 We won’t elaborate the third direction of generalization of the density result,

namely, the application to other continuous cohomologies (with trivial coefficients as in

our Lie algebra cohomology), like the continuous Hochschild cohomology of the algebra

of meromorphic resp. holomorphic functions in the above setting. It is only important

in this perspective to deal with cohomology and to have an explicit resolving functor

of the derived functor in question. The resolving functor should be built on tensor

products, and the continuous cohomology should consist in changing from algebraic

cochains to continuous cochains. In this framework, the necessary modifications to

be carried out seem clear to us. In particular, in view of the density Theorem for

meromorphic in holomorphic functions, the foregoing considerations show for example

the following Theorem:

Theorem 6 Continuous Hochschild and cyclic cohomology of O(Σk) (i.e. the algebra

of regular functions on Σk) and of Oan(Σk) (i.e. the algebra of holomorphic functions

on Σk) are isomorphic.
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