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I. SIMULATION DETAILS

The simulations were performed using LAMMPS [1]. The initial configurations were pre-

pared using Packmol [2], and the configuration files formatted for LAMMPS using the VMD

[3] Topotool plugin. The system was maintained at a temperature T = 300 K using a Nosé-

Hoover thermostat, with damping time 200 fs, applied only to the directions perpendicular

to the flow. Long-range Coulombic interactions were computed using the particle-particle

particle-mesh (PPPM) method, and water molecules were held rigid using the SHAKE al-

gorithm. The equations of motion were solved using the velocity Verlet algorithm with a

timestep of 2 fs. After equilibration, on a relaxation time of 1 to 2 ns consistent with Ref.

[4], production runs lasted typically 10 ns.

II. IMPROVED MODEL FOR ZETA POTENTIAL

Here we show that an ad hoc but very simple modification of the zeta potential model

used in the main text brings the prediction in near quantitative agreement with simulation

results.

The expression used in the main text is

ζ = ζslip + ζno-slip =
Σb

ε
+ V (zs). (1)

V (z) is the exact solution of the Poisson-Boltzmann (PB) equation for a single wall, and is
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FIG. 1: Prediction of the improved model for the zeta potential (lines) compared to simulation

results (points).

given by

tanh

(
φ(z)

4

)
= tanh

(
φ(0)

4

)
e−κz, (2)

φ(0) = 2 asinh(2πlBλDΣ/e), (3)

where φ = eV/kBT is the dimensionless potential, lB and λD are the Bjerrum and Debye

lengths respectively.

In the main text, we use for zs the simulation result zsims . Here we introduce the arbitrary

assumption that zs = zsims +z∗s , with z∗s a free parameter. Taking z∗s = 0.3 nm actually brings

the predicted ζ in near quantitative agreement with simulation data, as shown in Fig. 1.

The introduction of z∗s is ad hoc and lacks a straigthforward physical meaning. However,

we should point out that our continuum description is drastically simplified compared to the

real (simulated) system. The PB equation neglects correlations, the finite-size of ions [18],

and consider water as medium with a given dielectric constant. Not only may dielectric

properties be non-uniform within the film, but according to the work of Refs. [5, 6] on the

SDS-water films, the strongly polarized water molecules behaves very differently from an

ordinary dielectric. The PB equation further assumes invariance along the lateral plane,

neglecting the discrete nature of the charges, and in the present case, the possible formation

of surfactant clusters. Given the very idealized continuum description, it might be necessary
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to introduce some arbitrary assumption to get quantitative results. The fact that only one

parameter is needed to fit the data suggests that the model, though simplified, captures the

main physical effects at play.

III. ION-BINDING

To determine the fraction of bound ions θ, we rely on the fact that bound Na+ ions are

very close to the S and O atoms of the surfactant heads, and form a well separated peak in

the Na-S and Na-O radial distribution functions. Therefore, we apply a simple geometric

criterion on the distance between ions and S or O atoms of the surfactant heads being smaller

than 0.44 nm or 0.32 nm respectively, to determine if an ion is bound. The two criterions on

the Na-S and Na-O distance provide identical results within a fraction of a percent.

Among the several simulations studies that specifically consider the SDS-water system [5,

7–13], several have mentioned the high fraction of bound ions, but none have focused on

the θ(c) dependence over a large range of surfactant coverage. Existing models for ion-

binding (see for instance Ref. [14] and references therein) introduce several parameters,

which may be difficult to justify or measure in the simulated system. Here we aim only at a

phenomenological description, and we treat the binding as a simple chemical reaction. For

simplicity of notations, the binding reaction Na+ + DS− � NaDS is rewritten as I + A� B,

where I and B refers to free and bound ions, and A to adsorption sites. The reaction constant

is expressed from the activities as K = aB/(aIaA).

Approximating the activities by the concentration, i.e. taking an activity coefficient equal

to unity, we have: aB = cθ, by definition of θ; aA = c(1− θ), where each DS− ion is assumed

to be one adsorbing site for one Na+ ion; and finally, denoting cs the salt concentration,

aI = cse
−φ(0), since this is the concentration of Na+ ions at the surface. Altogether this

yields

θ

1− θ
= Kcse

−φ(0), (4)

where the surface potential φ(0) is

φ(0) = −2 asinh [2πlBλDc(1− θ)] ,

that is Eq. (3) with Σ/e = −c(1 − θ). Solving the equation numerically and fitting the

simulation data in log-linear scale gives a rather poor fit (not shown).
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FIG. 2: Fraction of bound ions θ as function of surfactant coverage c. Points are simulation data.

See text for fit.

The model above assumes that each DS− head is an adsorption site. However, there are

several hints that adsorption sites for Na+ may actually involve more than one surfactant

head. Reference [15], which simulates a whole SDS micelle, points out that a significant

amount (23%) of sodium ions are “bridging”, that is, in contact with two heads groups.

Reference [16], which examines MD simulations of a CTAB monolayers, concludes that the

“counter-ions are shared by the head-groups”. Finally, from visual inspection of configu-

rations, it appears plausible that an adsorption site is not a single, isolated, head, but the

space between two neighboring heads, with the ion bridging between the two. One may

then assume that, at low enough concentration, the total number of adsorption sites is pro-

portional to c2, rather than to c [19]. Assuming further that one of the head should be

unoccupied –that is empty, with no ion adsorbed already– leads to

aA = (1− θ)c2/c1, (5)

where c1 is a constant that can be absorbed in the reaction constant K. As shown in Fig. 2,

the θ(c) dependence is now well captured, with the same reaction constant K = 1.00 for both

Debye lengths. The second model thus provides a satisfactory description of the ion-binding

fraction, while introducing only one free parameter.
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IV. SHIFT OF THE SHEAR PLANE

As discussed in the main text, the evolution of the slip length with the surfactant coverage,

b ∝ c−1, can be rationalized with a simple argument. Can we understand in a similar way

the shift in shear plane position zs?

For the sake of simplicity [20], the surfactant heads are modeled as an array of cylindrical

pillars with height h and number density c (per unit area). Working with the average velocity

profile v(z), the total viscous dissipation per unit surface D is given by

D
η

=

∫ ∞
0

dz [v′(z)]
2

+ c

∫ h

0

dz ξv2(z), (6)

where ξ is a dimensionless friction coefficient quantifying dissipation due to one pillar. Now,

for a square array of infinite cylindrical pillars, ξ is given by [17]

4π

ξ(φ)
= −1

2
log φ− 0.738 + φ− 0.887φ2 + 2.039φ3 +O(φ4). (7)

Here, φ = c/cmax is the surface fraction covered by the pillars (i.e., the surfactants). This

expression is reasonable for φ . 0.3. While Eq. (7) is valid for a flow invariant in the z-

direction, we have assumed, for lack of a better approximation, that it holds locally in each

layer of thickness dz. Now, minimizing the dissipation yields

z > h, v′′2(z) = 0, (8)

z 6 h, v′′1(z) +
v1(z)

λ2
= 0, λ2 =

1

cξ
. (9)

Using the boundary conditions

v′1(0) = 0, v′1(h) = v′2(h), v′2(∞) = γ̇, (10)

v1(h) = v2(h),

one obtains

v1(z) = λγ̇
cosh(z/λ)

sinh(h/λ)
, (11)

v2(z) = γ̇(z − h) +
λγ̇

tanh(h/λ)
. (12)

Since the slip velocity is vs = v1(0), the slip length b = vs/γ̇ is

b =
1

h c ξ(c)
. (13)
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FIG. 3: (Left) Schematic of the velocity profile v(z). (Right) Shear plane position zs as a function

of surfactant density c. The decrease at high c is due to the breakdown of Eq. (7).

So at lowest order, this approach would predict logarithmic correction to the b ∝ c−1 be-

havior.

Now, what is the shear plane position zs? Defining zs through v1(0) = v2(zs) as in Fig. 3

yields

zs
h

= g(u), g(u) = 1− cotanh(u)− csch(u)

u
, u = h

√
cξ. (14)

Upon increasing u (or the coverage c), the function g(u) increases steadily from 1/2 to 1,

with most of the change taking place for u in the interval [1, 20]. Now, taking cmax = 4 nm−2

and h = 0.8 nm [21], one finds that in the range of interest c ∈ [0.05, 1] nm−2, u covers the

interval [1, 10]. We can therefore expect significant variation in the function zs(c), which is

plotted in Fig. 3, taking the origin at the middle height of the pillars. It turns out that i)

zs is located at half-height at low concentration. ii) zs shifts by a few Å’s upon increasing

c from 0.1 to 1. Both predictions of the simple model are in qualitative agreement with

simulation data.
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