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Abstract

The purpose of this work is to achieve a better understanding of the coupling between adsorption and swelling in microporous

materials. This is typically of utmost importance in the enhancement of non-conventional reservoirs or in the valorization of CO2

geological storage. We consider here the case of fully saturated porous solids with pores down to the nanometer size (≤ 2nm).

Hardened cement paste, tight rocks, activated carbon or coal are among those materials. Experimentally, different authors tried to

combine gas adsorption results and volumetric swelling data, especially for bituminous coal. However, most results in the literature

are not complete in a sense that the adsorption experiments and the swelling experiments were not performed on the exact same coal

sample. Other authors present simultaneous in-situ adsorption and swelling results but the volumetric strain is extrapolated from a

local measurement on the surface sample or by monitoring the two-dimensional silhouette expansion. Only elastic and reversible

swellings are reported in the literature. Theoretically, most continuum approaches to swelling upon adsorption of gas rely on a

coupling between the adsorption isotherms and the mechanical deformation. A new poromechanical framework has been recently

proposed to express the swelling increment as a function of the increment of bulk pressure with constant porosity. However,

this framework has to be extended to take into account the porosity evolution upon swelling. This paper aims at presenting

a new experimental set-up where both adsorption and strain are measured in-situ and simultaneously and where the full-field

swelling is monitored by digital image correlation. Permanent strain and damage are observed. On the other hand, we present

an extended poromechanical framework where the porosity is variable upon swelling. A new incremental nonlinear scheme is

proposed where the poromechanical properties are updated at each incremental pressure step, depending on the porosity changes.

Interactions between swelling and the adsorption isotherms are examined and a correction to the classical Gibbs formalism is

proposed. Predicted swellings are compared with results from the literature.

c© 2014 The Authors. Published by Elsevier Ltd.

Selection and peer-review under responsibility of the Norwegian University of Science and Technology (NTNU), Department of

Structural Engineering.

Keywords: Poromechanics; swelling; adsorption; microporous materials

∗ Corresponding author. Tel.: +33-5-5957-4479 ; fax: +33-5-5957-4439.

E-mail address: david.gregoire@univ-pau.fr

© 2014 Elsevier Ltd. Open access under CC BY-NC-ND license. 
Selection and peer-review under responsibility of the Norwegian University of Science and Technology (NTNU), Department 
of Structural Engineering

http://crossmark.crossref.org/dialog/?doi=10.1016/j.mspro.2014.06.205&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mspro.2014.06.205&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/


1264   Laurent Perrier et al.  /  Procedia Materials Science   3  ( 2014 )  1263 – 1268 

1. Introduction

The mechanical response of porous solids saturated with a fluid phase is investigated with the help of poromechan-

ics. We consider here the case of fully saturated porous solids and focus on nanoporous (or microporous following the

IUPAC1 recommendation) materials, e.g. solids with pores down to the nanometer size (≤ 2nm). Hardened cement

paste, tight rocks, activated carbon or coal are among those materials. For these materials, a deviation from standard

poromechanics is expected. In very small pores, the molecules of fluid are confined. Interaction between molecules

is modified. This effect, denoted as molecular packing, includes fluid-fluid and fluid-solid interactions. Furthermore,

adsorption is important because the inner surface of the pore is very large compared to the volume of fluid contained

inside the pore.

Experimentally, different authors tried to combine gas adsorption results and volumetric swelling data, especially

for bituminous coal, because it is of utmost importance in the context of CO2 geological sequestration and coal bed

reservoirs exploitation. Indeed, in situ adsorption-induced coal swelling has been identified as the principal factor

leading to a rapid decrease of CO2 injectivity during enhanced coal bed methane production by CO2 injection. The

coal swelling may close the cleat system and reduce the global permeability. However, most results in the literature

are not complete in a sense that the adsorption experiments and the swelling experiments were not performed on the

exact same coal sample (Ottiger et al., 2008). Other authors present simultaneous in-situ adsorption and swelling

results but the volumetric strain is extrapolated from a local measurement on the surface sample or by monitoring

the two-dimensional silhouette expansion (Day et al., 2008). Only elastic and reversible swellings are reported in the

literature.

Theoretically, most continuum approaches to swelling of microporous materials upon adsorption of gas rely on

a coupling between the adsorption isotherms and the mechanical deformation. For saturated isotropic nano-porous

solids, in reversible and isothermal conditions, Vermorel and Pijaudier-Cabot (2014) proposed an expression of the

swelling volumetric deformation increment as a function of the increment of bulk pressure, and depending on a

confinement coefficient which refers to the interstitial fluid high density compared to the bulk fluid. Vermorel and

Pijaudier-Cabot (2014) show that the effective pore pressure and the swelling strains may be deduced from adsorption

measurements. In the Gibbs adsorption framework, the Gibbs adsorption isotherm stands as a measurement of the

number of adsorbate moles that exceeds the number of fluid moles at bulk conditions. Within this framework, they

observed a fair agreement between the fit of the theoretical predictions and several sets of experimental data found

in the literature. Particularly, it has been shown that the model parameters (porosity, apparent modulus and skeleton

modulus) may be fitted to recover the swelling and adsorption measurement data obtained by Ottiger et al. (2008) on

bituminous coal samples filled with pure CO2 at T = 45oC. At pressure up to Pb = 7MPa, a volumetric swelling strain

of ε ≈ 3.5% was observed. The fitted parameters did not match exactly the exact poromechanical properties of the

coal tested by Ottiger et al. (2008) but were consistent with coal poromechanical properties reported in the literature.

However, these properties were globally fitted on the whole swelling versus bulk pressure curve and thus they were

supposed to be constant upon swelling. The porosity evolution may be evaluated within the same poromechanical

framework and a relative increase of the porosity in the order of 30% (from 0.12 to ≈ 0.16) is predicted which is not

negligible. In these conditions, the poromechanical properties should vary upon swelling and thus the poromechanical

framework should be extended to take into account these variations.

This paper is organized as follows: in the first section, In the first section, we present an extension of the latter

poromechanical framework where the porosity is variable upon swelling. A new incremental nonlinear scheme is

proposed where the poromechanical properties (e.g. elastic properties and Biot coefficient) are updated at each incre-

mental pressure step, depending on the porosity changes. The model is validated by comparing the predicted swelling

with results obtained by Ottiger et al. (2008) on bituminous coal samples filled both with pure CO2 and pure CH4

at T = 45oC. Comparisons with the experimental swelling do fairly agree even if the adsorption experiments and

the swelling experiments were not performed simultaneously nor on the exact same coal sample. In order to have

a better understanding on the coupling between adsorption and swelling on microporous material, we present in the

second section a new experimental set-up where both adsorption and strain are measured in-situ and simultaneously

and where the full-field swelling is monitored by digital image correlation.

1 International Union of Pure and Applied Chemistry
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2. Extended poromechanical model with varying porosity

2.1. Poromechanical framework

Recently, Perrier et al. (2014) proposed a new poromechanical model for estimating swelling of nano-porous media

fully saturated with a fluid phase. From the Gibbs adsorption isotherm, the effective pore pressure and the volumet-

ric strain are estimated incrementally taking into account the variations of porosity upon swelling and therefore the

variations of the poromechanical properties (apparent modulus, Biot coefficient, Biot modulus). Moreover the inter-

action between swelling and the adsorption isotherms are examined by proposing a correction to the Gibbs formalism

by taking into account the pore volume variation upon swelling. Details may be found in Perrier et al. (2014) but

the main results are presented here in order to illustrate how this new poromechanical model may be used to predict

adsorption-induced swelling.

The poromechanical model proposed by Vermorel and Pijaudier-Cabot (2014) for constant porosity is rewritten

in an incremental form to take into account the variation of the porosity upon swelling. At each bulk pressure step,

a non-linear scheme is used to predict the porosity increment, the new poromechanical properties and the induced

swelling strain increment depending on the adsorption measurements (see Eq. 1).

dε =
(

b(φ)

1−χ
− 1
)

dPb

K(φ)
; dφ =

(

K(φ)

b(φ)−(1−χ)
+ b(φ)N(φ)

)

dε
N(φ)

; b(φ) = 1 −
K(φ)

Ks
; N(φ) =

Ks

b(φ)−φ
(1)

where φ is the varying porosity, ε is the swelling strain, K(φ) is the apparent modulus of incompressibility, b(φ) is the

Biot coefficient, N(φ) is the Biot modulus, Ks the skeleton matrix modulus, Pb is the bulk pressure and χ = 1 −
ρb

ρ f
is

the confinement coefficient which refers to the confinement degree of the interstitial fluid at density ρ f compared to

the bulk fluid at density ρb.

It has been shown by Vermorel and Pijaudier-Cabot (2014) that the confinement coefficient may be deduced from

adsorption measurements. In the Gibbs adsorption framework, the Gibbs adsorption isotherm stands as a measurement

of the number nex of adsorbate moles that exceeds the number of fluid moles at bulk conditions. If ntot denotes the

total number of moles of interstitial fluid, the confinement coefficient may be expressed as:

χ =
nex

ntot

(2)

In the classical Gibbs formalism, the porosity is considered to be constant and ntot is given by:

ntot ≈ nex +
ρbV0

φ

M
= nex +

(

φ0

1 − φ0

)

ms

M

ρb

ρs

(3)

where V0
φ

is the initial connected porous volume of the material, M the molar mass of the adsorbed gas, ms the

adsorbent sample mass and ρs the density of material composing the solid matrix of the porous adsorbent.

However, if the volumetric swelling of the material reaches tenths of percent or even several percents, as respec-

tively observed in coal by Meehan (1927); Bangham and Fakhoury (1928); Levine (1996) and by Ottiger et al. (2008);

Day et al. (2008), the increase of pore surface may be also significative. Therefore the latter expression has to be

corrected in order to take into account the pore volume variation:

ntot(φ) = nex +
ρbVφ

M
= nex +

(

φ

1 − φ

)

ms

M

ρb

ρs

(4)

where Vφ is the current connected porous volume of the material upon swelling and φ the updated porosity through

Eq 1. Note that under this corrected Gibbs formalism, the confinement coefficient (Eq. ??) explicitly depends on the

porosity and is thus incrementally estimated to predict the swelling strain through Eq. 1.

A change in the porosity leads to a change of the apparent modulus K upon swelling and therefore an homogeniza-

tion model has to be adopted to relate the porosity, the apparent modulus and the skeleton matrix modulus depending

on the pore size geometry. Assuming that the porosity is spherical, the homogenization model proposed by Mori and

Tanaka is used to describe the variation of the apparent modulus with the porosity. Assuming that the porosity is
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cylindrical, an homogenization model based on Halpin-Tsai equations is preferred. Note that, in most of cases, the

actual porosity shape is in between the sphere and the cylinder so that the two models may be seen as upper and lower

bounds. Note that it has been shown by Barboura (2007) that such homogenization scheme may lead to discrepancies

for media presenting a high porosity. Therefore she proposed an iterative process of homogenization which able to

recover a relevant homogenized behavior even for high porosity. The iterative process of homogenization is presented

in (Perrier et al., 2014).

Spherical porosity.

Following the Mori-Tanaka homogenization technique Mori and Tanaka (1973), the expressions for the homogenized

mechanical properties of a porous media with a spherical porosity depending on the skeleton materials properties are:

KMT (φ) =
4KsGs(1−φ)

4Gs+3Ksφ
, Gs =

3Ks(1−2νs)

2(1+νs)
(5)

where Gs and νs are respectively the shear modulus and the Poisson ratio of the skeleton matrix.

Cylindrical porosity.

For fiber-reinforced composites, Halpin and Kardos (1976) provide expression for the homogenized mechanical prop-

erties depending on both the matrix and the cylindrical fibers materials properties. For a porous medium with a

cylindrical porosity, these expressions are adapted by considering cylindrical voids instead of cylindrical fibers:

KHT (φ) =
KsGs(1−φ)

Gs+Ksφ
, Gs =

3Ks(1−2νs)

2(1+νs)
(6)

2.2. Results and comparisons with experimental results from the literature

From the experimental measurements of exceeding adsorbate quantities Ottiger et al. (2008), the swelling strain is

estimated through Eq.1 for the Halpin-Tsai homogenization schemes (Eq. 6). Indeed, the Halpin-Tsai scheme based

on a cylindrical porosity is a better representative of the actual porosity of the natural coal sample tested by Ottiger

et al. (2008). Details on the poromechanical properties identification may be found in Perrier et al. (2014).

Fig. 1.a presents the exceeding adsorbate quantities measured by Ottiger et al. (2008) for both pure CH4 and pure

CO2 at T = 45oC and the estimated total number of moles of interstitial fluid estimated through Eq. 7 for a variable

porosity. It is found classically that the CO2 adsorption capacity of coal are twice the CH4 adsorption capacity.

Fig. 2.b presents the comparison between the volumetric strain measured by Ottiger et al. (2008) and the predicted

swelling strain for both pure CH4 and pure CO2 at T = 45oC. A swelling strain of ≈ 3.5% is recovered for a CO2 bulk

pressure up to 7MPa, whereas a swelling strain of ≈ 1.7% is recovered for a CH4 bulk pressure up to 12MPa and a

fair agreement with the experimental measurements is observed.
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Fig. 1. (a) Evolution of the measured exceeding adsorbate quantities and the estimated total number of moles of interstitial fluid for a variable

porosity; (b) Comparison between the volumetric strain measured by Ottiger et al. (2008) and the predicted swelling strain. Data reproduced from

Perrier et al. (2014).
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3. A new experimental set-up allowing the simultaneous in-situ measurements of both adsorption and swelling

As noted by Ottiger and co-workers, the adsorption experiments and the swelling experiments presented in Ottiger

et al. (2008) were not performed on the exact same coal sample. Indeed, the coal samples were drilled in the same

coal mine but not at the same time and the same precise location. Therefore the extrapolation of the results presented

should be done cautiously. The fair agreement of the model with the experiments is encouraging but there is a need of

additional experimental data of simultaneous gas adsorption and swelling for a complete validation. In this section, a

new experimental set-up allowing the simultaneous in-situ measurements of both adsorption and swelling is presented.

The experimental set-up couples adsorption measurements of excess quantities by a manometric technique and

full-field displacement measurements based on a digital image correlation technique (Figure 2).

Adsorption measurements.

The adsorption isotherm is drawn step by step by estimating the excess adsorbed quantities for imposed increasing

incremental pressure at thermal equilibrium. All volumes are initially calibrated with helium which does not adsorb

on the substrate. At the pressure step i, the excess adsorbed quantities are given by:

n(i)
ex = n(i−1)

ex + ∆n(i)
ex = n(i−1)

ex +
ρ

(i)

D
VD

M
−
ρ

(i)
eq(VD + VM)

M
(7)

where ρ
(i)

D
is the gas density in the dosing cell (when the measuring cell is isolated, see Figure 2) estimated through the

gas state equation knowing the dosing volume VD and the dosing pressure PD at the thermal equilibrium TD, ρ
(i)
eq is the

gas density in the total volume knowing the total volume VD+VM and the total pressure Peq at the thermal equilibrium

Teq and M the molar mass of the adsorbed gas.

Full-field swelling measurements.

The swelling is estimated by digital image correlation technique (DIC) using the icasoft software (Morestin et al.,

1996; Mguil-Touchal et al., 1996). This software has already been applied in various research domain such as dynamic

fracture (Grégoire et al., 2009) or damage identification in biomaterials (Grégoire et al., 2011). DIC is used here to

quantify the volumetric swelling by measuring the full-field displacement of the bottom-face of the measuring cell

(see Figure 2). Practically, different images corresponding to a reference and different deformed states are acquired

by the camera and described by discrete functions representing the grey level of each pixel. Then each displacement

field corresponding to each deformed states are estimated by minimizing a cross-correlation coefficient on a set of

initial image pixels. Details about the technique may be found in (Grégoire et al., 2009) or (Grégoire et al., 2011).

Preliminary results on active carbon.

Figure 2 presents preliminary results on simultaneous in-situ measurements of swelling and adsorption on activated

carbon filled with pure CO2 and pure CH4 at T = 30oC. We can observe that the adsorption and desorption isotherms

are purely reversible whereas permanent strain is observed on the swelling response.

Fig. 2. Simultaneous in-situ measurements of swelling and adsorption on activated carbon filled with pure CO2 and pure CH4 at T = 30oC.
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4. Concluding remarks

• A new incremental poromechanical framework with varying porosity has been proposed allowing the prediction

of the swelling induced by adsorption.

• The proposed model has been compared with experimental data obtained by Ottiger et al. (2008) on bituminous

coal samples filled with pure CH4 and pure CO2 at T = 45oC and a fair agreement is observed. A swelling

strain of ≈ 3.5% is recovered for a CO2 bulk pressure up to 7MPa and a swelling strain of ≈ 1.7% is recovered

for a CH4 bulk pressure up to 12MPa.

• A correction to the classical Gibbs formalism has been proposed to take into account the variations of porosity

and to quantify the influence of the deformation of the porous structure on the adsorption isotherm. Upon

swelling and assuming that the porous volume changes, the total number of interstitial fluid is corrected by

taking into account the updated porosity.

• As noted by Ottiger and co-workers, the adsorption experiments and the swelling experiments presented in

Ottiger et al. (2008) were not performed on the exact same coal sample. Indeed, the coal samples were drilled

in the same coal mine but not at the same time and the same precise location. Therefore the extrapolation of the

results presented should be done cautiously. Therefore a new experimental set-up allowing the simultaneous

in-situ measurements of both adsorption and swelling has been developed.

• Preliminary results on simultaneous in-situ measurements of swelling and adsorption on activated carbon filled

with pure CO2 and pure CH4 at T = 30oC have been presented. A swelling strain of ≈ 3.5% is recovered for

a CO2 bulk pressure up to 5MPa and a swelling strain of ≈ 1.7% is recovered for a CH4 bulk pressure up to

12MPa. Permanent strain and damage are observed.
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