
HAL Id: hal-01057731
https://hal.science/hal-01057731

Submitted on 25 Aug 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Enhanced Graph Rewriting Systems for Complex
Software Domain

Cédric Eichler, Thierry Monteil, Patricia Stolf, Luigi Alfredo Grieco, Khalil
Drira

To cite this version:
Cédric Eichler, Thierry Monteil, Patricia Stolf, Luigi Alfredo Grieco, Khalil Drira. Enhanced Graph
Rewriting Systems for Complex Software Domain. Software and Systems Modeling, 2016, 15 (3),
pp.685-705. �10.1007/s10270-014-0433-1�. �hal-01057731�

https://hal.science/hal-01057731
https://hal.archives-ouvertes.fr

Software & Systems Modeling manuscript No.
(will be inserted by the editor)

Enhanced Graph Rewriting Systems for Complex Software Domains

Dynamic Software Architecture, Non-Functional Requirements And Correctness By

Construction

Cédric Eichler · Thierry Monteil · Patricia Stolf · Alfredo Grieco · Khalil Drira

Received: date / Accepted: date

Abstract Methodologies for correct by construction recon-

figurations can efficiently solve consistency issues in dy-

namic software architecture. Graph-based models are appro-

priate for designing such architectures and methods. At the

same time, they may be unfit to characterize a system from

a non functional perspective. This stems from efficiency and

applicability limitations in handling time-varying character-

istics and their related dependencies. In order to lift these

restrictions, an extension to graph rewriting systems is pro-

posed herein. The suitability of this approach, as well as the

restraints of currently available ones, are illustrated, anal-

ysed and experimentally evaluated with reference to a con-

crete example. This investigation demonstrates that the con-

ceived solution can: (i) express any kind of algebraic de-

pendencies between evolving requirements and properties;

(ii) significantly ameliorate the efficiency and scalability of

system modifications with respect to classic methodologies;

(iii) provide an efficient access to attribute values; (iv) be

fruitfully exploited in software management systems; (v) guar-

antee theoretical properties of a grammar, like its termina-

tion.

Researches presented in this paper have been partially funded by the

ANR in the context of SOP project ANR-11-INFR-001

C. Eichler · T. Monteil · K. Drira

CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France

E-mail: {author name}@laas.fr

C. Eichler · P. Stolf

IRIT; 118 Route de Narbonne, F-31062 Toulouse, France

E-mail: {author name}@irit.fr

C. Eichler · T. Monteil · P.Stolf · K. Drira

Univ de Toulouse, UPS F-31400, INSA, F-31400,

UTM, F-31100 Toulouse, France

A. Grieco

Department of Electrical and Information Engineering

Politecnico di Bari,

Via Orabona 4 - 70125, Bari, Italy

Keywords Constrained and attributed rewriting systems ·

Graph rewriting systems · Non-functional requirements ·

Dynamic software architecture · Correctness by construc-

tion.

1 Introduction

Dynamic software architectures enable adaptation in evolv-

ing distributed systems [14, 23]. Their description cannot be

limited to a unique static topology, but it has to encompass

the entire scope of possible configurations [20]. This scope

is characterized by an architectural style, qualifying what is

correct and what is not. Once this distinction made, system

transformations themselves must be specified to depict their

applicability conditions and effects. A crucial undesirable

implication of these evolutions is a potential loss of correct-

ness, the system withdrawing from the scope of consistency.

Besides correctness, the system has evolving functional

and non-functional requirements, which are tightly linked

to its appropriateness or efficiency. For example, configura-

tions can be evaluated with reference to quality of service,

energy consumption, and robustness to software or machine

breakdowns. These objectives are potentially concurrent. In

fact, deploying more software components or using more

machines may ameliorate robustness but worsen energy con-

sumption. The satisfaction of an objective depends on the

properties of each software component, such as the machine

it is deployed on, and the components reachable from it. In

turn, those characteristics are dynamic and may be interde-

pendent. The set of entities accessible through a component

of the system, for example, recursively depends on the ele-

ments accessible through the components reachable in one

hop. Said set is prone to evolve as components are deployed

2 C. Eichler et al.

or terminated.

Hence, modeling a system to ease its management car-

ries two particular aspects which are usually considered sep-

arately [38]: correctness and appropriateness with regard to

functional and non-functional requirements. These concerns

motivate the need for suitable description languages and for-

malisms avoiding ambiguities for correct architectural de-

sign, management and analysis.

Formal unambiguous methods are necessary to study the

consistency of a system at a given time, i.e., its compliance

to an architectural style. Several ways of doing so have been

developed in the literature. The most immediate approach,

checking the consistency of the system at run-time, may lead

to combinatorial explosions and the necessity of roll-backs if

it is discovered that the system is in an inconsistent state. To

efficiently tackle correctness in the scope of dynamic recon-

figuration, correctness by construction [35] through formal

approaches have emerged [4, 16, 6]. Based on formal proofs

and reasoning in design-time, they guarantee the correct-

ness of a system, requiring little or no verifications in run-

time. A way to achieve such proofs is to investigate the prop-

erties of transformations with regard to consistency preser-

vation, so as to ensure that if a transformation is applicable

on a correct configuration its result is another correct con-

figuration.

Modelling dynamic systems with graph-based method-

ologies has a long tradition [26, 27, 17, 5, 32, 13]. As generic

models, graphs may be used to represent a broad range of

systems according to diverse architectural views. Graph rewrit-

ing techniques allow to elaborate style-based frameworks

for the specification of dynamic systems granting correct

by construction, style-preserving, evolutions. However, they

exhibit restraints critically weakening the possibility of as-

sessing a configuration appropriateness when considering

non-simplistic systems.

With reference to a concrete example, this article first

highlights limitations of currently available graph based meth-

ods in describing system properties and their inter depen-

dencies. The running example, known as DIET12 [9], con-

sists in a hierarchical load balancer for dispatching jobs over

a distributed infrastructure.

A formal extension of graph rewriting systems is then

proposed to lift these shortcomings. The pivotal features of

this enhancement are: mutators, admissible relationships spec-

ification, and constraint oriented encoding. It is demonstrated

1 Distributed Interactive Engineering Toolbox
2 Sources and further information are available at http://graal.ens-

lyon.fr/DIET

that the proposed solution brings three main beneficial ad-

vantages with respect to classic graph rewriting approaches.

First, experimental results show that the proposed solu-

tion is significantly more efficient and scalable than existing

one with regard to attribute modifications.

Second, characteristics of the system can be more effi-

ciently assessed by combining evaluation on demand and/or

update on modification. A property can be evaluated when-

ever its value has to be known. To avoid frequent evalua-

tions, this value can also be kept in memory and updated

whenever it changes. The choice between these two options

rely on the relatives complexities and frequencies of updates

and evaluations.

Third, the model allows to quickly grasp the appropri-

ateness of a configuration, identify objectives that can be

ameliorated, and component implying constraints violation.

Therefore the management of the system and its evolutions

is facilitated.

The rest of the paper is articulated as follows: exist-

ing approaches and their main features are illustrated in the

next section. The running example, DIET, is presented in

Sec. 3. Section 4 introduces the proposed formal extension

of classical graphs and graph-grammars related theory. Sec-

tion 5 exploits this enhanced model to characterize DIET,

and demonstrates its fitness for appropriateness evaluation

and system management. Experimental results regarding the

efficiency and the scalability of the proposed method are

presented and discussed in Sec. 6. Finally, Sec. 7 is dedi-

cated to conclusion and outlooks.

2 Related Works

2.1 Language-Based Approaches

Architecture Description Languages (ADL) [30, 2, 15, 29]

have have been widely used to model software systems [28,

33, 39]. Thanks to a rigorous syntax and semantic, they al-

low the definition of architectural entities and relations, as

well as the description of the structural and behavioral prop-

erties and constraints of a system. However, such languages

usually focus on the description of architectural instances,

whereas dynamic aspects have been mildly studied [21].

Darwin [29] and ACME [15] only allow component repli-

cation and optional components/connections, respectively.

Dynamic-Wright [3] adds evolving capabilities to the lan-

guage Wright [2], limiting itself to predefined dynamics.

The system should have a finite number of configurations

and reconfiguration policies known in advance.

Enhanced Graph Rewriting Systems for Complex Software Domains 3

2.2 Model-Based Approaches

General-purpose modeling techniques can provide efficient

means for handling dynamism, thanks to the definition of

reconfiguration rules driving the evolution on an application

in run-time. They furnish very intuitive and visual formal

or semi-formal description of structural properties [8]. De-

signing and describing software models using UML, for ex-

ample, is a common practice in the software industry. UML

provides a standardized definition of system structure and

terminology, while facilitating a more consistent and broader

understanding of software architecture [36]. Nevertheless,

the generic fitness of model-based approaches implies some

limitations in describing specific issues like behavioral prop-

erties. Therefore, they often require the adoption of ad hoc

description languages [37, 39] to map architectural concepts

into the visual notation of a model (e.g., UML) [27, 22].

Moreover, in spite of their wide acceptance, UML-based de-

scriptions appear to lack formal tools for efficiently guar-

anteeing consistency, due to the inherent semi-formalness of

UML.

2.2.1 Graph-Based Approaches

Among model-based approaches, graph-based methods are

appropriate for conceiving correct by construction frame-

works. Graphs and graphs rewriting have been successfully

applied for modeling structural constraints and properties of

a vast range of systems in multiple fields, including soft-

ware architectures. As a generic model, graphs may be used

to represent different architectural views, be it component-

based [13], service-based [5], event-oriented, or even human

applications [32]. Furthermore, this genericness allows, sim-

ilarly to approaches combining languages- and model-based

solutions, the use of graphs to conduct adaptation in systems

described with UML.

Within graph-based approaches, a configuration is rep-

resented by a graph and graph rewriting rules can express

horizontal or vertical transformations, i.e. reconfigurations

or refinements. Architectural styles can be characterized by

either a type graph [40, 5] or a graph grammar [18, 17]. The

first suffers from the same lack of expressiveness as UML-

based methods. Graph grammars offer a generative defini-

tion of the scope of correctness, where graph rewriting rules

have two distinct values. They intervene in both the char-

acterization of an architectural style as part of a rewriting

system and in the specification of consistency preserving re-

configuration rules [17]. This fitness for designing correct

by construction transformations is a key motivation for the

adoption of graph grammars as a modeling tool of dynamic

software architectures.

2.2.2 Attributed Graphs

The very first thing to consider with graph-based models is

the definition of attributes, representing the basic properties

of a system element. The most complex solution, adopted

by GROOVE3, is to consider attributes as special vertexes of

the graph [12]. In particular, their domain of definition and

operations are defined in the form of a many sorted algebraic

signatures [11] SIG, thus viewing attributes as elements of a

SIG-algebra [12]. A direct implication is a natural manipu-

lation of attributes using predefined operators and their addi-

tion or deletion as regular vertexes of the graph. This mod-

ularity does not come without drawbacks. Graph rewriting

rules rely on finding graph morphisms, a time-consuming

problem. As a consequence, it first seems inefficient to in-

crease the size of the input graphs.

In a simpler solution, each elements of the graph, i.e.,

vertexes and edges, is assigned a list of couples represent-

ing attributes along with their domains of definition [32]. To

allow attribute modifications, graph transformation environ-

ments relying on this model usually allows the specification

of changes within or alongside a rule. AGG4 is a well es-

tablished graph transformation environment. It possesses in

particular an efficient transformation engine that can be used

on its own. It supports a large range of verification tech-

niques applied to attributed and typed graph grammars. At-

tribute modifications can be specified within a rule. GMTE5

is an other engine that handles graph matchings and trans-

formations. It provides specialized features such as inexact

matching and connection instructions. Modification instruc-

tions, specified alongside a rule, allow attribute modifica-

tions.

In both approaches, a rule can only modify an attribute

within its scope, i.e., that appears in the rule. This leads to

an increased number of rule applications. In particular, this

may create a domino effect when changing an attribute re-

cursively impact a chain of interdependent ones.

Variable attributes are usually considered in graph rewrit-

ing rules alone. However, it may occur in real systems that

the value of an attribute is unknown, due to a lack of infor-

mation or the postponing of a decision. Consequently, at-

tributes of the conceptual graph modeling the system state

at a given time should also be variable.

A novel formalism is presented in the sequel of the pa-

per. It mitigates these restraints and makes graph rewriting

systems able to efficiently cope with functional and non-

functional requirements in evolving contexts.

3 http://groove.cs.utwente.nl/
4 AGG: http://tfs.cs.tu-berlin.de/agg.
5 GMTE: http://homepages.laas.fr/khalil/GMTE

4 C. Eichler et al.

3 Illustrative Example and Problem Statement

3.1 Distributed Interactive Engineering Toolbox

In order to clarify the issues addressed in this article, a prac-

tical example is taken from SysFera-DS6, an industrial so-

lution for federating and managing hybrid HPC environ-

ment. DIET [9] is a hierarchical load balancer for dispatch-

ing computational jobs over a distributed infrastructure, like

a grid or a cloud. This example is studied with regard to hor-

izontal transformations applied to a component-based view.

Its architecture is based on a set of agents: Master Agents

(MA) manage pools of computational SErver Deamons (SED)

via none, one or several strati of Layer Agents (LA). SEDs

can achieve specialized computational services. Communi-

cations between agents are driven by the omniORB naming

service (OMNI). MAs listen to client requests and dispatch

them through the architecture to the best SED that can carry

out the required service.

This application has been described using class diagrams

[37], but, in addition to correction-granting issues, the fact

that a LA can manage another LA could not be taken into

consideration.

Without lack of generality, a simplified architecture with

a single MA and a single OMNI will be considered here. The

main characteristics of the application are as follow :

1. While being deployed, each component records itself to

the OMNI.

2. Each LA and each SED has a hierarchical superior (i.e.,

the parent node in the tree).

3. The MA and each LA manage from one (minSonsMA

/ minSonsLA) to ten (maxSonsMA / maxSonsMA) enti-

ties. Later in this paper, we will see that these conditions

could be trivially extended to any number of minimum

and maximum managed entities. Furthermore, from now

on, a LA will be said to provide a certain service when-

ever at least of its child nodes does.

4. Due to hypothetical software restrictions and limited num-

ber of machines, the architecture is composed by at most

one hundred agents. Once again, this arbitrary value could

be expanded to any other.

Figure 1 offers a visual example of how a configuration

of DIET may look like, with and without an OMNI. For ob-

vious clarity concerns, the naming service will not be repre-

sented in future figures.

All instances of an architectural style are NOT created

equal. At a given time, even though a configuration meets

all the requirements of the application, another configuration

may meet them in a “better way”. In particular, we consider

the following criteria :

6 http://www.sysfera.com/sysfera-ds.html

Fig. 1 Logical view of a DIET configuration, with and without an

OMNI

– the energy consumption,

– the robustness, i.e. the fault-tolerance with regard to the

breakdown of a machine or a software component, and

– the quality of service.

We assume that the energy consumption depends only

on the number of used machines and of the software com-

ponents deployed on them.

The robustness, instead, is assessed based on three criteria

that refers to the set of SEDs running the same service: (i)

redundancy degree; (ii) location; (iii) balance within the hi-

erarchical structure. For example, even if multiple SEDs are

used for the same service (i.e., redundancy) it is important

to allocate them on different machines (i.e., location) to re-

duce the vulnerability to hardware breakdowns. Similarly,

spreading the SEDs far apart within the system tree helps

improving the resiliency to LA failures (subject to the con-

straint that the LAs, not belonging to the same path from the

MA to a SED, run on different machines).

Regarding quality of service, the load balance among the

different vertice at the same depth in the tree is considered as

criterion. Let LA(d) be the set of LA of depth d, and M(c) be

the number of entities managed by the component c. An en-

tity can be deployed and directly managed by a LA ∈ LA(d)

if it does not make the standard deviation of
⋃

la∈LA(d) M(la)

become greater than a target threshold value, noted maxσ .

An interesting point here is that robustness and energy con-

sumption are concurrent, in the sense that deploying more

software components or using more machines will, while

Enhanced Graph Rewriting Systems for Complex Software Domains 5

Table 1 Main Notations for the DIET use-case.

Notation Meaning

LA(d) the set of LA of depth d

M(c) the number of entities managed by the component c

maxSonsMA the maximum number of entities managed

maxSonsLA by the MA or a LA, respectively

minSonsMA the minimum number of entities managed

minSonsLA by the MA or a LA, respectively

maxσ threshold value of the balancing condition

ameliorating the first, badly impact the second.

To value these three objectives, it is crucial to keep track

of some attributes of the software components :

1. the depth of each LA,

2. the number of entities managed by each component c of

type LA and MA : M(c),

3. the set of services carried out by each SED and LA,

4. the machine on which each entity is deployed.

Notations introduced to describe DIET are summarized

in Table 1.

3.2 Problem Statement

Herein we illustrate the main issues in modelling the DIET

architecture using classical approaches:

3.2.1 Interdependency of attributes

The attributes of an entity v may depend on attributes be-

longing to a set S of other entities. In classical string gram-

mars, attributes are classified as inherited or synthesized de-

pending on whether the elements of S are parents/siblings of

v in the parse tree or not, respectively. The value of synthe-

sized attributes cannot be known in the context where they

first appear. They depend on following application of pro-

duction rules. In graph grammars, these rules traditionally

symbolize the addition of software components. Similarly,

graph attributes have to be handled in a very different way

whether they only depend on attributes belonging to already

existing entities or not. The first case can easily be addressed

with attributes inheritance in graph grammars. For example,

the depth of an LA could easily be derived from the depth

of the entity managing it.

This does not apply in the second case. In fact, the set of

services offered by an LA, for example, cannot be known in

advance since they depends on children nodes that will be

added or striped later on. There exist two potential solutions

to this problem. Firstly, the attribute may be defined through

its analytic expression. This last is either evaluated on de-

mand or systematically re-evaluated after each transforma-

tion. Such an evaluation can be time consuming. It may also

be unnecessary, for example when the attribute value has not

changed. Furthermore, evaluation after each graph transfor-

mation is not to be taken lightly. These lasts are not only ap-

plied in a deployment step. They also characterize dynamic

evolution of the system. Secondly, the attribute may be di-

rectly associated to its value and updated when necessary.

This last solution is directly related to the modification of an

existing attribute discussed in the next sub-subsection.

3.2.2 Modification of an existing attribute

As discussed in 2.2.2, classical approaches allow a graph

rewriting rule to modify attributes within its scope only. When

considering interdependency of attributes, a modification has

to be propagated to dependant attributes. This may lead to

a vast number of rule applications. For example, when de-

ploying a SeD on a LA, its set of carried out services have to

be updated accordingly. In fact, this update has to be recur-

sively impacted on the ancestor of the updated entity until

reaching the MA or a LA that already did carried out each

services provided by the new SeD. In this scenario, there are

as many rule applications as modified LAs. This phenomena

leads to a loss of efficiency and scalability.

3.2.3 Configuration evaluation: handling constraints

Soft and hard constraints can be used to reflect functional

and non-functional requirements of a system. Their fulfil-

ment or dissatisfaction enable configuration evaluation.

It is crucial to make the distinction between integrat-

ing constraints within the architectural style, building a con-

strained style, and restraining the architectural style. Exist-

ing graph-based approaches are often restricted to the sec-

ond case, where constraints are used to narrow the scope

of correctness only. They are integrated to the model of the

style, e.g. to the type graph in [5], but not in the configura-

tions themselves.

These constraints, closely related to the system and its

components, are similar to attributes; they depend on at-

tributes, are evolving, and components of the same type have

analogous requirements. Hence, their integration in the model

as any attributes is relevant. In particular, we wish, while

constructing, deploying, or reconfiguring a configuration, to

construct an easily evaluable set of constraints. Their viola-

tion could be detected and automatically handled by a man-

ager without requiring complex decision and without ana-

lyzing the whole application. Firstly, approaches from the

literature consider unknown and variable attribute in rules

only, but discard their existence from a graph. Thus, classi-

cal constraints do not handle such attributes. Secondly, con-

straints are tackled by post-condition checking or evaluated

6 C. Eichler et al.

after each rule application. Each constraints is then evalu-

ated after a graph transformation even though it may not be

changed. This concern is very similar to attribute interde-

pendency.

These three points put under the spotlight the limits of

classical graph-based formalism and the need for its expan-

sion described in this paper.

4 Introducing Constraints and Mutators within Graph

Rewriting Systems

4.1 Attributes, Constraints and Attributes Rewriting

4.1.1 Attributes

The proposed formalism conserves the simplicity and the

computational efficiency of “listing” attributes as labels [32]

while granting the possibility of flexibly applying algebraic

operators. An attribute is represented as a couple, whose first

element represents its value. The second element is its do-

main of definition. We assume the canonic notation where

YX is the set of function from X to Y. An interval of integer

is noted [a..b].

Definition 1 (Attribute) An attribute is a couple Att = (AttA,

AttD) where

– AttA is called value and is either

– a variable in AttD,

– a constant or

– an expression of a (S, OP)-algebra [12], where (S,

OP) is an infinite algebraic signature with S a set of

sorts including AttD and OP a set of function sym-

bols such as OP = (AttD)S+ .

– and AttD is its domain of definition.

An attributed structure or system is a couple composed

of the structure and a set of indexed attributes or sequence

of attributes. By convention, the first member of an attribute

will be noted within quotation marks if and only if its current

value is a constant.

4.1.2 Constraints

Attributes are entirely aimed at providing information on

an algebraic structure. Constraints can be seen as a specific

kind of attributes.

Definition 2 (Constraint) A constraint Cons is an attribute

(ConsC, ConsD) with ConsD ={“true”, “false”, “unknown”}.

Considering that constraints share the same domain of

definition, it will be implicit from now on. A constraint Cons

= (ConsC, ConsD) may be simply referred to as ConsC. In the

following, the principles of Kleene’s strong logic [24, 25]

are adopted, in particular its basic logic operations (∨,∧,¬,⇒)

and the fact that the only truth value is “true”. The unique-

ness of this truth value means that evaluations are pessimistic,

i.e. “unknown” is supposed to be false.

Remark 1 A constraint can be seen as a classical expres-

sion of a predicate ternary logic. Considering a ternary logic

rather than a binary one implies that unlike attributes, con-

straints can always be evaluated. Any minimal logic expres-

sion that can not be evaluated, due for example to an at-

tribute implied in its expression being un-evaluable or vari-

able, is “unknown”.

In order to lighten the notation, an attributed object with

constraints, i.e. a triple composed by the object, a set of in-

dexed attributes, and a set of indexed constraints, is called

an AC-object or structure. Whenever defining an AC-object

containing AC-objects, rather than separating each sets of

attributes (resp. constraints), a single family of sequence of

attributes (resp. constraints) indexed by the sets of attributed

(resp. constrained) elements is considered.

Definition 3 (AC-object) An object ob j alongside a set of

attributes ATT and constraints CONS is called an AC-object

and noted (ob j, ATT, CONS).

4.1.3 Attributes Rewriting

One of the issues evoked in section 3 is the fact that at-

tributes are prone to evolve. A reconfiguration may thus im-

pact the attributes of the system, the addition of a SED may

for example modify the set of services carried out by some

LAs. In the literature, classical string rewriting theory [31]

tackles this issue by using mutators. A similar approach is

adopted here.

Definition 4 (A mutator on an AC-object) A mutator on

an AC-object is an arbitrary algorithm updating the value(s)

of none, one or some of its attributes and constraints.

According to this definition, the scope of mutators re-

mains limited to modification of values. They can not be

used neither to add or suppress an attribute nor to modify

the domain of definition of an attribute.

4.2 Attributed Constrained Graph Modelling a

Configuration

4.2.1 Definition

An AC-graph, modeling a software snapshot or configura-

tion at a given time, consists in an AC-couple of two AC-sets

Enhanced Graph Rewriting Systems for Complex Software Domains 7

of vertexes and edges where an edge is a couple of vertexes

(source, destination). Following the commonly used conven-

tions for standard graphical descriptions, one considers that

vertexes represent services or architectural components and

edges correspond to their related interdependencies. Note

that vertexes, edges and the graph itself are AC-systems. For

any set S, the cardinality of S is represented as |S|.

Definition 5 (AC-graph) An AC-graph is defined by the

system G = (V, E, ATT, CONS) where

– V and E⊆V2 correspond to the set of vertexes and edges

of the graph respectively,

– ATT (resp. CONS) is a family of sets ATTel (resp.

CONSel), where el is a vertex, an edge or the graph

itself. Consequently, ATT (resp. CONS) is indexed by a

subset of V ∪E ∪{G}. ATTel is a set of attributes (resp.

constraints) of arbitrary length and containing the

sequence of attributes (ATTi
el = (Ai

el , Di
el))i∈[1..|ATTel |]

(resp. (CONSi
el = (Ci

el , Di
el))i∈[1..|CONSel |]

) of the

element el.

– For any attributes (Ai
el , Di

el), Ai
el is a constant, a variable

or an expression of a (S,OPel,i)-algebra where S =
⋃

e∈{ẽ:ATTe∈ATT}

⋃
j∈[1..|ATTe|] D

j
e and OPel,i = (Di

el)
S+ .

For any graph (V, E, ATT, CONS), an element el ∈V ∪E is

said to be attributed (res. constrained) if ATTel ∈ ATT. The

graph is partially attributed and constrained since ATT and

CONS are indexed by a subset of V ∪E ∪{G}. In this way,

an empty set of attributes or constraint is not required if an

element is wished not to be attributed or constrained.

Now that AC-graphs are defined, it is possible to repre-

sent a configuration of DIET as presented in section 3.

4.2.2 Modelling a Constrained Configuration of DIET

This subsection is dedicated to the definition of a DIET con-

figuration. Concerns expressed in Sec.3 are mapped into the

theoretical concepts previously introduced in this Section.

For sake of clarity, before formally introducing architec-

tural styles, we show in Figure 2 what a DIET configuration

would look like, once represented using an AC-graph.

Notations are reported in Table 2.

In the case of a DIET architecture :

– Nat, the set of possible natures of a software component,

is equal to {“OMNI”, “MA”, “LA”, “SED”} .

– Link, the set of possible relationships between entities,

equals

{“ma2la”, “ma2sed”, “la2sed”, “la2la”, “registered”}

Red and Loc, the redundancy and constraints, are further de-

scribed in the dedicated paragraph.

Fig. 2 An AC-graph modeling a configuration of DIET

Table 2 Notations used to describe a DIET configuration (see Fig. 2)

Notation Meaning

Mach the set of available machines

Nat the set of possible natures of a software component

Link the set of possible relationships

S the set of services that could be carried out by a SED

Serv the power set of S

Red the redudancy constraint

Loc the localisation constraint

Description of the configuration At this time, the software

is composed by eight components symbolized by eight ver-

texes and theirs corresponding relations modeled by some

edges, both attributed to reflect their properties and natures.

A notable fact is that components of the same nature have

the same number of attributes, theirs attributes being the one

identified in Sect. 3. This is ensured by the definition of the

rewriting system that will be presented later in this paper.

Some components as well as the graph itself are constrained

to reflect the concerns stated in the same section.

Constraints are represented within doted frames, and re-

lated to their targeted object by a doted line, except for those

linked to the graph itself.

Attributes The first attributes of each vertex states the nature

of the modeled entity, in Nat. The configuration comprises

a MA managing 2 entities and deployed on a machine noted

m1, as represented by its second and third attribute, respec-

tively.

8 C. Eichler et al.

Each LA possesses three more attributes, related to its depth,

the number of entities it managed, the machine it is deployed

on and its provided set of services. In the example, three LAs

are deployed, represented by v2, v3 and v4 , of depth 1, 1 and

2, managing 2, 1 and 2 entities, and placed on machine m2,

m3 and m4, respectively. The first one, v3, manages directly

or indirectly SEDs providing the set of services s1 ∪ s2 ∪ s3,

the second one, v4, provides s4 and v5, the third one, s1 ∪

s2.

Finally, four SEDs deployed on m5, m6, m7 and m8 carry

out the services s1, s2, s3 and s4.

Note that machines and proposed services are represented

by variable, and their actual value is not currently know.

Constraints The MA should not manage more that 10 enti-

ties, underlining a fundamental property of the architectural

style. Load balancing is not represented since it is tackled

by conditional deployment, as stated previously.

To cope with robustness, the graph is constrained by two

clauses Loc(S,2) and Red(S,3), taking into account the needs

for redundancy and multiple locations over the offered ser-

vices.

∀S̄⊆ S,∀xs ∈N , let the redundancy constraint Red(S̄,xs) be

“There are at least xs SEDs carrying each service s in S̄”.

Red(S̄,xs) = ∀s ∈ S̄,∃(vi)i∈[1..xs] ∈V xs , (∀(i, j) ∈ [1..xs]
2, i 6=

j⇒ vi 6= v j) ∧ (∀k ∈ [1..xs], ATT1
vk

= “SED” ∧ s ∈ AT T 2
vk

).

∀s ∈ S̄,∀xs ∈N , let the location constraint Loc(S̄,xs) be

“For each service in S̄, there are at least xs different ma-

chines on which at least a SED carrying out the service s is

deployed”.

Loc(S̄,xs) = ∀s ∈ S̄,∃(vi)i∈[1..xs] ∈ V xs , (∀(i, j) ∈ [1..xs]
2,

i 6= j⇒ (vi 6= v j∧ATT 3
Vi
6= ATT 3

V j
)) ∧ (∀k ∈ [1..xs], AT T 1

vk
=

“SED” ∧s ∈ ATT 2
Vk

.

This means that each service should be carried out by at

least 3 SEDs located on at least two different machines.

In addition, a notion of location balance within sub-trees

is introduced to re-enforce robustness. It is specified that a

LA and a component managed by the same entity should

not be deployed on the same machine or that they should

have disjoint set of carried services. This constraint avoids,

within a sub-tree, that SED providing similar services, and

deployed in different location thanks to the clause Loc, are

managed by entities deployed on the same machine. Hence

the number of devices that have to breakdown in order for a

service to be disrupted is increased.

Formal definition The graph in the Fig. 2 is defined as fol-

low.

G = (V, E, ATT, CONS) where

V ={v1, v2,. . . , v8},

E ={ e1 = (v1, v2), e2 = (v1, v3), e3 = (v2, v4), e4 = (v2, v7),

e5 = (v3, v8), e6 = (v4, v5), e7 = (v4, v6)},

ATT ={ATTG, ATTv1
, ATTv2

,. . . , ATTe8
},

ATTv1
={(“MA”, Nat), (“2”, N), (m1,Mach)}.

ATTv2
={(“LA”, Nat), (“1”, N), (“2”, N), (m2, Mach), (s1 ∪

s2 ∪ s3, Serv)},
ATTv3

={(“LA”, Nat), (“1”, N), (“1”, N), (m3, Mach), (s4,

Serv)},

ATTv4
={(“LA”, Nat), (“2”, N), (“2”, N), (m4, Mach), (s1 ∪

s2, Serv)}.

ATTv5
={(“SED”,Nat), (s1, Serv), (m5, Mach)},

ATTv6
={(“SED”,Nat), (s2, Serv), (m6, Mach)},

ATTv7
={(“SED”,Nat), (s3, Serv), (m7, Mach)},

ATTv8
={(“SED”,Nat), (s4, Serv), (m8, Mach)}.

CONS ={CONSG, CONSv1
, CONSv2

, CONSv3
, CONSv4

},

CONSG ={Loc(S,2), Red(S,3)},
CONSv1

={ATT2
v1
≤ 10},

CONSv2
={ATT4

v2
6= ATT4

v3
∨ (ATT5

v2
∩ ATT5

v3
= /0)},

CONSv3
={ATT4

v3
6= ATT4

v2
∨ (ATT5

v3
∩ ATT5

v2
= /0)} and

CONSv4
={ATT4

v4
6= ATT3

v7
∨ (ATT5

v4
∩ ATT2

v7
= /0)}.

From now on, notions allowing to characterize the cor-

responding architectural style are introduced, ensuring in

particular that attributes are correctly updated and that com-

ponents have the required constraints.

4.3 Graph Rewriting Rules and Grammars

An architectural style can be formalized using a graph gram-

mar. The production rules of such systems require to iden-

tify sub-structures by the means of homomorphisms. An un-

attributed graph homomorphism h between two graphs is

defined as an injective function f from the set of vertexes

of the first one to the set of vertexes of the second graph

so that if there is an edge between two vertexes of the first

one there is an edge between their image in the second one.

By notational abuse, the image of a vertex v by f is noted

h(v), the image of an edge (v,v′) is noted h((v,v′)) instead

of (f (v), f (v′)), and the image of a subgraph G̃ = (Ṽ , Ẽ) of

G is noted h(G̃).

To tackle attributes, we impose firstly that two vertexes

or two edges associated through a homomorphism have the

same number of attributes. Attributes of two associated ele-

ments are themselves correlated with regard to the order of

their occurrences. Identified attributes should have the same

Enhanced Graph Rewriting Systems for Complex Software Domains 9

domain of definition. Secondly, identifications of attributes

should be consistent, e.g. a variable should not be identified

with two different constants. Therefore, a system of equa-

tions is built and the existence of an attributed induced sub-

graph isomorphism is conditioned by its resolvability.

Definition 6 (AC-graph homomorphism)

A homomorphism between two AC-graphs G = (V, E, ATT,

CONS) and G’ = (V’, E’, ATT’, CONS’), noted G→G’, is a

homomorphism h from (V, E) to (V’, E’) such as

1. ∀ el ∈ V ∪ E, |ATTel | = |ATTh(el)|.
2. ∀ el ∈ V ∪ E, ∀ i ∈ [1..|ATTel|], Di

el = Di
h(el).

3. The system of equations S ={ A = A’ :

∃ el ∈ V ∪ E, ∃ i ∈ [1..|ATTv|], A = Ai
el ∧ A’ = Ai

h(el) }

has at least one solution.

Remark 2

– Constraints do not impact the definition of a homomor-

phism. It will be shown that they intervene in the rewrit-

ing process in a different way. Similarly, attributes on

vertexes and edges are the only one that are considered

whereas attributes on the graph itself are not.

– The existence of a homomorphism is conditioned by the

resolvability of a system of equations on attributes. As

stated in the introduction, in attributed graphs [19, 12],

the existence of a morphism is also conditioned by equal-

ities between attributes, potentially through morphism

between attributes spaces. However, this is often the only

clause relying on attributes that impact the applicability

of a graph rewriting rule.

Solving the system of equations S results in identifying

the value of some attributes with some constants in their do-

mains of definitions and/or with the value of some other at-

tributes. Integrating the affectation obtained by solving the

systems refers to the update of the value of the attribute to

reflect these identifications. For example, if ((x,y), (x,“2”))

∈ S2, meaning that x has been identified to the variable y

and the constant “2”, integrating the affectation obtained by

solving S will lead to replacing each occurrence of x and y

by “2”.

There exists a vast number of approaches handling graph

rewriting based on attributed graphs [19, 12]. Their applica-

bility depends on various factors, always including the exis-

tence of a homomorphism between an element of the graph

rewriting rule and the graph to rewrite. Inspired by string

grammar theory [31], these factors are expanded herein to

include the satisfaction of a set of constraints on attributes,

namely the set of constraints of the AC-rewriting rule. This

potentially empty set can be seen as a set of semantic predi-

cates.

Applying a rewriting rule on a graph consists in sup-

pressing a part of the graph and extending it by adding some

vertexes and edges. In addition to classical modifications in-

duced by the application of a rule, a set of actions is per-

formed at the end of said application. For any AC-graph G

= (V,E,ATT,CONST) and any of its subgraph G̃ = (Ṽ , Ẽ ,
˜ATT , ˜CONST), the notation G\G̃ refers to G deprived of G̃,

i.e. the graph Ḡ = (V̄ , Ē, ¯ATT , ¯CONST) where :

– V̄ = V\Ṽ ,

– Ē = E ∩ V̄ 2,

– ¯ATT = {ATTel ∈ AT T : el ∈ V̄ ∪ Ē} ∪AT TG,

– ¯ATT = {ATTel ∈ AT T : el ∈ V̄ ∪ Ē} ∪AT TG.

Virtually, any attributed graph rewriting formalism could be

extended to include semantic predicates, constraints and mu-

tators. In order to fix the idea, the classical double push out

formalism defined in [34] has been chosen, alongside with

the attribute management presented previously.

Definition 7 (AC-rewriting rule of AC-graph) An AC

rewriting rule of an AC graph is a 5-tuple (L, K, R, ATT,

CONS, ACT) where

– ATT = ATTrule ∪ ATTL∪ ATTR is a set of attributes,

ATTrule being the set of attributes of the graph rewriting

rule itself,

– CONS = CONSrule∪ CONSR\K is a set of constraints,

CONSrule being the set of constraints of the graph

rewriting rule itself and CONSR\K set of constraints on

ER\K∪VR\K ,

– (L = (VL, EL), ATTL, /0) and (R = (VR, ER), ATTR,

CONSR\K) are AC-graphs,

– K = (VK , EK) is a sub-graph of both L and R,

– ACT is a set of actions.

A rule is applicable on a AC-graph G if :

1. there is a homomorphism h : (L, ATTL, CONSL) → G,

implying in particular that the system of equations S ={

A = A’ : (∃ v ∈ VL, ∃ i ∈ [1..|ATTv|], A = Ai
v ∧ A’ =

Ai
h(v)) ∨ (∃ e = (v̄, ṽ) ∈ E, ∃ i ∈ [1..|ATTe|], A = Ai

e ∧ A’

= Ai
(h(v̄),h(ṽ)))} has at least a solution,

2. the application of the rule would not lead to the appari-

tion of any dangling edge,

3. each Cons ∈ CONSrule is evaluated to “true” by integrat-

ing the affectations obtained by solving S and by evalu-

ating each elementary logic expression containing vari-

able attributes to “unknown” as stated in remark 1.

Its application consists in :

1. erasing h(L\K) including CONSh(L\K),

2. integrating the affectations obtained by solving S to the

remaining graph,

3. adding an isomorph copy of R\K, including CONSR\K ,

integrating the affectations obtained by solving S,

10 C. Eichler et al.

4. performing each action Act ∈ ACT.

Graph rewriting rules treat vertex and edge constraints

much like attributes. They are added and suppressed along-

side the element they target.

Efficient access to attribute values : evaluation on demand

or update on modification Note that, thanks to mutators,

this formalism enforces several ways of considering and eval-

uating attributes or constraints. These lasts can be explicitly

characterized by their analytic expression. However, this ex-

pression has to be calculated whenever its value is required

or after each transformation. To avoid frequent evaluations,

the attribute value can be stored and be updated whenever

it has to be, using mutators. The choice between these two

options rely on the relative complexities and frequencies of

updates and evaluations.

Inspired from Chomsky’s generative grammars [10],

graph grammars are defined as a classical grammar or rewrit-

ing system, and formally characterize an architectural style.

Definition 8 (Graph Grammar)A graph grammar is de-

fined by the 4-tuple (AX ,NT,T,P) where

– AX is the axiom, an AC-graph with a single vertex AX

– NT is a set of AC-vertexes, called non-terminal term of

the grammar,

– T is a set of AC-vertexes terminal term, named terminal

term of the grammar,

– P is the set of AC-rewriting rules, or production rules,

belonging to the graph grammar.

Each vertex occurring in a graph rewriting rule in P or in a

graph obtained by applying a sequence of productions ∈ P

to the axiom is then isomorph to at least one arch-vertex in

NT or T .

Terminal terms define archetype of vertexes with corre-

sponding pattern of attributes and constraints. On the other

hand, production rules grant constraint management and sys-

tem updates. Terminal terms and productions guarantee that

each component, at any time, of the system is correctly con-

strained and attributed according to its type.

Definition 9 (Instance belonging to the graph grammar)

An instance belonging to the graph grammar (AX ,NT,T,P)

is a graph obtained by applying a sequence of productions in

P to AX .If an instance does not contain any vertex isomorph

to an arch-vertex from NT it is said to be consistent.

Correct-by-Construction Reconfigurations. Correct by con-

struction reconfigurations based on the generative aspect of

graph grammars is one of theirs key advantages. A trans-

formation is considered correct if its application to an in-

stance of the grammar produce another one. Productions of

the grammar are correct by definition. Thanks to operations

on graph rewriting rules that preserve their correctness, cor-

rect transformations can be built starting from productions

rules. Applicability restriction, for example, is such an oper-

ator.

Let r be a rewriting rule whose application is equiva-

lent to the application of a production p. It is immediate

that r preserves consistency if its applicability conditions are

equivalent to or stronger than those of p, e.g. if r requires a

larger pattern to be found meaning that Lr is a sub-graph of

Lp. This still holds in presence of mutators and constraints.

In addition to classical requirements, the application of two

rules is equivalent if they have the same mutators. If the ap-

plication conditions of a rule are stronger than those of a

rule p, they still are if the first is as least as constrained as

the second, e.g. if CONSp ⊆ CONSr.

4.4 Summary of the Proposed Contribution

In the previous Sub-Sections, a complete description of the

proposed formalism has been detailed. Here, for sake of clar-

ity, we highlight its pivotal features and advantages in a con-

cise form.

– Attributes are enriched to cover their interdependencies

and potentially unknown values. Their definition, rather

than being restricted to predefined operators and depen-

dencies, is based on the characterization of every admis-

sible relationships.

– Constraints are defined as a special kind of attributes,

so as to benefit from their evolution and dependencies

mechanisms. Being elements of a ternary logic system,

they cope with unknown attributes.

– Graph rewriting rules are expanded with the considera-

tion of constraints and mutators. Firstly, constraints on

the rule itself constitute semantic predicates that allow

decision making in presence of unknown attributes. Con-

straints are added and deleted alongside the element they

target. Secondly, mutators, adapted from classical string

theory, manage efficiently and flexibly attribute modifi-

cations.

Accordingly, it is possible to extend graph grammar ap-

proaches in order to embrace these new features, capitalize

their strengths, and enable the effective management of dy-

namic software architectures subordinate to functional and

non-functional requirements.

Enhanced Graph Rewriting Systems for Complex Software Domains 11

5 Exploitation and Illustration of the New Formalism :

DIET Characterization, Evaluation and Management

This Section illustrates the potential of the elaborated for-

malism by first describing DIET, taking into account each

consideration introduced in Sect. 3. Then, the fitness of this

description to appropriateness evaluation and performance

aware management is demonstrated using concrete exam-

ples.

5.1 DIET Characterization.

This section is dedicated to the characterization of the DIET

application described in Sect. 3 using the new formalism

presented in this contribution. To this end, we design ax-

ioms, terminal terms, and production rules of the Graph Gram-

mar that unambiguously define DIET. Also, we formally

demonstrate the termination of the resulting grammar.

5.1.1 Axiom

Considering the definition of graph rewriting rules and sys-

tems, instances of the such systems are graphs that inherit

the attributes and constraints of the axiomatic graph. In the

case of DIET, attributes and constraints shared by all possi-

ble software configurations are:

1. the largest number of entities that a LA may manage (the

minimum being directly granted by production rules),

2. the largest number of entities that a MA may manage

(idem),

3. the threshold value intervening in the balancing condi-

tion discussed in Sec. 3,

4. the maximum of total agents and

5. the current number of agents.

Common constraints, instead, refers to redundancy and lo-

cation conditions each configuration has to satisfy.

Therefore, let AXDIET be (vAX , ATTAX = ((maxSonsLA,

N), (maxSonsMA,N), (maxσ ,R+), (maxAgents,N), (curA-

gents, N)), CONSAX = (Loc(S,2),Red(S,3))), where curA-

gents = 0 and, arbitrarily, maxSonsMA = maxSonsLA = 10

and maxAgents = 100.

Throughout this section, the graph on which production

rules will be attempted to be applied to is noted G = (V,

E, ATT, CONS). Attribute and constraint inheritance ensure

that if G is an instance of the architectural style defined here,

ATTG = ATTAX and CONSG ⊆ CONSAX .

5.1.2 Terminal Terms

These terms characterize types of AC-vertexes, defining a

pattern of attributes and constraints shared by vertexes of

the same kind.

The naming system itself is not constrained, and its at-

tributes are limited to its nature and the machine it is de-

ployed on. Therefore, let TOmni be (vOmni, ATTOmni = ((“Omni”,

Nat), (m, Mach)), /0).

Similarly, let TSED = (vSeD, ATTSED = ((“SED”, Nat), (s,

Serv), (m, Mach)), /0).

The MA shall not manage more than 10 entities. Accord-

ingly, let TMA be (vMA, ATTMA = ((“MA”, Nat), (Nsons, N),

(m, Mach)), CONSMA = ((Nsons < A2
AX))).

Finally, a LA and a component managed by the same

entity should not be deployed on the same machine or they

should have disjoint set of carried services. Let v̂ be the en-

tity managing v, i.e. v̂ ∈ V such that (v̂,v) ∈ E, and sib(v) =

{ v̄:(v̂, v̄) ∈EG} \{v} the set of components managed by v̂,

excluding v, i.e. the siblings of v.

TLA is (vLA, ATTLA = ((“LA”, Nat), (depth, N), (Nsons, N),

(m, Mach), (s, Serv)), CONSLA = (c(vLA)), where

c(v) = (c(v)i)i∈[1..|sib(v)|], ∀ṽ ∈ sib(v), !∃ i ∈ [1..|sib(v)|],

(A1
v = “LA” ∧ c(v)i = (A4

v 6= A4
ṽ) ∨ (A5

v ∩ A5
ṽ = /0)) ∨

(A1
v = “SED” ∧ c(v)i = (A4

v 6= A2
ṽ) ∨ (A5

v ∩ A3
ṽ = /0))

5.1.3 Productions of the Grammar

Production rules of the graph grammar formalize the con-

struction of its instances by defining when and how an entity

may be deployed and the consequences of such a deploy-

ment.

The first rule (p1) to define is the initialization consum-

ing the axiomatic vertex (Del). The naming service and the

MA are deployed, as well as a non-terminal vertex granting

that the MA manages at least an entity (Add). This vertex

will be later on instantiated into a LA or a SED. Finally, the

MA registers to the naming service and the current number

of agents is updated accordingly.

Let p1 = (Lp1
, Kp1

, Rp1
, /0, /0, µregistering(pv2), µinc(G, 5, 3)

), where µregistering(v) is the action of registering the object

represented by the vertex v to the naming service. µinc(e, i,

1), defined in Fig. 3, represent the incrementation of the i-th

attribute of v by n.

Graphical parts of the rewriting rules are illustrated here us-

ing the format L←K→R. This graphical representation is

illustrated in Fig. 4, where Lp1
, Kp1

, Rp1
and pv2 are de-

fined.

Productions rules p2 and p3 model the addition of a non-

terminal vertex, managed by the MA or a LA, respectively.

This temporary vertex will later on be instantiated into a LA

or a SED. To deploy a new entity, three condition should be

12 C. Eichler et al.

µinc(e, i, n)

Ai
v ← Ai

v + n

Fig. 3 µinc(v, i, n), Incrementation of the i-th attribute of the element e

by n

Fig. 4 Initialisation

Fig. 5 Addition of a non-terminal term

met. This addition should respect (1) the balancing condi-

tion, (2) the maximal number of agents manageable by its

superior and (3) the maximum number of total agents. The

application of these productions leads to the incrementation

of the numbers of total agents and of sons of the entity man-

aging the added vertex.

Let p2 = (Lp2
, Kp2

, Rp2
, /0, A4

G > A5
G, (µinc(pv2MA, 2, 1),

µinc(G, 5, 1))) and

p3 = (Lp3
, Kp3

, Rp3
, /0, (balancing(pv2LA), Nsons < ATT1

G,

A4
G > A5

G), (µinc(pv2LA, 3, 1), µinc(G, 5, 1)),

where Lp2
, Kp2

, Rp2
, pv2LA, Lp3

, Kp3
, Rp3

, and pv2MA are

defined in Fig. 5. balancing(v) = σ ((A3
la)la∈LA(A2

v)\{v}
, A3

v+1)

< A3
G, where σ (s) is the standard deviation of the sequence

s.

The instantiation of a temporary vertex managed by the

MA or a LA into a SED is described by p4 and p5, respec-

tively. After deploying the SED, it has to register to the nam-

ing service and, if it is managed by a LA, update the set

of its carried out services. Let p4 = (Lp4
, Kp4

, Rp4
, /0, /0,

µregistering(pv4)) and p5 = (Lp5
, Kp5

, Rp5
, /0, /0, (µregistering(pv4),

µupdateServ(pv2,pv4,2)), where Lp4
, Kp4

, Rp4
, Lp5

, Kp5
, Rp5

,

pv2, and pv4 are defined in Fig. 7. µupdateServ(v, ṽ, ind), de-

scribed in Fig. 6, impact a change in Aind
ṽ , the set of carried

out services by ṽ, on v, the component managing ṽ, by updat-

ing the set of services it proposes. This update is conducted

only if v is a LA, and, if there is indeed a change, it is prop-

agated to the entity managing v.

µupdateServ(v, ṽ, ind)

if A1
v = “LA”

oldServ← A5
v

A5
v ← oldServ ∪ Aind

ṽ

if A5
v 6= oldServ

v̄← v̂ ∈ VG, (v̂, v) ∈ VE

µupdateServ(v̄, v)

Fig. 6 µupdateServ(v, ṽ, ind), A change of Aind
ṽ , the set of services car-

ried out by ṽ, impacts v, the entity it is managed by.

The two last productions of the grammar, p6 and p7, de-

scribe the instantiation of non-terminal term into a LA man-

aged by the MA and a LA, respectively. Since a LA has to

manage at least one entity, such an instantiation can be con-

ducted only if an entity can be later on deployed without ex-

ceeding the maximum number of agents. Let p6 = (Lp6
, Kp6

,

Rp6
, /0, A4

G > A5
G, (µregistering(pv4),µinc(G, 5, 1))) and p7 =

(Lp7
, Kp7

, Rp7
, /0, A4

G > A5
G, (µregistering(pv4),µinc(G, 5, 1))),

where Lp6
, Kp6

, Rp6
, Lp7

, Kp7
, Rp7

, and pv4 are defined in

Fig. 8.

5.1.4 The Constrained Attributed Graph Grammar

Characterizing DIET

Considering the sets introduced in this section, GRSDIET ,

the graph rewriting system formally characterizing DIET,

introduced in Sect. 3, is defined as GRSDIET =(AXDIET ,

NTDIET , TDIET , PDIET), where

NTDIET = (vtemp, ATTtemp = (“temp”,{“temp”}), CONStemp

Enhanced Graph Rewriting Systems for Complex Software Domains 13

Fig. 7 Instantiation of a non-terminal term into a SED

Fig. 8 Instantiation of a non-terminal term into a LA

= /0),

TDIET ={ TOmni, TMA, TLA, TSED}, and

PDIET ={ p1, p2, p3, p4, p5, p6, p7}.

Note that the limitation of entities that can be managed

by the MA or a LA are not tackled in the same way. A con-

straint reflecting this restriction is added on the MA, whereas

the satisfaction of this limitation is granted for the LAs by

a semantic predicate. Said predicate restricts the applicabil-

ity of p3 by imposing, before making a LA manage a new

component, that said LA as not reach the limit of compo-

nent it can manage. Since p3 is the only production of the

grammar increasing the number of entities managed by a

LA, this limit can not be overpassed. A brief summary of

the mapping between the concerns expressed in Sec. 3 and

formal concepts is presented in Table 3.

Loc(S,2),Red(S,3)

∀s ∈ S̄,∀xs ∈N , let the location constraint Loc(S̄,xs) be

“For each service in S̄, there are at least xs different ma-

chines on which at least a SED carrying out the service s is

deployed”.

Loc(S̄,xs) = ∀s ∈ S̄,∃(vi)i∈[1..xs] ∈ V xs , (∀(i, j) ∈ [1..xs]
2,

i 6= j ⇒ (vi 6= v j ∧ATT 3
Vi
6= ATT 3

V j
) ∧ (∀k ∈ [1..xs], ATT 1

vk

= “SED” ∧s ∈ AT T 2
Vk

.

Guaranteeing theoretical properties of the grammar: Termi-

nation. A generative grammar is said to be terminating if

there can not be an infinite sequence of its production rules.

Theoretically, this property ensures that the set of instances

of the grammar is finite and that its exploration or the con-

struction of an instance can be represented by a terminat-

ing algorithm. Practically, this property is consistent with

the finiteness of the available resources, like machines and

theirs computing powers.

Theorem 1 GRSDIET is terminating.

Proof Let S be a non-empty sequence of elements in PDIET

and |S| its size. Let’s prove that ∃ N ∈ N, |S| ≤ N.

For p ∈ PDIET , let Occ(p) be the number of occurrences

of p in Sp. Accordingly,

|S|= Σp∈PDIET
Occ(p). (1)

Let’s consider the following system of tokens :

– Token A : G4 - G5, the number of agents that still can be

deployed.

– Token B : the number of temporary vertexes in the graph.

Applying p2, p3, p6 or p7 decrease the number of token

A by 1, whereas p1 requires 3. Hence,

3 ∗Occ(p1)+Occ(p2)+Occ(p3)+

Occ(p6)+Occ(p7)≤ maxAgents.
(2)

The application of p4 or p5 consumes 1 token B, whose

number is increased when applying p1, p2 or p3. Hence,

14 C. Eichler et al.

Table 3 Informal considerations and their formal translation

Notation Formal expression Description

Temporary vertexes in Rp1
, Rp6

and Rp7
The MA and LAs are deployed alongside with minSonsMA

and minSonsLA temporary vertexes, respectively

CONSMA Nsons < A2
AX The MA is constrained not to exceed maxSonsMA

CONS2
p3

Nsons < ATT1
G A new entity cannot be managed by a LA

that has reached maxSonsLA

CONSp2
A4

G > A5
G Any transformation eventually implying

CONS3
p3

the deployment of a new component

CONSp6
can be applied only if the system is currently

CONSp7
composed by less than maxAgents entities

CONS1
p3

σ ((A3
la)la∈LA(A2

v)\{v}
, A3

v +1) < A3
G Incrementing the number of entities managed by v

= balancing(v) respect the balancing condition

sib(v) { v̄:(v̂, v̄) ∈EG} \{v} Siblings of v

where v̂ ∈ V such that (v̂,v) ∈ E

CONSLA = c(v) (c(v)i)i∈[1..|sib(v)|], ∀ṽ ∈ sib(v), !∃ i ∈ [1..|sib(v)|], A LA and each of its siblings

(A1
v = “LA” ∧ c(v)i = (A4

v 6= A4
ṽ) ∨ (A5

v ∩ A5
ṽ = /0)) ∨ should not be deployed on the same machine or

(A1
v = “SED” ∧ c(v)i = (A4

v 6= A2
ṽ) ∨ (A5

v ∩ A3
ṽ = /0)) they should have disjoint set of carried services

CONS1
AX Red(S̄,xs) = ∀s ∈ S̄,∃(vi)i∈[1..xs] ∈V xs , (∀(i, j) ∈ [1..xs]

2, Each service is carried out by at least 3 SEDs

Red(S,3) i 6= j⇒ vi 6= v j) ∧ (∀k ∈ [1..xs], ATT1
vk

= “SED” ∧ s ∈ AT T 2
vk

)

CONS2
AX Loc(S̄,xs) = ∀s ∈ S̄,∃(vi)i∈[1..xs] ∈V xs , (∀(i, j) ∈ [1..xs]

2, i 6= j⇒ The set of SEDs offering a service

Loc(S,2) (vi 6= v j ∧AT T 3
Vi
6= AT T 3

Vj
)) ∧ (∀k ∈ [1..xs], AT T 1

vk
= “SED” ∧s ∈ ATT 2

Vk
is dispatched on at least 2 different machines

Occ(p4)+Occ(p5)≤ Occ(p1)+Occ(p2)+Occ(p3). (3)

Since p1 consumes the axiom, it is obvious that

Occ(p1) = 1. (4)

Equation (2) thus becomes :

Occ(p2)+Occ(p3)+Occ(p6)+Occ(p7)≤maxAgents−3.

(5)

By definition, ∀ p ∈ PDIET , Occ(p) ≥ 0. Accordingly,

equations (3), (4) and (5) give

Occ(p4)+Occ(p5)≤ maxAgents− 2. (6)

According to equation (1),

|S| = Occ(p1) + (Occ(p2) + Occ(p3) + Occ(p6) + Occ(p7)) +

(Occ(p4) + Occ(p5)).

Thanks to equations (4), (5) and (6), this translates into

|S| ≤ 1 + (maxAgents - 3) + (maxAgents - 2).

Finally, |S| ≤ 2*maxAgents-4. With maxAgents = 100,

we have |S| ≤ 196.

QED.

5.2 Appropriateness Evaluation

To enable the evaluation of DIET configurations, constraints

are herein assigned a, potentially infinite, weight. In this

way, the appropriateness of a configuration is reflected by

calculating its opposite, i.e. the configuration cost. Said cost

is calculated as the sum of the costs of its energy consump-

tion and of the violated constraints. The violation of a con-

straint in a configuration implies that every defined criteria

is not respected. In this case, the configuration is not robust

enough and its cost is therefore increased depending on the

weight of the violated constraint. A configuration of infinite

weight is considered incorrect, so that strong constraints are

still enforced.

Notations Let ξ be the function of evaluation; ∀ cons ∈
CONS, ∀ c ∈ cons, ξ (c) = 1 if c is “true” and 0 else.

Energy Consumption In Sec. 3, it has been presumed that

energy consumption depends on the used machines and the

number of deployed components only. In the following, this

relation is (realistically according to [7]) assumed to be lin-

ear, and weighted by λmach and λentity for used machine and

deployed component, respectively. Note that the number of

current deployed component is already an attribute of the

graph. For an easier evaluation, the number of used ma-

chines can be added as attribute of the graph as well, and

updated whenever necessary, i.e. when applying production

Enhanced Graph Rewriting Systems for Complex Software Domains 15

p1, p4, p5, p6 or p7. The energy consumed by a configuration

is then: λmach ·A
5
G + λentity · |V |.

Constraint violations It is clear that the constraint reflecting

the limitation on the number of entities managed by the MA

should not be violated and therefore has an infinite weight.

Constraints reflecting the robustness of the system are, how-

ever “soft” and are given arbitrary finite weight. The cost

of violating the constraint stating that “a LA and a compo-

nent managed by the same entity should not be deployed on

the same machine or they should have disjoint set of carried

services”, c(v), is weighted by the depth of the LA. Redun-

dancy and location constraints are weighted by λR and λL

respectively.

The cost related to the violation of constraints is :

λL ξ (CONS1
G) + λR ξ (CONS2

G) +

λMA Σma∈V,A1
ma=“MA” ξ (CONS1

ma) +

Σla∈V,A1
la
=“LA” λLA (A2

la ξ (CONS1
la).

Part of the configuration illustrated in Fig. 2 is arbitrarily

instantiated to be totally evaluable and presented in Fig. 9.

S, the set of services that may be carried out by a SED, is

{S1, S2, S3}.

Fig. 9 Instantiated AC-graph modelling a configuration of DIET

This configuration does not meet the redundancy con-

straint, since there are only two SEDs that can carry out the

services S1 and S2. Hence, its cost is equal to its energy con-

sumption plus the cost of violating said constraint: 3λmach +

7λentity + λR.

This natural and immediate way to deal with soft and

hard requirements derives from the new formalism proposed

in this paper. In fact, the model has been explicitly con-

ceived to embed constraints, that may assume the role of

performance indicator, and their admissible soft bounds by

means of attributes. In this way, once the software archi-

tecture properly described, its appropriateness can be easily

evaluated on a dynamical basis.

5.3 Non-Functional Requirements and Software

Management

Thanks to the eased manipulation of system attributes and

constraints, the introduced formalism can be fruitfully ex-

ploited in software management systems. Semantic predi-

cates and restrictions on rules’ applicability grant more flex-

ibility on transformations, allowing to face specific aims on

the fly.

Remark 3 Considering a new rule resulting of the restriction

of another can ensure guarantees with regard to the preserva-

tion of the architectural style. However, it is worth noticing

that properties of the graph rewriting system, e.g. conflu-

ence, are not necessarily invariant with regard to the addition

of a new rule.

Let’s consider the DIET configuration previously eval-

uated (see Fig. 9). In this case, we can suppose that a SED

is to be deployed to meet the redundancy constraint and im-

prove the quality of the configuration.

The first thing to do is to apply p2, and by doing so

choosing the component that will manage the SED. To find

an optimum solution, one should consider each possibility,

i.e. apply p2 on v2, v3 or v4, find in each case an optimal

solution, and then compare the costs of each solutions.

Arbitrarily assuming that p2 has been applied on v2, an op-

timal solution can be found as follows. The temporary ver-

tex is to be instantiated into a SED using the production p5.

Since the motivation of this reconfiguration is to meet the

redundancy constraint, p5 should be restricted in order for

its application to be relevant.

Firstly, the deployed SED should be able to provide the ser-

vices S1 and S2. Assuming the notation introduced when

defining p5, see Fig.7, {S1, S2} ⊆ A2
pv4.

Furthermore, the constraint (“M2” != A3
pv4)∨(“{S1,S2,S3}”

∩ A2
pv4 = /0) will appear on v3. In order for this constraint to

be met, the transformation should verify that A3
pv4 6= “M2”.

Besides, for energy consumption reason and so as not to use

a new machine, it is imposed that A3
pv4 ∈ {M1, M3}.

According to the style constraints, the graph presented in

Fig. 10 is a possible optimal result of such a reconfiguration.

16 C. Eichler et al.

Every constraints are met and the cost of the configuration

is now limited to its energy consumption, 3λmach + 8λentity.

Hence, this evolution is relevant if and only if λentity < λR.

Fig. 10 A configuration satisfying every style-defined constraints

6 Experimentations : Efficiency Evaluation and

Comparison

6.1 Experimental Background

6.1.1 Transformational Scenario

The transformation conducted in the experiments consists

in the addition of a SeD on a LA of maximal depth. This

transformation implies two attribute updates. Firstly, the at-

tribute representing the number of entities managed by the

LA has to be incremented. Secondly, the introduction of a

SeD may impact the services carried out by its ancestors.

The appended SeD provides a formerly un-carried service.

As a consequence, the set of services carried out by each of

its ancestors has to effectively be modified.

Following the method introduced in this paper, this trans-

formation is a sequential composition of the rules p3 and

p5 presented in Sec. 5.1.3. Attribute updates are realized

through µinc and µupdateServ.

6.1.2 Manipulated Configurations

In this experimental part, we now consider a non-simplified

DIET architecture. The corresponding type graph is repre-

Fig. 11 Experimental DIET style

Fig. 12 Smallest experimental graph: A DIET configuration of size

1000 and height 5.

sented in Fig. 11. A configuration may contain several con-

nected MAs. As a result, a configuration may exhibit cycles.

The manipulated graphs possess the following characteris-

tics :

– Each of them has several MAs and at least one cycle.

– Trees composed by sub-graphs induced by a MA along-

side the LAs and SeDs it manages do not have the same

height. Within such a tree, SeDs do not necessarily have

the same depth.

– There exists no n such as any of these trees is n-ary.

– Each non-intermediary LA manages at least 100 SeDs.

Enhanced Graph Rewriting Systems for Complex Software Domains 17

Considered configurations have various sizes and heights.

The size of a configuration is the total number of compo-

nents it is composed by. Its height is the greatest number of

LAs between a MA and a SeD. The smallest transformed

graph is illustrated in Fig. 12. In this figure, blue and red

circle represent LAs and MAs, respectively. The OMNI is

illustrated as a red rounded rectangle.

Size and height of graphs significantly influence the sce-

nario execution. In native methods, the height of a graph is

equal to the number of rule applications. The complexity of

a rule application is strongly related to the size of the graph.

In a more superficial way, it does also depend on the topol-

ogy of the graph and, thus, on its number of MAs. Here, the

effect of the graph topology on rule application is not rele-

vant for our study. Therefore, configurations intervening in

the experimentations have a fixed number of MAs, set to 3.

6.1.3 Tested Tools and Methods

Experimentations are conducted using two different tools :

AGG and GMTE. Both enable the modification of any at-

tribute belonging to the right hand side of a rule. For each

engine, experiments are conducted using three methods :

– A referential that does not include attribute modifica-

tions. It allows the estimation of time required to carry

attribute modifications.

– The native method of the engine. This last consists in a

sequence of rule applications. Firstly, the SeD is added

to a LA whose set of carried out services is updated.

Then, a rule is successively applied to impact this up-

date on each of its ancestors. Each application updates a

single LA since modified attributes have to be within the

scope of the rule.

– The method proposed in this paper. To this end, we have

implemented two overlays relying on AGG and GMTE

that carry out the execution of rules p3 and p5 with mu-

tators.

Considering two different tools show that the proposed

method and the conclusion drawn from experiments are engine-

agnostic.

6.2 Experimental Results

Figures 13 and 15 illustrate, for GMTE and AGG respec-

tively, the execution times of the transformational scenario

using native methods and mutators. They are represented

alongside a referential time computed in absence of attribute

modification. Figures 14 and 16 show the evolution of these

times for bigger graphs. Illustrated execution times are the

median result on 100 executions. Experimentations have been

conducted on a computer possessing a quad core processor

 0

 5000

 10000

 15000

 20000

 25000

 30000

h
=
5
,
s
=
1
0
0
0

h
=
5
,
s
=
1
2
5
0

h
=
1
0
,
s
=
1
0
0
0

h
=
1
0
,
s
=
1
2
5
0

h
=
1
0
,
s
=
1
5
0
0

h
=
1
0
,
s
=
1
7
5
0

h
=
1
5
,
s
=
1
0
0
0

h
=
1
5
,
s
=
1
2
5
0

h
=
1
5
,
s
=
1
5
0
0

h
=
1
5
,
s
=
1
7
5
0

h
=
1
5
,
s
=
2
0
0
0

h
=
1
5
,
s
=
2
2
5
0

M
ed

ia
n

ex
ec

ut
io

n
tim

e
(m

s)

 Configuration characteristics
 s = size, h = height

REFERENCE
MUTATORS
NATIVE

Fig. 13 GMTE : execution times

 100

 1000

 10000

 100000

 1e+06

h
=
2
0
,
s
=
1
5
0
0

h
=
2
0
,
s
=
1
7
5
0

h
=
2
0
,
s
=
2
0
0
0

h
=
2
0
,
s
=
2
2
5
0

h
=
2
0
,
s
=
2
5
0
0

h
=
2
0
,
s
=
2
7
5
0

h
=
2
5
,
s
=
1
0
0
0

h
=
2
5
,
s
=
1
2
5
0

h
=
2
5
,
s
=
1
5
0
0

h
=
2
5
,
s
=
1
7
5
0

h
=
2
5
,
s
=
2
0
0
0

h
=
2
5
,
s
=
2
2
5
0

h
=
3
0
,
s
=
1
0
0
0

h
=
3
0
,
s
=
1
2
5
0

h
=
3
0
,
s
=
1
5
0
0

h
=
3
0
,
s
=
1
7
5
0

h
=
3
0
,
s
=
2
0
0
0

h
=
3
0
,
s
=
2
2
5
0

h
=
3
0
,
s
=
2
5
0
0

M
ed

ia
n

ex
ec

ut
io

n
tim

e
(m

s)

 Configuration characteristics
 s = size, h = height

REFERENCE
MUTATORS
NATIVE

Fig. 14 GMTE : scalability comparison

(4M Cache, 2.66 GHz, 1333 MHz FSB) and 8 Go of RAM.

Each configuration is characterized by its size and its height.

Firstly, experimental results show that the overhead im-

plied by attribute modifications through mutators is small in

regard of the total transformational time. For example, at-

tribute modifications represent 7 of the 325ms required to

conduct the scenario on a configuration of size 1000 and

height 5 for GMTE, and 1.2 of the 24.8 ms in the case of

AGG. This value increases linearly in height and remains

roughly invariant with regard to size. For a configuration of

size 2250 and height 30 it amounts to 58 out of 3010ms and

2.7 out of 36.5ms, using GMTE and AGG respectively.

18 C. Eichler et al.

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

h
=
5
,
s
=
1
0
0
0

h
=
5
,
s
=
1
2
5
0

h
=
1
0
,
s
=
1
0
0
0

h
=
1
0
,
s
=
1
2
5
0

h
=
1
0
,
s
=
1
5
0
0

h
=
1
0
,
s
=
1
7
5
0

h
=
1
5
,
s
=
1
0
0
0

h
=
1
5
,
s
=
1
2
5
0

h
=
1
5
,
s
=
1
5
0
0

h
=
1
5
,
s
=
1
7
5
0

h
=
1
5
,
s
=
2
0
0
0

h
=
1
5
,
s
=
2
2
5
0

M
ed

ia
n

ex
ec

ut
io

n
tim

e
(m

s)

 Configuration characteristics
 s = size, h = height

REFERENCE
MUTATORS
NATIVE

Fig. 15 AGG : execution times

 10

 100

 1000

h
=
2
5
,
s
=
1
0
0
0

h
=
2
5
,
s
=
1
2
5
0

h
=
2
5
,
s
=
1
5
0
0

h
=
2
5
,
s
=
1
7
5
0

h
=
2
5
,
s
=
2
0
0
0

h
=
2
5
,
s
=
2
2
5
0

h
=
3
0
,
s
=
1
0
0
0

h
=
3
0
,
s
=
1
2
5
0

h
=
3
0
,
s
=
1
5
0
0

h
=
3
0
,
s
=
1
7
5
0

h
=
3
0
,
s
=
2
0
0
0

h
=
3
0
,
s
=
2
2
5
0

h
=
3
0
,
s
=
2
5
0
0

M
ed

ia
n

ex
ec

ut
io

n
tim

e
(m

s)

 Configuration characteristics
 s = size, h = height

REFERENCE
MUTATORS
NATIVE

Fig. 16 AGG : scalability comparison

Secondly, mutators significantly ameliorate the efficiency

and scalability of system modifications with respect to clas-

sic methodologies. Figure 17 depicts the evolution of the the

execution time ratio of natives methods to mutators. Con-

sidering a configuration of size 1750 and height 20, for ex-

ample, this ratio is roughly equal to 14 for GMTE (from

16952 to 1192 ms) and 5.3 for AGG (from 154 to 28.9 ms).

It increases with height and logarithmically decreases with

size. For example, the considered ratio goes up to 27 for the

GMTE (from 103796 to 3807 ms) and 8.3 for AGG (from

330 to 39.6 ms) when considering a configuration of height

30 and size 2500. Unlike the considered ratio, the net gain,

i.e. the difference of execution times, is strictly increasing

 0

 5

 10

 15

 20

 25

 30

h
=
1
0
,
s
=
1
0
0
0

h
=
1
0
,
s
=
1
2
5
0

h
=
1
0
,
s
=
1
5
0
0

h
=
1
0
,
s
=
1
7
5
0

h
=
2
0
,
s
=
1
5
0
0

h
=
2
0
,
s
=
1
7
5
0

h
=
2
0
,
s
=
2
0
0
0

h
=
2
0
,
s
=
2
2
5
0

h
=
2
0
,
s
=
2
5
0
0

h
=
2
0
,
s
=
2
7
5
0

h
=
3
0
,
s
=
1
2
5
0

h
=
3
0
,
s
=
1
5
0
0

h
=
3
0
,
s
=
1
7
5
0

h
=
3
0
,
s
=
2
0
0
0

h
=
3
0
,
s
=
2
2
5
0

h
=
3
0
,
s
=
2
5
0
0

R
at

io
 e

xe
cu

tio
n

tim
e

: n
at

iv
e

m
et

ho
ds

 to
 m

ut
at

or
s

 Configuration characteristics
 s = size, h = height

GMTE
AGG

Fig. 17 Native methods vs. mutators : ratio of execution times

 10

 100

 1000

 10000

 100000

h
=
1
0
,
s
=
1
0
0
0

h
=
1
0
,
s
=
1
2
5
0

h
=
1
0
,
s
=
1
5
0
0

h
=
1
0
,
s
=
1
7
5
0

h
=
2
0
,
s
=
1
5
0
0

h
=
2
0
,
s
=
1
7
5
0

h
=
2
0
,
s
=
2
0
0
0

h
=
2
0
,
s
=
2
2
5
0

h
=
2
0
,
s
=
2
5
0
0

h
=
2
0
,
s
=
2
7
5
0

h
=
3
0
,
s
=
1
2
5
0

h
=
3
0
,
s
=
1
5
0
0

h
=
3
0
,
s
=
1
7
5
0

h
=
3
0
,
s
=
2
0
0
0

h
=
3
0
,
s
=
2
2
5
0

h
=
3
0
,
s
=
2
5
0
0

M
ed

ia
n

ga
in

 (
m

s)
: D

iff
er

en
ce

 o
f e

xe
cu

tio
n

tim
es

 Configuration characteristics
 s = size, h = height

GMTE
AGG

Fig. 18 Native methods vs. mutators : net gain

with regard to both height and size, as shown in Fig. 18.

These results can be explained by the fact that the pro-

posed method requires a single rule application followed by

the execution of a mutator that is linear with regard to depth.

The native methods require d rule applications to update at-

tributes within a graph of height d. A rule application itself

has a polynomial executional complexity with regard to the

size of the graph for AGG, while it is exponential for GMTE.

The net gain increases with the application time of a rule.

The results are not independent from the chosen sce-

nario. Here occurs a propagating modification of attributes

that is a typical example of the domino effect evoked in

Enhanced Graph Rewriting Systems for Complex Software Domains 19

Sec. 2. However, the scenario also comprised the worst com-

parison case, namely the incrementation of the number of

managed components. Since this last impacts attribute within

the scope of the rewriting rule solely, mutators are in this

case equivalent to classical, native, methods.

7 Conclusion

Dynamic software architectures enable adaptation in evolv-

ing distributed systems. They focus on two particular aspects

which are usually considered separately: correctness and ap-

propriateness with regard to functional and non-functional

requirements. Graph and graph rewriting based methodolo-

gies are appropriate for designing correct-by-construction

reconfigurations of dynamic systems, effectively guarantee-

ing their consistency by requiring little or no verification in

run-time. Their genericness allows the representation of a

vast range of systems in different fields, including dynamic

software architectures.

With reference to DIET, an industrial application con-

tributing in federating and managing hybrid HPC environ-

ment, this article first shows that currently available graph

based methods exhibit limitations in handling varying at-

tributes and constraints. Then, an extension of graph gram-

mars is proposed so as to lift the highlighted restrictions.

The pivotal features of this new formalism are: mutators, ad-

missible relationships specification, and constraint oriented

encoding. The firsts are introduced within graph rewriting

rules as a lightweight approach to attribute and constraint

modifications. On the other hand, attribute interdependen-

cies are expressed through algebraic operators that allow to

characterize admissible relationships. Finally, to ease appli-

cation management operations, the appropriateness of a con-

figuration in accordance to functional and non-functional re-

quirements is reflected by constraints. Noticeably, to cope

also with unknown attributes, constraints are defined as ele-

ments of a ternary logic systems.

The application of the resulting formalism to the specifi-

cation of DIET demonstrates its fitness for the management

of systems subordinate to functional and non-functional re-

quirements. Experimental results show that reconfiguring a

graph of size 2500 with mutators rather than existing meth-

ods is up to 27 times quicker on GMTE and 8.3 times quicker

on AGG. This improvement allows to efficiently asses char-

acteristics of the system by combining evaluation on de-

mand and/or update on modification. In turn, this allows to

quickly grasp the appropriateness of a configuration, iden-

tify objectives that can be ameliorated, and component im-

plying constraints violation.

The initiated extension of AGG is currently being fur-

ther developed so as to hide the complexity of the formalism

within a graphical and user-friendly automated tool. In par-

allel, mechanisms to take advantage of this new model are

being integrated within FRAMESELF [1], a multi-model

framework for self-management of distributed systems. Also,

ongoing research is exploring the suitability of the proposed

formalism to time-constraints. Another interesting future de-

velopment would be the consideration of infinite logic sys-

tems. These lasts provide a more precise way of transform-

ing qualitative properties into quantitative one, by linking,

for example, robustness to failure probability.

References

1. Alaya MB, Monteil T (2012) Frameself: A generic

context-aware autonomic framework for self-

management of distributed systems. In: 21st IEEE

International Workshop on Enabling Technologies:

Infrastructure for Collaborative Enterprises (WETICE),

pp 60–65

2. Allen R, Garlan D (1997) A formal basis for architec-

tural connection. ACM Transactions on Software Engi-

neering and Methodology 6(3):pp 213–249

3. Allen R, Douence R, Garlan D (1998) Specifying and

analyzing dynamic software architectures. In: Funda-

mental Approaches to Software Engineering, Lecture

Notes in Computer Science, vol 1382, Springer Berlin

Heidelberg, pp 21–37

4. Baleani M, Ferrari A, Mangeruca L, Sangiovanni-

Vincentelli A, Freund U, Schlenker E, Wolff HJ (2005)

Correct-by-construction transformations across design

environments for model-based embedded software de-

velopment. In: Conference on Design, Automation and

Test in Europe (DATE), pp 1044–1049

5. Baresi L, Heckel R, Thöne S, Varró D (2006) Style-

based modeling and refinement of service-oriented ar-

chitectures. Journal of Software and Systems Modelling

5(2):pp. 187–207

6. Bonakdarpour B, Bozga M, Jaber M, Quilbeuf J, Sifakis

J (2010) Automated conflict-free distributed implemen-

tation of component-based models. In: International

Symposium on Industrial Embedded Systems (SIES),

pp 108–117

7. Borgetto D, Casanova H, Da Costa G, Pierson JM

(2012) Energy-aware service allocation. Future Gener

Comput Syst 28(5):769–779

8. Bradbury JS, Cordy JR, Dingel J, Wermelinger M

(2004) A survey of self-management in dynamic soft-

ware architecture specifications. In: ACM SIGSOFT

workshop on Self-managed systems (WOSS), ACM,

New York, NY, USA, pp 28–33

9. Caron E, Desprez F (2006) Diet: A scalable toolbox to

build network enabled servers on the grid. International

20 C. Eichler et al.

Journal of High Performance Computing Applications

20(3):pp. 335–352

10. Chomsky N (1956) Three models for the description

of language. IEEE Transactions on Information Theory

2(3):pp.113–124

11. Ehrig H, Mahr B (1985) Fundamentals of algebraic

specification. EATCS Monographs in Theoretical Com-

puter Science. An EATCS Series, Springer-Verlag,

Berlin, New York

12. Ehrig H, Ehrig K, Prange U, Taentzer G (2006) Fun-

damental theory for typed attributed graphs and graph

transformation based on adhesive hlr categories. Fun-

damenta Informaticae 74(1):pp. 31–61

13. Eichler C, Gharbi G, Guermouche N, Monteil T, Stolf P

(2013) Graph-based formalism for machine-to-machine

self-managed communications. In: 22nd IEEE Interna-

tional Workshop on Enabling Technologies: Infrastruc-

ture for Collaborative Enterprises (WETICE), pp 74–79

14. Gacek C, Lemos R (2006) Architectural description of

dependable software systems. In: Besnard D, Gacek C,

Jones C (eds) Structure for Dependability: Computer-

Based Systems from an Interdisciplinary Perspective,

Springer London, pp 127–142

15. Garlan D, Monroe RT, Wile D (2000) Acme: Architec-

tural description of component-based systems. In: Leav-

ens GT, Sitaraman M (eds) Foundations of Component-

Based Systems, Cambridge University Press, pp 47–68

16. Gössler G, Graf S, Majster-Cederbaum M, Martens M,

Sifakis J (2007) Program analysis and compilation, the-

ory and practice. Springer-Verlag, Berlin, Heidelberg,

chap Ensuring properties of interaction systems by con-

struction, pp 201–224

17. Hirsch D, Montanari U (2000) Consistent transforma-

tions for software architecture styles of distributed sys-

tems. Electronic Notes in Theoretical Computer Sci-

ence 28(0):pp.4–25

18. Hirsch D, Inverardi P, Montanari U (1999) Modeling

software architectures and styles with graph grammars

and constraint solving. In: Donohoe P (ed) Software Ar-

chitecture, The International Federation for Information

Processing, vol 12, Springer US, pp 127–143

19. Hoffmann B (2005) Graph transformation with vari-

ables. In: Formal Methods in Software and System

Modeling, volume 3393 of Lecture Notes in Computer

Science, Springer, pp 101–115

20. IEEE (2000) Ieee recommended practice for architec-

tural description of software-intensive systems. IEEE

Std 1471-2000 pp 1–23

21. Kacem MH, Jmaiel M, Kacem AH, Drira K (2005)

Evaluation and comparison of adl based approaches for

the description of dynamic of software architectures. In:

7th International Conference on Enterprise Information

Systems (ICEIS), Miami, USA, pp 189–195

22. Kandé MM, Strohmeier A (2000) Towards a uml pro-

file for software architecture descriptions. In: 3rd In-

ternational Conference on The Unified Modeling Lan-

guage: advancing the standard (UML), Springer-Verlag,

Berlin, Heidelberg, pp 513–527

23. Kephart J, Chess D (2003) The vision of autonomic

computing. Computer 36(1):pp 41–50

24. Kleene SC (1938) On notation for ordinal number. The

Journal of Symbolic Logic 3(4):150–155

25. Kleene SC (1952) Introduction to metamathematics,

Bibliotheca mathematica, vol 1. North-Holland, Ams-

terdam

26. Le Métayer D (1998) Describing software architecture

styles using graph grammars. IEEE Trans Softw Eng

24:pp.521–533

27. Loulou I, Kacem AH, Jmaiel M, Drira K (2004) To-

wards a unified graph-based framework for dynamic

component-based architectures description in z. In:

IEEE/ACS International Conference on Pervasive Ser-

vices (ICPS), IEEE Computer Society, Los Alamitos,

CA, USA, pp 227–234

28. Lun L, Chi X (2010) Relationship between testing cri-

teria for architecture configuration testing based on

wright specification. In: International Conference on

Computational Intelligence and Software Engineering

(CiSE), pp 1–4

29. Magee J, Kramer J (1996) Dynamic structure in soft-

ware architectures. In: 4th ACM SIGSOFT Symposium

on the Foundations of Software Engineering (FSE), pp

3–14

30. Oquendo F (2006) Pi-method: a model-driven formal

method for architecture-centric software engineering.

ACM SIGSOFT Software Engineering Notes 31:pp. 1–

13

31. Parr T, Fisher K (2011) Ll(*): the foundation of the antlr

parser generator. SIGPLAN Not 47(6):pp.425–436

32. Rodriguez IB, Drira K, Chassot C, Guennoun K, Jmaiel

M (2010) A rule-driven approach for architectural self

adaptation in collaborative activities using graph gram-

mars. International Journal of Autonomic Computing

(3):pp. 226–245

33. Rong M, Liu C, Zhang G (2011) Modeling aspect-

oriented software architecture based on acme. In: 6th

International Conference on Computer Science Educa-

tion (ICCSE), pp 1159–1164

34. Rozenberg G (ed) (1997) Handbook of Graph Gram-

mars and Computing by Graph Transformations, Vol-

ume 1: Foundations, World Scientific

35. Saxena P, Menezes N, Cocchini P, Kirkpatrick

DA (2003) The scaling challenge: can correct-by-

construction design help? In: International Symposium

on Physical Design (ISPD), ACM, New York, NY,

USA, pp 51–58

Enhanced Graph Rewriting Systems for Complex Software Domains 21

36. Selonen P, Xu J (2003) Validating uml models against

architectural profiles. SIGSOFT Software Engineering

Notes 28:pp.58–67

37. Sharrock R, Monteil T, Stolf P, Hagimont D, Broto

L (2011) Non-intrusive autonomic approach with self-

management policies applied to legacy infrastructures

for performance improvements. Int J Adapt Resilient

Auton Syst 2(1):pp. 58–76

38. Simalatsar A, Guo L, Bozga M, Passerone R (2012) In-

tegration of correct-by-construction bip models into the

metroii design space exploration flow. In: 30th IEEE

International Conference on Computer Design (ICCD),

pp 490–491

39. Tahar BM, Taoufik SR, Mourad K (2013) Checking

non-functional properties of uml2.0 components assem-

bly. In: 22nd IEEE International Workshop on Enabling

Technologies: Infrastructure for Collaborative Enter-

prises (WETICE), pp 278–283

40. Wermelinger M, Fiadeiro JL (2002) A graph transfor-

mation approach to software architecture reconfigura-

tion. Science of Computer Programming 44(2):pp. 133

– 155, special Issue on Applications of Graph Transfor-

mations (GRATRA 2000)

