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Abstract: In this paper we are focused on the Multi-Carrier Code Division Multiple Access
(MC-CDMA) equalization problem. The equalization is performed using the Minimum Mean
Square Error (MMSE) and Zero Forcing (ZF) equalizer based on the identified parameters
representing the indoor scenario (European Telecommunications Standards Institute Broadband
Radio Access Networks (ETSI BRAN A) channel model), and outdoor scenario (ETSI BRAN
E channel model). These channels are normalized for fourth-generation mobile communication
systems. However, for such high-speed data transmissions, the channel is severely frequency-
selective due to the presence of many interfering paths with different time delays. The
identification problem is performed using the Least Mean Squares (LMS) algorithm and the
Takagi-Sugueno (TS) fuzzy system. The comparison between these techniques, for the channel
identification, will be made for different Signal to Noise Ratios (SNR).

Keywords: LMS algorithm; Takagi-Sugeno fuzzy system; MC-CDMA system; Identification
and Equalization.

1. INTRODUCTION

Wireless or cellular mobile communication systems have
been evolving according to advancements in wireless tech-
nologies and changes in user demands. In fixed and cellular
networks, voice conversation was the dominant service for
a long time. In line with the recent explosive expansion
of Internet traffic in fixed networks, demands for broad
ranges of services are becoming stronger even in mobile
communication networks. A variety of services are now
available over the second generation (2G) mobile commu-
nications systems, including email, Web access, and online
services ranging from bank transactions to entertainment,
in addition to voice conversation. 3G systems based on
wide band direct sequence code-division multiple access
(DSCDMA) Fazel et al [2008], with much higher data rates
of up to 384 kb/s (around 10 Mb/s in the later stage), were
put into service in some countries, and their deployment
speed has since accelerated. However, the capabilities of
3G systems will sooner or later be insufficient to cope
with the increasing demands for broadband services that
will soon be in full force in fixed networks. Demands for
downloading of ever increasing volumes of information
will become higher and higher. 4G systems that support
extremely high-speed packet services are now expected to
emerge Farhang: [1999], Safi et al [2009]. In this paper we
focus on the channel identification representing the indoor
propagation (ETSI BRAN A) and the outdoor propaga-

tion (BRAN E), these channel models are normalized for
4G systems. the propagation channel is introduced for
better understanding of the frequency-selective channel.
The identification problem is performed using the Least
Mean Squares algorithm (LMS) Farhang: [1999] and the
Takagi-Sugueno (TS) fuzzy system Tanaka et al [2001].

2. MC-CDMA (BROADBAND) CHANNEL

Between a base station and a mobile station (MS) there
are many obstacles, and also many local scatterers (e.g.,
neighboring buildings) in the vicinity of the MS. For this,
the channel can be viewed as a time varying linear filter
of impulse response h(τ) observed at time t, which can be
expressed as Safi et al [2010]

h(τ) =

L−1∑

i=0

ξiδ(τ − τi) (1)

where δ(n) is Dirac function, ξi is the magnitude of the
target i, L = 18 the number of target and τi is the time
delay (from the origin) of target i.

2.1 ETSI BRAN A Mobile Channel Model

In this paragraph we consider the ETSI BRAN A model
representing the propagation in an indoor case. In the Ta-



ble 1 we have summarized the measured values correspond-
ing the ETSI BRAN A radio channel impulse response Eq.
1.

Table 1. Delay and magnitudes of 18 targets of
BRAN A radio channel

delay τi(ns) mag. Ci(dB) delay τi(ns) mag. Ci(dB)

0 0 90 −7.8
10 −0.9 110 −4.7
20 −1.7 140 −7.3
30 −2.6 170 −9.9
40 −3.5 200 −12.5
50 −4.3 240 −13.7
60 −5.2 290 −18
70 −6.1 340 −22.4
80 −6.9 390 −26.7

2.2 ETSI BRAN E Mobile Channel Model

The ETSI BRAN E model representing the fading radio
channel, where the data corresponding to this model are
measured in outdoor environment, Table 2.

Table 2. Delay and magnitudes of 18 targets of
BRAN E channel

delay τi(ns) mag. Ci(dB) delay τi(ns) mag. Ci(dB)

0 −4.9 320 0
10 −5.1 430 −1.9
20 −5.2 560 −2.8
40 −0.8 710 −5.4
70 −1.3 880 −7.3
100 −1.9 1070 −10.6
140 −0.3 1280 −13.4
190 −1.2 1510 −17.4
240 −2.1 1760 −20.9

3. APPLICATION: MC-CDMA SYSTEM

The principles of MC-CDMA Linnartz [2001] is that a
single data symbol is transmitted at multiple narrow band
sub-carriers. Indeed, in MC-CDMA systems, spreading
codes are applied in the frequency domain and trans-
mitted over independent sub-carriers. However, multicar-
rier systems are very sensitive to synchronization errors
such as symbol timing error, carrier frequency offset and
phase noise. In this part, we describe a blind equalization
techniques for MC-CDMA systems using the presented
algorithm.

3.1 MC-CDMA Transmitter

The MC-CDMA modulator spreads the data of each user
in frequency domain. In addition, precisely, the complex
symbol gi of each user i is, first, multiply by each chips
ci,k of spreading code, and then apply to the modulator
of multi-carriers. Each sub-carrier transmits an element of
information multiply by a code chip of that sub-carrier. If
We consider that: the length Lc of spreading code is equal
to the number Np of sub-carriers. Then The MC-CDMA
signal is:

s(t) =
ai√
Np

Np−1∑

k=0

ci,ke
2jfkt (2)

where fk = f0 +
1
Tc

We suppose that, the channel is time invariant and it’s im-
pulse response is characterized by: P paths of magnitudes
βp and phase θp. So the impulse response is given by

h(τ) =
∑P−1

p=0 βpe
jθpδ(τ − τp)

The relationship between the emitted signal s(t) and the
received signal r(t) is given by: r(t) = h(t) ∗ s(t) + n(t)

r(t) =

P−1∑

p=0

βpe
jθps(t− τ) + n(t) (3)

where n(t) is an additive white gaussian noise.

3.2 MC-CDMA Receiver

In a system of Nu users, the emitted signal in a channel is

s(t) =

Nu−1∑

u=0

Np−1∑

k=0

gucu,ke
2jfkt (4)

The received signal after the introduction of the channel
is: r(t) = h(t) ∗ s(t) + n(t).

r(t) =
1√
Np

P−1∑

p=0

Np−1∑

k=0

βpe
jθgucu,ke

2jπ(f0+k/Ts)(t−τp) + n(t)

At the reception, we demodulate the signal according
the Np sub-carriers, and then we multiply the received
sequence by the code of the user. When there are M active
users, the received signal is

r(t) =

M−1∑

m=0

N−1∑

i=0

hm,icm[i]am[k]cos(2πfct+ 2πi
F

Tb
t+ θm,i) + n(t)

where the effects of the channel have been included in
hm,i and θm,i and n(t) is additive white Gaussian noise
(AWGN). Applying the receiver model to the received
signal given in equation (5) yields the following decision
variable for the kth data symbol assuming the users are
synchronized in time

v0 =

M−1∑

m=0

Np−1∑

i=0

hm,icm[i]g0,iam[k]
2

Tb

(k+1)Tb∫

kTb

cos(2πfct+ 2πi
F

Tb
t+ θm,i)

cos(2πfct+ 2πi
F

Tb
t+ θ̂m,i)dt+ η (5)

where θ̂0,i denotes the receiver’s estimation of the phase
at the ith subcarrier of the desired signal. In the case of
an ideal channel : hm,i = 1, θm,i = 0

υ0 = a0[k]

Np−1∑

i=0

c0[i]c0[i]g0,i +

M−1∑

m=0

Np−1∑

i=0

am[k]cm[i]c0[i] + η



= a0[k]

Np−1∑

i=0

g0,i + η

The object of the equalization is to extract a0[k].

4. EQUALIZATION FOR MC-CDMA

4.1 Zero forcing (ZF) Equalization technique

The goal of the equalization techniques should be to reduce
the effect of the fading and the interference while not
enhancing the effect of the noise on the decision of what
data symbol was transmitted. The principle of the ZF, is to
completely cancel the distortions brought by the channel.
The gain factor of the ZF equalizer,is given by the equation

gk =
1

|hk|
(6)

if we suppose that the spreading code are orthogonal, i.e.

Nu−1∑

q=0

Np−1∑

k=0

cj,kcq,k = 0 ∀q 6= j (7)

this fact, the estimated received symbol, d̂j of symbol dj
of the user j is described by

d̂j =

Np−1∑

k=0

c2j,kdj +

Np−1∑

k=0

cj,k
1

hk

nk (8)

thus, the performance obtained using this detection tech-
niques are independent of the users number, in condition
that the spreading codes are orthogonal. But, if the hk

value is very weak, (great fading cases), the values gk
increases and the noise will be amplified.

4.2 Minimum Mean Square Error (MMSE) Equalization

The MMSE techniques combine the minimization the mul-
tiple access interference and the maximization of signal
to noise ratio. The MMSE techniques minimize the mean
squares error for each sub-carrier k between the transmit-
ted signal sk and the output detection gkrk:

ε[|ǫ|2] = ε[|sk − gkrk|
2]

= ε[(sk − gkhksk − gknk)(s
∗
k − g∗kh

∗
ks

∗
kg

∗
kn

∗
k) (9)

the minimisation the function ε[|ǫ|2], give us the optimal
equalizer coefficient, under the minimization of the mean
square error criterion, of each sub-carrier as:

gk =
h∗
k

|h∗
k|

2 + 1
γk

(10)

where γk = E[|skhk|
2]

E|nk|2
.

If the values hk are small, the SNR for each sub-carrier
is minimal. So, the use of the MMSE criterion avoid the
noise amplification. On the other hand, the greatest values
of the hk, and gk being inversely proportional, allows to
restore orthogonality between users.

5. CHANNEL IDENTIFICATION USING THE LMS
ALGORITHM AND TS FUZZY SYSTEM

5.1 Description of the LMS Algorithm

From the method of steepest descent, the weight vector
equation is given by Aboulnasr et al [1997]

w(n+ 1) = w(n) +
1

2
µ[−∇(E{e2(n)})] (11)

Where µ is the step-size parameter and controls the
convergence characteristics of the LMS algorithm; e2(n)
is the mean square error between the beamformer output
y(n) and the reference signal which is given by

e2(n) = [d∗(n)− whx(n)]2 (12)

The gradient vector in the above weight update equation
can be computed as

∇w(E{e2(n)}) = −2r + 2Rw(n) (13)

The LMS algorithm on the other hand simplifies this by
using the instantaneous values of covariance matrices r
and R instead of their actual values i.e.

R(n) = x(n)xh(n) (14)

r(n) = d∗(n)x(n) (15)

Therefore the weight update can be given by

w(n+ 1) =w(n) + µx(n)e∗(n) (16)

The LMS algorithm is initiated with an arbitrary value
w(0) for the weight vector at n = 0. The successive
corrections of the weight vector eventually leads to the
minimum value of the mean squared error. Therefore
the LMS algorithm can be summarized in the following
equations

Output, y(n) = wh(n)x(n) (17)

Error, e(n) = d∗(n)− y(n) (18)

Weight, w(n+ 1) = w(n)− µx(x)e∗(n) (19)

The LMS algorithm initiated with some arbitrary value
for the weight vector is seen to converge and stay stable
for

0 < µ < 1/λmax (20)

Where λmax is the largest eigenvalue of the correlation
matrix R. The convergence of the algorithm is inversely
proportional to the eigenvalue spread of the correlation
matrix R. When the eigenvalues of R are widespread,
convergence may be slow. The eigenvalue spread of the
correlation matrix is estimated by computing the ratio
of the largest eigenvalue to the smallest eigenvalue of the
matrix. If µ is chosen to be very small then the algorithm
converges very slowly.

5.2 Description of the TS fuzzy model

The fuzzy model proposed by Takagi et al [1985] is
described by fuzzy IF-THEN rules which represents local
input-output relations of a nonlinear system. The main
feature of a Takagi-Sugeno fuzzy model is to express the



local dynamics of each fuzzy implication (rule) by a linear
system model. The overall fuzzy model of the system is
achieved by fuzzy ”blending” of the linear system models
Yong et al [2001]. In this work, we use particular fuzzy
models of Takagi-Sugeno approach that allow non-linear
systems by a combination of several local linear models
Haiping et al [2008], Iqdour et al [2006]. These models
are written as follows

Ri : if xt is Ai Then ŷt,i = α0i + xT
t αi (21)

where i = 1, 2, ...c and t = 1, 2, ...N

Ri(i = 1, 2, ..., c) indicates the ith fuzzy rule, xt is the input
variable (xt ∈ Rn), ŷt,i is the output of the rule i relative
to input xi, Ai is the fuzzy set and αi = (α1, α2, ..., αn)

T .
The output ŷt relative to input xt after aggregating of c
TS fuzzy rules, can be written as a weighted sum of the
individual conclusions

ŷt =

c∑

i=1

πi(xt)ŷt,i (22)

with

πi(xt) =
µAi

(xt)∑c
j=1 µAj

(xt)
(23)

where µAi
is the membership function related to the fuzzy

set Ai. The identification of the TS fuzzy systems requires
two types of tuning:
- Structural tuning: concerns the determination of the
number of rules c and the fuzzy sets to be used in the
fuzzy system, for that we used the Gustafson-Kessel (GK)
fuzzy clustering algorithm Iqdour et al [2006] with the
following fuzzy validity criterion

S(c) =

N∑

t=1

c∑

i=1

(µkt)
m(‖zt − νi‖

2‖νi − z‖2) (24)

Where zt is the tth data point, νi is the center of the
ith cluster and z is the average of data and m is the
fuzzification exponent. For the functional Eq.24, the two
terms inside the bracket represent the variance of data
inside each clusters and the variance of the clusters them-
selves, respectively. So the optimum number of clusters is
determined as a minimum of the fuzzy validity criterion
S(c) as c increases.
- Parametric tuning: consists to identify the parameters of
the TS fuzzy model: Generally two methods are used for
the estimation of the linear parameters (αk) Tanaka et al
[2001]. The first one is the Weighted Least Squares (WLS)
algorithm, called also the local method. The second one is
the Global Least Square (GLS) algorithm called also the
global method. The determination of the best strategy to
apply is not clearly established.

6. SIMULATION RESULTS

In this section we show the performance results obtained
by computer simulation for different SNR and assuming
that the input channel is driven by non Gaussian signal
x(n). The output channel y(n) is corrupted by a gaussian
noise N(n).

ETSI BRAN A Identification using the LMS algorithm
In Fig. 1 we represent the estimation of the ETSI BRAN A
parameters using the LMS algorithm, for an SNR varying
between 0dB and 40dB the data length is 2048 and for
100 iterations. From the Fig. 1 we observe a very low
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Fig. 1. ETSI BRAN A channel identification for different
SNR, using the LMS algorithm

influence of the noise on the parameters estimation even
for a SNR = 0dB, this is due to a slow variance of the
impulse response of the ETSI BRAN A channel.

ETSI BRAN E Identification In this section we consider
the ETSI BRAN E channel model. The Fig. 2 show the
impulse response estimation for this channel using the
LMS algorithm for different SNR. From the Fig. 2, we
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Fig. 2. ETSI BRAN E channel identification for different
SNR, using the LMS algorithm

remark a slight influence of the noise in the impulse
response parameters estimation principally if the SNR <
24dB, but if the SNR > 24dB the estimated parameters
are very closed to the measured one.

6.1 Channel Identification Using the TS Fuzzy System

In this section we use Takagi-Sugueno fuzzy system to
identify the impulse response of ETSI BRAN (A and E)
channel model, for different SNR.

ETSI BRAN A Identification The Fig. 3 represent the
impulse response of ETSI BRAN A channel model, for
various SNR.



This figure shows clearly the influence of noise on param-
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Fig. 3. ETSI BRAN A channel identification for different
SNR, using TS fuzzy system

eter estimation, principally when the noise is important,
i.e. SNR < 24dB, This is due to any noise filtering is
realized in the TS fuzzy system. Which means if the noise
is important, we observe that the estimated parameters
are not closed to the measured one.

ETSI BRAN E Identification The problem of the noise
filtering is most clear in the impulse response identifi-
cation of the ETSI BRAN E channel model using the
TS fuzzy system, i.e. Fig. 4, This figure demonstrates
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Fig. 4. ETSI BRAN E channel identification for different
SNR, using TS fuzzy system

the identification problem of the ETSI BRAN E impulse
response, when we have a rapid variance of the impulse
response and in presence of noise, using the TS fuzzy
system. This problem is clear principally for the first six
values of the ETSI BRAN E impulse response, where the
estimated parameters do not follow those measured. But, if
the impulse response decrease ”slowly”, i.e after the sixth
values we observe that the estimated values are closed to
those measured.

7. MC-CDMA SYSTEM PERFORMANCE

In order to evaluate the performance of the MC-CDMA
system, using the presented methods. These performances
are evaluated by calculation of the Bit Error Rate (BER),
for the two equalizers ZF and MMSE, using the measured
and estimated (using the LMS algorithm and fuzzy sys-
tem) BRAN A and BRAN E channel impulse response.
The results are evaluated for different SNR values.

7.1 ZF and MMSE equalizer: case of BRAN A channel

In the Fig. 5, we represent the BER for different SNR,
using the measured and estimated BRAN A channel using
the LMS algorithm and fuzzy system. The equalization
is performed using the ZF equalizer. From this figure we
observe that: the LMS algorithm is more precise and gives
good results than the TS fuzzy system.
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Fig. 5. BER of the estimated and measured BRAN A
channel, for different SNR, using the ZF equalizer.

The Fig. 6 represents the BER for different SNR, using
the measured and estimated BRAN A channel using the
LMS algorithm and the Fuzzy system. The equalization is
performed using the MMSE equalizer.
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Fig. 6. BER of the estimated and measured BRAN A
channel, for different SNR, using the MMSE equalizer.

The BER simulation for different SNR demonstrates that
the results obtained by the LMS algorithm have the same
form comparing to the those obtained using the measured
data. From the figures (Fig. 5 and 6) we conclude that: if
the SNR ≥ 22dB we have only a BER of 10−4. The BER
values, obtained using the LMS algorithm, are more closed
to those obtained using the measured values comparing to
those obtained using the Fuzzy system, (Fig. 5 and 6).

7.2 ZF and MMSE equalizer : case of BRAN E channel

We represent in the Fig. 7, the simulation results of BER
estimation using the measured and blind estimated of the
BRAN E channel impulse response. The equalization is
performed using ZF equalizer.

The Fig. 7 demonstrates clearly that the BER obtained,
from ZF equalization, and based on the estimated param-
eters, using the LMS algorithm and Fuzzy system, ZF
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Fig. 7. BER of the estimated and measured BRAN E
channel, for different SNR, using the ZF equalizer.

equalization gives good results like these obtained using
measured values for ZF equalization. From Fig. 7 of the
two techniques gives the 1 bit error if we receive 104 if
the SNR ≥ 22dB. In the same manner, we represent in
Fig. 11 the simulation results of BER estimation using the
measured and blind estimated of the BRAN E channel
impulse response. The equalization is performed using
MMSE equalizer.
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Fig. 8. BER of the estimated and measured BRAN E
channel, for different SNR, using the MMSE equalizer.

From the Fig. 8, we observe that the blind MMSE equaliza-
tion gives approximately the same results obtained using
the measured BRAN E values for MMSE equalization. So,
if the SNR values are superior to 20dB, we observe that
1 bit error occurred when we receive 103 bit, but if the
SNR ≥ 22dB we obtain only one bit error for 104 bit
received.

8. CONCLUSION

In this paper we have presented two techniques: LMS
algorithm and TS fuzzy system. Both of those techniques
are used to identify and equalize the MC-CDMA channel.
The LMS algorithm show their efficiency in the impulse
response channel (ETSI BRAN (A and E) normalized for
the MC-CDMA system) identification with high precision
(the estimated parameters are very closed to the measured
one) for various SNR, eventually for a SNR = 0dB.
The TS fuzzy system give good results for the impulse
response ETSI BRAN A selective channel, for different
SNR > 16dB. But for ETSI BRAN E selective channel
we have some variance for the sixth values of the impulse
response.
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