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Abstract

By using a coupling method, an explicit log-Harnack inequality with local geometry
quantities is established for (sub-Markovian) diffusion semigroups on a Riemannian
manifold (possibly with boundary). This inequality as well as the consequent L2-
gradient inequality, are proved to be equivalent to the pointwise curvature lower bound
condition together with the convexity or absence of the boundary. Some applications
of the log-Harnack inequality are also introduced.

AMS subject Classification: 58J65, 60H30.
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1 Introduction

Let M be a d-dimensional connected complete Riemannian manifold possibly with a bound-
ary ∂M . Consider L = ∆+Z for a C1-vector field Z. Let Xt(x) be the (reflecting) diffusion
process generated by L with starting point x and life time ζ(x). Then the associated diffusion
semigroup Pt is given by

Ptf(x) := E
[

f(Xt(x))1{t<ζ(x)}

]

, t ≥ 0, f ∈ Bb(M).

Although the semigroup depends on Z and the geometry on the whole manifold, we aim to
establish Harnack, resp. gradient type inequalities for Pt by using local geometry quantities.

∗supported in part by NNSFC(11131003) and Lab. Math. Com. Sys.
†Corresponding author: wangfy@bnu.edu.cn, F.-Y.Wang@swansea.ac.uk.
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Let K ∈ C(M) be such that

(1.1) RicZ := Ric−∇Z ≥ −K,

i.e. for any x ∈ M and X ∈ TxM , Ric(X,X) − 〈X,∇XZ〉 ≥ −K(x)|X|2. Next, for any
D ⊂ M , let

K(D) := sup
D

K, Dr = {z ∈ M : ρ(z,D) ≤ r}, r ≥ 0,

where ρ is the Riemannian distance on M . Finally, to investigate Pt using local curvature
bounds, we introduce, for a given bounded open domain D ⊂ M , the following class of
reference functions:

CD =
{

φ ∈ C2(D̄) : φ|D > 0, φ|∂D\∂M = 0, Nφ|∂M∩∂D ≥ 0
}

,

where N is the inward unit normal vector field of ∂M . When ∂M = ∅, the restriction
Nφ|∂M ≥ 0 is automatically dropped. For any φ ∈ CD, we have

cD(φ) = sup
D

{

5|∇φ|2 − φLφ
}

∈ [0,∞).

The finiteness of cD(φ) is trivial since D̄ is compact. To see that cD(φ) ≥ 0, we consider the
following two situations:

(a) There exists x ∈ ∂D\∂M . We have φ(x) = 0 so that cD(φ) ≥
{

5|∇φ|2−φLφ
}

(x) ≥ 0.

(b) When ∂D \ ∂M = ∅, we have D̄ = M . Otherwise, there exists z ∈ M \ (D ∪ ∂M),
For any z′ ∈ D \ ∂M , let γ : [0, 1] → M \ ∂M be a smooth curve linking z and z′.
Since z′ ∈ D but z /∈ D, there exists s ∈ [0, 1] such that γ(s) ∈ ∂D. This is however
impossible since ∂D ⊂ ∂M and γ(s) /∈ ∂M. Therefore, in this case M = D̄ is compact
so that the reflecting diffusion process is non-explosive. Now, let x ∈ D̄ such that
φ(x) = maxD̄ φ. Since Nφ|∂M ≥ 0 due to φ ∈ CD, φ(Xt) − φ(x) −

∫ t

0
Lφ(Xs) ds is a

sub-martingale so that

φ(x) ≥ Eφ(Xt) ≥ φ(x) +

∫ t

0

ELφ(Xs) ds, t ≥ 0.

This implies Lφ(x) ≤ 0 (known as the maximum principle) and thus,

cD(φ) ≥
{

5|∇φ|2 − φLφ
}

(x) ≥ 0.

Theorem 1.1. Let K ∈ C(M). The following statements are equivalent:

(1) (1.1) holds and ∂M is either empty or convex.

(2) For any bounded open domain D ⊂ M and any φ ∈ CD, the log-Harnack inequality

PT log f(y)− log(PTf(x) + 1− PT1(x))

≤ ρ(x, y)2

2

(

K(Dρ(x,y)

1− e−2K(Dρ(x,y))T
+

cD(φ)
2(e2K(Dρ(x,y))T − 1)

2K(Dρ(x,y))φ(y)4

)

, T > 0, y ∈ D, x ∈ M,

holds for strictly positive f ∈ Bb(M).
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(3) For any bounded open domain D ⊂ M and any φ ∈ CD,

|∇PTf |2(x) ≤
{

PTf
2 − (PTf)

2
}

(x)

(

K(D)

1− e−2K(D)T
+

cD(φ)
2(e2K(D)T − 1)

2K(D)φ(x)4

)

holds for all x ∈ D, T > 0, f ∈ Bb(M).

If moreover PT1 = 1, then the statements above are also equivalent to

(4) For any bounded open domain D ⊂ M and any φ ∈ CD, the Harnack type inequality

PTf(y) ≤ PTf(x) + ρ(x, y)

(

K(D)

1− e−2K(D)T
+

cD(φ)
2(e2K(D)T − 1)

2K(D) infℓ(x,y) φ4

)1/2
√

PTf 2(y)

holds for nonnegative f ∈ Bb(M), T > 0 and x, y ∈ D such that the minimal geodesic

ℓ(x, y) linking x and y is contained in D.

Remark (i) When K is constant, a number of equivalent semigroup inequalities are avail-
able for the curvature condition (1.1) together with the convexity or absence of the boundary,
see [8, 10] and references within (see also [3, 11] for equivalent semigroup inequalities of the
curvature-dimension condition). When ∂M is either empty or convex, the above result pro-
vides at the first time equivalent semigroup properties for the general pointwise curvature
lower bound condition.

(ii) When the diffusion process is explosive, the appearance of 1−PT1 in the log-Harnack
inequality is essential. Indeed, without this term the inequality does not hold for e.g. f ≡ 1
provided PT1 < 1.

(iii) The following result shows that the constant 1/2 involved in the log-Harnack in-
equality is sharp.

Proposition 1.2. Let c > 0 be a constant. For any x ∈ M , strictly positive function f with

|∇f |(x) > 0 and log f ∈ C2
0(M), and any constants C > 0, the inequality

PT log f(y) ≤ log (PTf(x) + 1− PT1(x)) + c ρ(x, y)2
(

C

1− e−2CT
+ o

( 1

T

)

)

for small T > 0 and small ρ(x, y) implies that c ≥ 1/2.

Proof. Let us take v ∈ TxM and ys = expx[sv], s ≥ 0. Then the given log-Harnack inequality
implies that

(1.2) Ps log f(ys)− log (Psf(x) + 1− Ps1(x)) ≤ cs2|v|2
(

C

1− e−2Cs
+ o

(1

s

)

)

holds for small s > 0. On the other hand, for any g ∈ C2(M) with bounded Lg, one has

(1.3)
d

ds
Psg|s=0 = Lg.
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Indeed, letting Xt be the diffusion process generated by L with X0 = x, by Itô’s formula
and the dominated convergence theorem we obtain

lim
s↓0

Psg(x)− g(x)

s
= lim

s↓0

1

s
E

∫ s∧ζ(x)

0

Lg(Xr) dr = E lim
s↓0

1

s

∫ s∧ζ(x)

0

Lg(Xr) dr = Lg(x).

Combining (1.2) with (1.3) we obtain

〈v,∇ log f〉(x)− |∇ log f |2(x) = L log f(x) + 〈v,∇ log f〉(x)− Lf(x)

f(x)

= lim
s↓0

1

s

{

Ps log f(ys)− log(Psf(x) + 1− Ps1(x))
}

≤ c|v|2
2

.

Taking v = r∇ log f(x) for r ≥ 0 we obtain

(

r − 1− cr2

2

)

|∇ log f(x)|2 ≤ 0, r ≥ 0.

This implies c ≥ 1/2 by taking r = 1/c.

To derive the explicit log-Harnack inequality using local geometry quantities, we may
take e.g. D = B(y, 1) := {z : ρ(y, z) < 1}. Let

Ky = 0 ∨K(B(y, 1)), Kx,y = K(B(y, 1 + ρ(x, y))),

K0
y = 0 ∨ sup

{

− Ric(U,U) : U ∈ TzM, |U | = 1, z ∈ B(y, 1)
}

,

by = sup
B(y,1)

|Z|.

Then K(Dρ(x,y)) = Kx,y and according to [7, Proof of Corollary 5.1] (see page 121 therein

with δ̄x replaced by 1), we may take φ(z) = cos πρ(y,z)
2

so that φ(y) = 1 and

κ(y) := Ky +
π2(d+ 3)

4
+ π

(

by +
1

2

√

K0
y (d− 1)

)

≥ cD(φ).

Note that when ∂M is convex, Nρ(·, y)|∂M ≤ 0 so that Nφ|∂D∩∂M ≥ 0 as required in the
definition of CD. Therefore, Theorem 1.1 (2) implies that

(1.4) Pt log f(y) ≤ log
{

Ptf(x)+1−Pt1(x)
}

+
ρ(x, y)2

2

(

Kx,y

1− e−2Kx,yt
+

κ(y)2(e2Kx,yt − 1)

2Kx,y

)

holds for all strictly positive f ∈ Bb(M), x, y ∈ M and t > 0. As in the proofs of [6, Corollary
1.2] and [9, Corollary 1.3], this implies the following heat kernel estimates and entropy-cost
inequality. When Pt obeys the log-Sobolev inequality for t > 0, the second inequality in
Corollary 1.3(2) below also implies the HWI inequality as shown in [4, 5].

Corollary 1.3. Assume (1.1) and that ∂M is either convex or empty. Let Z = ∇V for

some V ∈ C2(M) such that Pt is symmetric w.r.t. µ(dx) := eV (x) dx, where dx is the volume

measure. Let pt be the density of Pt w.r.t. µ. Assume that (1.1) holds.
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(1) Let K̄(y) = K(B(y, 2)). Then
∫

M

pt(y, z) log pt(y, z)µ(dz)

≤
√
t ∧ 1

(

K̄(y)

1− e−2K̄(y)t
+

κ(y)2(e2K̄(y)t − 1)

2K̄(y)

)

+ log
P2t1(y) + µ(1− Pt1)

µ(B(y,
√
t ∧ 1))

holds for all y ∈ M and t > 0.

(2) If µ is a probability measure and Pt1 = 1, then the Gaussian heat kernel lower bound

p2t(x, y) ≥ exp

[

− ρ(x, y)2

2

(

Kx,y

1− e−2Kx,yt
+

κ(y)2(e2Kx,yt − 1)

2Kx,y

)]

, t > 0, x, y ∈ M,

and the entropy-cost inequality
∫

M

(Ptf) logPtf dµ

≤ inf
π∈C (µ,fµ)

∫

M×M

ρ(x, y)2

2

(

Kx,y

1− e−2Kx,yt
+

κ(y)2(e2Kx,yt − 1)

2Kx,y

)

π(dx, dy), t > 0,

hold for any probability density function f of µ, where C (µ, fµ) is the set of all cou-

plings of µ and fµ.

Proof. According to (1.4), the heat kernel lower bound in (2) follows from the proof of [9,
Corollary 1.3], while the other two inequalities can be proved as in the proof of [6, Corollary
1.2]. Below we only present a brief proof of (1).

By an approximation argument we may apply (1.4) to f(z) := pt(y, z) so that

I :=

∫

M

pt(y, z) log pt(y, z)µ(dz)

≤ log{p2t(x, y) + 1− Pt1(x)}+
ρ(x, y)2

2

(

Kx,y

1− e−2Kx,yt
+

κ(y)2(e2Kx,yt − 1)

2Kx,y

)

.

Since Kx,y ≤ K̄(y) for x ∈ B(y, 1), this implies that

eIµ
(

B
(

y,
√
t ∧ 1

)

)

exp

[

− t ∧ 1

2

(

K̄(y)

1− e−2K̄(y)t
+

κ(y)2(e2K̄(y)t − 1)

2K̄(y)

)]

≤ eI
∫

M

exp

[

− ρ(x, y)2

2

(

Kx,y

1− e−2Kx,yt
+

κ(y)2(e2Kx,yt − 1)

2Kx,y

)]

µ(dx)

≤
∫

M

{p2t(x, y) + 1− Pt1(x)}µ(dx) = P2t1(y) + µ(1− Pt1).

This proves (1).

We remark that the entropy upper bound in (1) is sharp for short time, since both
− log µ(B(y,

√
t)) and the entropy of the Gaussian heat kernel behave like d

2
log 1

t
for small

t > 0.
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2 Proof of Theorem 1.1

We first observe that when PT1 = 1 the equivalence of (3) and (4) is implied by the proof of
[12, Proposition 1.3]. Indeed, by (3)

|∇PTf |2 ≤
{

PTf
2 − (PTf)

2
}

(

K(D)

1− e−2K(D)T
+

cD(φ)
2(e2K(D)T − 1)

2K(D) infℓ(x,y) φ4

)

holds on the minimal geodesic ℓ(x, y), so that the Harnack inequality in (4) follows from the
first part in the proof of [12, Proposition 1.3]. On the other hand, by the second part of the
proof, the inequality in (4) implies

|∇Ptf |2 ≤
{

PTf
2
}

(

K(D)

1− e−2K(D)T
+

cD(φ)
2(e2K(D)T − 1)

2K(D)φ4

)

on D. Replacing f by f − PTf(x), we obtain the inequality in (3) since ∇PTf = ∇PT (f −
PTf(x)) provided PT1 = 1.

In the following three subsections, we prove (1) implying (2), (2) implying (3), and (3)
implying (1) respectively.

2.1 Proof of (1) implying (2)

We assume the curvature condition (1.1) and that ∂M is either empty or convex. To prove
the log-Harnack inequality in (2), we will make use of the coupling argument proposed in
[1]. As explained in [1, Section 3], we may and do assume that the cut-locus of the manifold
is empty.

Now, let T > 0 and y ∈ D, x 6= y be fixed. For any z, z′ ∈ M , let Pz,z′ : TzM → Tz′M
be the parallel transport along the unique minimal geodesic from z to z′. Let Xt solve the
following Itô type SDE on M

dIXt =
√
2Φt dBt + Z(Xt) dt+N(Xt)dlt, X0 = x,

up to the life time ζ(x), where Bt is the d-dimensional Brownian motion, Φt is the horizontal
lift of Xt on the frame bundle O(M), and lt is the local time of Xt on ∂M if ∂M 6= ∅. When
∂M = ∅, we simply take lt = 0 so that the last term in the equation disappears.

To construct another process starting at y such that it meets Xt before T and its hitting
time to ∂D, let Yt solve the SDE with Y0 = y

(2.1) dIYt =
√
2PXt,Yt

Φt dBt + Z(Yt) dt−
√

ξ1(t)2 + ξ2(t)2 ∇ρ(Xt, ·)(Yt) dt+N(Yt)dl̃t,

where l̃t is the local time of Yt on ∂M when ∂M 6= ∅, and

ξ1(t) =
2K(Dρ(x,y)) exp[−K(Dρ(x,y))t]

1− exp[−2K(Dρ(x,y))T ]
ρ(x, y)1{Yt 6=Xt},

ξ2(t) =
2cD(φ)ρ(Xt, Yt)

φ(Yt)2
, t ∈ [0, T ].
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Then Yt is well-defined before T ∧ τD(x,y)(x) ∧ τD(y), where

τD(y) := inf{t ∈ [0, T ∧ ζ(x)) : Yt ∈ ∂D}, τD(x,y)(x) = inf{t ≥ 0 : Xt /∈ D(x, y)}.

Let
τ = inf{t ∈ [0, ζ(x) ∧ ζ(y)) : Xt = Yt},

where inf ∅ = ∞ by convention.
Let Θ = τ ∧ T ∧ τD(y) ∧ τD(x,y)(x) and set

η(t) =
1√
2

√

ξ1(t)2 + ξ2(t)2 ∇ρ(·, Yt)(Xt), t ∈ [0,Θ).

Define

R = exp

[

−
∫ Θ

0

〈η(t),Φt dBt〉 −
1

2

∫ Θ

0

|η(t)|2 dt
]

.

We intend to prove

(i) R is a well-defined probability density with

E
{

R logR
}

≤ ρ(x, y)2

2

(

K(Dρ(x,y)

1− e−2K(Dρ(x,y))T
+

cD(φ)(e
2K(Dρ(x,y))

2T − 1)

2K(Dρ(x,y))φ(y)4

)

.

(ii) τ ≤ T ∧ τD(y) ∧ τD(x,y)(x) holds Q-a.s., where Q := RP.

Once these two assertions are confirmed, by taking Yt = Xt for t ≥ τ we see that Yt solves
(2.1) up to its life time ζ(y) = ζ(x) and XT = YT for T < ζ(x). Moreover, by the Girsanov
theorem the process

B̃t := Bt +

∫ t

0

η(s) ds, t ≥ 0

is a d-dimensional Brownian motion under Q and equation (2.1) can be reformulated as

(2.2) dIYt =
√
2PXt,Yt

Φt dB̃t + Z(Yt) dt+N(Yt)dl̃t, Y0 = y.

Combining this with the Young inequality (see [2, Lemma 2.4])

PT log f(y) = E
{

R1{T<ζ(y)} log f(YT )
}

= E
{

R1{T<ζ(x)} log f(XT )
}

≤ ER logR + logE exp[1{T<ζ(x)} log f(XT )]

= log(PTf(x) + 1− PT1(x)) + ER logR

≤ log(PTf(x) + 1− PT1(x))

+
ρ(x, y)2

2

(

K(Dρ(x,y)

1− e−2K(Dρ(x,y))T − 1
+

cD(φ)
2(e2K(Dρ(x,y))T − 1)

2K(Dρ(x,y))φ(y)4

)

.

This gives the desired log-Harnack inequality.
Below we prove (i) and (ii) respectively.
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Lemma 2.1. For any n ≥ 1, let

τn(y) = inf
{

t ∈ [0, T ∧ ζ(x)) : ρ(Yt, D
c) ≤ n−1

}

and

Θn = τ ∧ nT

n+ 1
∧ τD(x,y)(x) ∧ τn(y).

Let Rn be defined as R using Θn in place of Θ. Then {Rn}n≥1 is a uniformly integrable

martingale with ERn = 1 and

E{Rn logRn} ≤ ρ(x, y)2

2

(

K(Dρ(x,y)

1− e−2K(Dρ(x,y))T − 1
+

cD(φ)
2(e2K(Dρ(x,y))T − 1)

2K(Dρ(x,y))φ(y)4

)

for n ≥ 1. Consequently, (i) holds.

Proof. (i) follows from the first assertion and the martingale convergence theorem. Since
before time Θn the process η(t) is bounded, the martingale property and ERn = 1 is well-
known. So, it remains to prove the entropy upper bound. By the Itô formula we see that
(cf. (2.3) and (2.4) in [1])

(2.3) dρ(Xt, Yt) ≤ K(Dρ(x,y))ρ(Xt, Yt) dt−
√

ξ1(t)2 + ξ2(t)2 dt, t ≤ Θn.

Then

dρ(Xt, Yt)
2 ≤ 2K(Dρ(x,y))ρ(Xt, Yt)

2 dt− 4cD(φ)ρ(Xt, Yt)
2

φ(Yt)2
dt, t ≤ Θn.

Note that (B̃t)t∈[0,Θn] is a d-dimensional Brownian motion under the probability Qn := RnP.
Combining this with (2.2) and using Itô’s formula along with the facts that the martingale
part of ρ(Xt, Yt)

2 is zero and Nφ|∂D∩∂M ≥ 0, we obtain

d
{ρ(Xt, Yt)

2

φ(Yt)4

}

≤ dMt −
4ρ(Xt, Yt)

2

φ(Yt)6
{

cD(φ) + φ(Yt)Lφ(Yt)− 5|∇φ(Yt)|2
}

dt

− 2K(Dρ(x,y))ρ(Xt, Yt)
2

φ(Yt)4
dt

≤ dMt −
2K(Dρ(x,y))ρ(Xt, Yt)

2

φ(Yt)4
dt, t ≤ Θn,

where

dMt := −4ρ(Xt, Yt)
2

φ(Yt)5
〈∇φ(Yt), PXt,Yt

Φt dB̃t〉

is a Qn-martingale for t ≤ Θn. This implies

EQn

{ρ(Xt∧Θn
, Yt∧Θn

)2

φ(Yt∧Θn
)4

}

≤ ρ(x, y)2

φ(y)4
e2K(Dρ(x,y))t, t ≥ 0.
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Hence,

E
{

Rn logRn

}

=
1

2
EQn

∫ Θn

0

|η(t)|2 dt = 1

4
EQn

∫ Θn

0

{

ξ1(t)
2 + ξ2(t)

2
}

dt

≤ K(Dρ(x,y))
2ρ(x, y)2

(1− e−2K(Dρ(x,y))T )2

∫ T

0

e−2K(Dρ(x,y))t dt+ cD(φ)
2

∫ T

0

EQn

ρ(Xt∧Θn
, Yt∧Θn

)2

φ(Yt∧Θn
)4

dt

≤ K(Dρ(x,y))ρ(x, y)
2

2(1− e−2K(Dρ(x,y))T )
+

cD(φ)
2(e2K(Dρ(x,y))T − 1)ρ(x, y)2

2K(Dρ(x,y))φ(y)4
, s > 0.

Lemma 2.2. We have τ ≤ T ∧ τD(y) ∧ τD(x,y)(x), Q-a.s.

Proof. By (2.3) we have

(2.4)

∫ Θ

0

{

ξ1(t) + ξ2(t)
}

dt = lim
n→∞

∫ Θn

0

{

ξ1(t) + ξ2(t)
}

dt < ∞.

Since under Q the process Yt is generated by L, as observed in the beginning of [7, Section 4]
we have

∫ τD(y)

0

1

Φ(Yt)2
dt = ∞, Q-a.s.

Then (2.4) implies that Q-a.s.

(2.5) τD(y) > τD(x,y)(x) ∧ τ ∧ T.

Moreover, it follows from (2.3) that

ρ(Xt, Yt) ≤ eK(Dρ(x,y))tρ(x, y)−
∫ t

0

eK(Dρ(x,y))(t−s)ξ1(s) ds

≤ e−2K(Dρ(x,y))t − e−2K(Dρ(x,y))T

1− e−2K(Dρ(x,y))T
eK(Dρ(x,y))tρ(x, y) ≤ ρ(x, y)1[0,T ](t), t ∈ [0,Θn].

So, τD(x,y) ≥ τD(y) and T ≥ τ. Combining these inequalities with (2.5) we complete the
proof.

2.2 Proof of (2) implying (3)

We will present below a more general result, which works for sub-Markovian operators on
metric spaces. Let (E, ρ) be a metric space, and let P be a sub-Markovian operator on Bb(E).

δ(f)(x) = lim sup
y→x

|f(y)− f(x)|
ρ(x, y)

, x ∈ E, f ∈ Bb(E).

If in particular E = M and f is differentiable at point x, then δ(f)(x) = |∇f |(x). So, (2)
implying (3) is a direct consequence of the following result.
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Proposition 2.3. Let x ∈ E be fixed. If there exists a positive continuous function Φ on E
such that the log-Harnack inequality

(2.6) P log f(y) ≤ log
{

Pf(x) + 1− P1(x)
}

+ Φ(y)ρ(x, y)2, f > 0, f ∈ Bb(E),

holds for small ρ(x, y), then

(2.7) δ(Pf)2(x) ≤ 2Φ(x)
{

Pf 2(x)− (Pf)2(x)
}

, f ∈ Bb(E).

Proof. Let f ∈ Bb(E). According to the proof of [8, Proposition 2.3], (2.6) for small ρ(x, y)
implies that Pf is continuous at x. Let {xn}n≥1 be a sequence converging to x, and denote
εn = ρ(xn, x). For any positive constant c > 0, we apply (2.6) to cεnf + 1 in place of f , so
that for large enough n

P log(cεnf + 1)(xn) ≤ log
{

P (cεnf + 1)(x) + 1− P1(x)
}

+ Φ(xn)ε
2
n.

Noting that for large n (or for small εn) we have

P log(cεnf + 1)(xn) = P
(

cεnf − 1

2
(cεn)

2f 2
)

(xn) + o(ε2n)

= cεnPf(x) + cε2n
Pf(xn)− Pf(x)

ρ(xn, x)
− 1

2
(cεn)

2Pf 2(x) + o(ε2n),

log
{

P (cεnf + 1)(x) + 1− P1(x)
}

= cεnPf(x)− 1

2
(cεn)

2(Pf)2(x) + o(ε2n).

We obtain

c lim sup
n→∞

Pf(xn)− Pf(x)

ρ(xn, x)
≤ c2

2

{

Pf 2(x)− (Pf)2(x)
}

+ Φ(x), c > 0.

Exchanging the positions of xn and x, we also have

c lim sup
n→∞

Pf(x)− Pf(xn)

ρ(xn, x)
≤ c2

2

{

Pf 2(x)− (Pf)2(x)
}

+ Φ(x), c > 0.

Therefore,

δ(Pf)(x) ≤ c

2

{

Pf 2(x)− (Pf)2(x)
}

+
Φ(x)

c
, c > 0.

This implies (2.7) by minimizing the upper bound in c > 0.

2.3 Proof of (3) implying (1)

The proof of RicZ ≥ −K is more or less standard by using the Taylor expansions for
small T > 0. Let x ∈ M \ ∂M and D = B(x, r) ⊂ M \ ∂M for small r > 0 such that
φ := r2 − ρ(x, ·)2 ∈ CD. It is easy to see that for f ∈ C∞

0 (M) and small t > 0,

|∇Ptf |2(x) = |∇f |2(x) + 2t〈∇f,∇Lf〉+ o(t),

K(D)

1− e−2K(D)t
+

cD(φ)
2(e2K(D)t − 1)

2K(D)φ(x)4
=

1

2t
+

K(D)

2
+ o(1).
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Moreover (see [10, (3.6)]),

Ptf
2(x)− (Ptf)

2(x) = 2t|∇f |2(x) + t2
{

2〈∇f,∇Lf〉+ L|∇f |2
}

(x) + o(t).

Combining these with (2.7) we obtain

Γ2(f)(x) :=
1

2
L|∇f |2(x)− 〈∇f,∇Lf〉(x) ≥ −K(D)|∇f |2(x) = −

(

sup
B(x,r)

K
)

|∇f |2(x).

Letting r ↓ 0, we arrive at Γ2(f)(x) ≥ −K(x) for x ∈ M \ ∂M and f ∈ C∞
0 (M), which is

equivalent to (1.1).
Next, we assume that ∂M 6= ∅ and intend to prove from (3) that the second fundamental

form I of ∂M is non-negative, i.e. ∂M is convex. When M is compact, the proof was done
in [10] (see the proof of Theorem 1.1 therein for (7) implying (1)). Below we show that the
proof works for general setting by using a localization argument with a stopping time.

Let x ∈ ∂M and r > 0. Define

σr = inf{s ≥ 0 : ρ(Xs, x) ≥ r},
where Xs is the L-reflecting diffusion process starting at point x. Let ls be the local time of
the process on ∂M . Then, according to [13, Lemmas 2.3 and 3.1], there exist two constants
C1, C2 > 0 such that

(2.8) P(σr ≤ t) ≤ e−C1/t, t ∈ (0, 1],

and

(2.9)
∣

∣

∣
Elt∧σr

− 2
√
t√
π

∣

∣

∣
≤ C2t, t ∈ [0, 1],

where (2.8) is also ensured by [2, Lemma 2.3] for ∂M = ∅. Let f ∈ C∞
0 (M) satisfy the

Neumann boundary condition. We aim to prove I(∇f,∇f)(x) ≥ 0. To apply Theorem
1.1(3), we construct D and φ ∈ CD as follows.

Firstly, let ϕ ∈ C∞
0 (∂M) such that ϕ(x) = 1 and suppϕ ⊂ ∂M ∩ B(x, r/2), where

B(x, s) = {z ∈ M : ρ(z, x) < s} for s > 0. Then letting φ0(expy[sN ]) = ϕ(y) (where y ∈ ∂M ,
s ≥ 0), we extend ϕ to a smooth function in a neighborhood of ∂M , say ∂r0M := {z ∈ M :
ρ(z, ∂M) < r0} for some r0 ∈ (0, r) such that ρ(·, ∂M) is smooth on (∂r0M) ∩ B(x, r).
Obviously, φ0 satisfies the Neumann boundary condition. Finally, for h ∈ C∞([0,∞)) with
h|[0,r0/4] = 1 and h|[r0/2,∞) = 0, we take φ = φ0h(ρ(·, ∂M)) and D = {z ∈ M : φ(z) > 0}.
Then φ(x) = 1, φ|∂D\∂M = 0, Nφ|∂M = Nφ0|∂M = 0, and D ⊂ B(x, r).

Once D and φ ∈ CD are given, below we calculate both sides of the gradient inequality
in (3) respectively.

According to (2.8), for small t > 0 we have

Ptf
2(x) = Ef 2(Xt∧σr

) + o(t2) = f 2(x) + E

∫ t∧σr

0

Lf 2(Xs) ds+ o(t2)

= f 2(x) + 2E

∫ t∧σr

0

(fLf)(Xs) ds+ 2E

∫ t∧σr

0

|∇f |2(Xs) ds+ o(t2).

(2.10)
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Noting that by the Neumann boundary condition

E|f(x)− f(Xs∧σr
)|2 ≤ ‖L(f(x)− f)2‖∞s, s ≥ 0,

we have

E

∫ t∧σr

0

(fLf)(Xs) ds− f(x)E

∫ t∧σr

0

Lf(Xs) ds

= E

∫ t∧σr

0

Lf(x){f(x)− f(Xs)} ds+ E

∫ t∧σr

0

(Lf(Xs)− Lf(x))(f(x)− f(Xs)) ds

≤ ‖Lf‖∞E

∫ t∧σr

0

∫ s

0

du+ E

∫ t

0

√

E|Lf(Xs∧σr
)− Lf(x)|2 · E|f(x)− f(Xs∧σr

)|2 ds

= o(t3/2).

(2.11)

Moreover, by the Itô formula and the fact that N |∇f |2 = 2I(∇f,∇f) holds on ∂M (see
e.g. [10, (3.8)]), we have

E|∇f |2(Xs∧σr
) = |∇f |2(x) + E

∫ s∧σr

0

L|∇f |2(Xu) du+ 2

∫ s∧σr

0

I(∇f,∇f)(Xu) dlu

≤ |∇f |2(x) + 2I(r)Els∧σr
+O(t),

where
I(r) := sup

{

I(∇f,∇f)(y) : y ∈ ∂M ∩ B(x, r)
}

.

Combining this with (2.10), (2.11) and using (2.8) and (2.9), we obtain

(2.12) Ptf
2(x) ≤ f 2(x) + 2f(x)E

∫ t∧σr

0

Lf(Xs) ds+ Ct3/2I(r) + o(t3/2)

for some constant C > 0 and small t > 0.
On the other hand, by (2.8) we have

(Ptf)
2(x) =

(

f(x)+E

∫ t∧σr

0

Lf(Xs) ds+o(t2)

)2

= f 2(x)+2tf(x)E

∫ t∧σr

0

Lf(Xs) ds+o(t2).

Combining this with (2.12) and noting that

K(D)

1− e−2K(D)t
+

cD(φ)
2(e2K(D)t − 1)

2K(D)φ(x)4
=

1

2t
+O(1)

holds for small t > 0, we arrive at

{

Ptf
2 − (Ptf)

2
}

(x)

(

K(D)

1− e−2K(D)t
+

cD(φ)
2(e2K(D)t − 1)

2K(D)φ(x)4

)

≤ |∇f |2(x) + CI(r)
√
t+ o(t1/2)

for small t > 0. Combining this with the gradient inequality in (3) and noting that

|∇Ptf |2(x) =
∣

∣

∣

∣

∇f(x) +

∫ t

0

∇PsLf(x) ds

∣

∣

∣

∣

2

= |∇f |2(x) + O(t),
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we conclude that

I(r) ≥ lim
t→0

1

C
√
t

{

{

Ptf
2−(Ptf)

2
}

(x)

(

K(D)

1− e−2K(D)t
+
cD(φ)

2(e2K(D)t − 1)

2K(D)φ(x)4

)

−|∇Ptf |2)(x)
}

≥ 0.

Therefore, I(∇f,∇f)(x) = limr→0 I(r) ≥ 0.
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