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Arithmetic on Abelian and Kummer Varieties

DAVID LUBICZ AND DAMIEN ROBERT

Abstract. A Kummer variety is the quotient of an abelian variety by the automorphism (−1) acting

on it. Kummer varieties can be seen as a higher dimensional generalisation of the x-coordinate

representation of a point of an elliptic curve given by its Weierstrass model. Although there is no

group law on the set of points of a Kummer variety, there remains enough arithmetic to enable the

computation of exponentiations via a Montgomery ladder based on differential additions. In this paper,

we explain that the arithmetic of a Kummer variety is much richer than usually thought. We describe

a set of composition laws which exhaust this arithmetic and show that these laws may turn out to be

useful in order to improve certain algorithms. We explain how to compute efficiently these laws in the

model of Kummer varieties provided by level 2 theta functions. We also explain how to recover the full

group law of the abelian variety with a representation almost as compact and in many cases as efficient

as the level 2 theta functions model of Kummer varieties.

1. Introduction

Efficient group law for abelian varieties have many applications in algebraic number theory and
cryptography. Let k be a finite field, the problem consists in representing the set of rational points A(k)
of an abelian variety defined over k and compute natural composition laws on this set of points such as
addition or Weil and Tate pairings. For cryptographic applications, we would like, for a level of security
roughly given by the cardinality of A(k), to have a representation as compact as possible and be able to
compute quickly all the composition laws.

If the case of elliptic curves has been widely studied for years, the literature about the higher
dimensional cases is less developed. For instance, it is known that all absolutely simple principally
polarized abelian surfaces are isomorphic to the jacobian Jac(H) of an hyperelliptic curve H of genus 2.
The points on the jacobian of H can be represented by their Mumford coordinates (u, v). The addition
law can then be computed using Cantor’s algorithm [Can87] and these formulas have been optimized in
[Lan05]. Unfortunately, even with these formulas, genus 2 curves do not provide the same efficiency as
elliptic curves for a similar level of security.

To obtain a more compact representation and improved arithmetic, an idea is to lose information
and consider the Kummer variety KA = A/(−1) associated to the abelian variety A. In terms of
Mumford coordinates, this means working with coordinates (u, v2). For an elliptic curve in Weierstrass
coordinates E : y2 = x3 + ax+ b, a geometric point P on the Kummer line KE is simply represented
by its x-coordinate x(P ). On a Kummer variety, since we can’t distinguish between a geometric point
P ∈ A(k) (where k is an algebraic closure of k) and its opposite −P , the addition law is only defined up
to an ambiguity; more precisely from the points ±P and ±Q one can recover two possible additions:
±(P +Q) and ±(P −Q) (in the following we will often denote by ±P the projection of a geometric
point P ∈ A(k) to KA). Nevertheless, one can still compute differential additions; from the data of ±P ,
±Q and ±(P −Q) the point ±(P +Q) is uniquely determined.

By using differential additions in a Montgomery ladder [Mon92; Mon87], it is then still possible to
compute scalar multiplications on Kummer varieties. As this is sufficient for some cryptographic protocols
based on the discrete logarithm problem, it makes sense to use Kummer varieties in cryptography. In
the dimension 2 case, since the publication of fast formulas for Kummer surfaces [Gau07; GL09], using
Kummer surfaces for cryptography has been somewhat competitive with elliptic curves. Recently the
duel has even been tipping in favor of Kummer surfaces [BCH+13; BCL+14]. We note that the fast
formulas in [Gau07] do not use Mumford coordinates but instead are based on a model of the Kummer
surfaces provided by theta functions of level 2 [Mum66; Mum67a; Mum67b] (so in particular the 2-torsion
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is rational in this model). On a Kummer surface, a point will be represented by 4 projective coordinates
(the four level 2 theta functions) while on a Kummer line we just need two projective coordinates. This
is somewhat assuaged by the fact that on a Kummer surface we can work with fields of half the size for
an equivalent security.

Nonetheless, it should be remarked that the arithmetic provided differential addition does not allow
to implement all cryptographic primitives. For instance the verification of a ECDSA signature requires
the computation of the addition law. While in the case of the Kummer line it is easy to go back to the
elliptic curve (at the cost of one square root), in dimension 2 it is harder to go back from the Kummer
surface to the abelian surface. One way would be to go to level 4 theta functions from the level 2 theta
functions, but there is a lack of explicit formulas in the literature explaining how to do this step. The
other way would be to go from the level 2 theta coordinates to the Mumford coordinates (u, v2) on the
Kummer surface using the formulas from [CR13; Cos11]; and then compute a square root to find the
Mumford coordinates (u, v) on A. But converting theta coordinates to Mumford coordinates is pretty
slow.

Moreover, while elliptic curves have an efficient addition law (especially on Montgomery curves
because they are birationally equivalent to twisted Edwards curves [BBJ+08]), this is not the case for
abelian surfaces (the level 4 theta model is even worse than Mumford coordinates since it requires 16
projective coordinates; the cost of the addition law is described in [Rob10]). Hence the incentive to do
as much arithmetic operations as possible on the Kummer variety. The aim of this paper is threefold:

• give a comprehensive picture of the arithmetic of Kummer varieties using tools that we have
developed for computing isogenies and optimal pairings on abelian varieties [LR12; LR13] ;

• provide an efficient algorithm to compute the fiber of the natural projection from an abelian
variety onto its associated Kummer variety;

• deduce a compact while still efficient representation of abelian varieties based on theta functions.

More precisely, we point out that what can be computed on a Kummer variety goes well beyond
differential additions. We introduce the so called compatible addition law which is well defined on a
Kummer variety. We give example of useful computations which can be carried out with compatible
addition though out of reach of differential additions. We given an algorithm to compute the compatible
addition in the model of Kummer varieties provided by level 2 theta functions and we explain that by
using differential and compatible additions it is possible to compute the fiber of the natural projection
A → KA up to one choice of sign. This shows that compatible and differential additions exhaust all the
arithmetic of Kummer varieties. Then we explain how we can use the idea of hybrid level (2, . . . , 2, 4)
theta functions combined with the arithmetic tools developed for Kummer varieties to obtain a more
efficient and compact representation of abelian varieties.

While, in view of cryptographic applications, we mainly consider the case of dimensions 1 and 2, the
algorithms we develop in this paper are valid in any dimension. The paper is organized as follows: In
Section 2, we describe the arithmetic on an abstract Kummer variety. Then, Section 3 explain how to
compute efficiently this arithmetic with the model provided by level 2 theta functions. Section 4, deals
with change of level formulas. Finally, Section 5 is devoted to efficient representation and arithmetic in
abelian varieties.

2. Arithmetic on Kummer varieties

In this section, we introduce the compatible addition on the set of points of Kummer varieties. We
give two examples of useful computations which can be carried out on a Kummer variety with compatible
additions. First, a multiway addition which allows to compute the sum P0+ . . .+Pn from the knowledge
of P0, . . . , Pn and the sums P0+P1), . . . , (P0+Pn). Then we explain how to compute a multi-dimensional
Montgomery ladder while keeping only 2 points in memory at each steps.

Let A be an abelian variety and denote by KA its associated Kummer variety. Let π : A → KA be
the canonical projection. In this section, we adopt the following convenient convention: for x ∈ A(k),
we denote by ±x ∈ KA(k) the point of KA. So, the notation ±x ∈ KA(k) means that x ∈ A(k) and
that π(x) = ±x. We suppose that we have a model of KA also defined over the field k where we can
compute doubling and differential additions. We also suppose that we have an algorithm which, provided
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with two points ±P,±Q ∈ KA(k), outputs equations defining the dimension 0 scheme of degree two
{±(P +Q),±(P −Q)}. We will call this operation the schematic addition on the Kummer. We note
that if ±Q is a point of 2-torsion, ±(P +Q) = ±(P −Q) so that by the hypothesis we can compute the
action of translation by points of 2-torsion.

The following very simple idea show that we can compute some additions on KA.

Proposition 2.1. Let x, y, z, t ∈ A(k) be such that x+ y = z+ t and x− y 6= z− t, x− y 6= t− z. Then
one can compute ±(x+ y) = ±(z + t) on KA from the knowledge of ±x,±y,±z,±t. We will call this
the compatible addition of x and y with respect to z and t.

We note that an equivalent reformulation of the condition of the Proposition is that there is no point
of 2-torsion u ∈ A(k) such that (x = z + u and y = t+ u) or (x = t+ u and y = z + u).

Proof. From the hypothesis about KA we can compute the two schemes {±(x + y),±(x − y)} and
{±(z+ t),±(z− t)} in KA. By the discussion above, we may assume that none of the point is of 2-torsion.
From the hypothesis of the Proposition their intersection is of degree 1 and is equal to {±(x + y)}.
Hence we have an algorithm to recover ±(x+ y) ∈ KA(k). �

Remark 2.2. In practice, the two schemes {±(x+ y),±(x− y)} and {±(z+ t),±(z− t)} will be defined
by two polynomials P1 = X2 + aX + b and P2 = X2 + cX + d in k[X]. Then P1 and P2 have a common
root if and only if (ad− bc)(c− a) = (d− b)2; in this case this root is (d− b)/(a− c). This gives a simple
algorithm to compute the intersection; for explicit formulas for Kummer surfaces we refer to Section 7.

Remark 2.3. By looking at the proof of Proposition 2.1, we expect a compatible addition to cost
roughly two schematic additions. Actually, once we have computed the scheme {±(x+ y),±(x− y)} we
just need to recover enough information about {±(z + t),±(z − t)} to distinguish between ±(x+ y) and
±(x− y). So we don’t need the full schematic addition on ±z and ±t (see Section 7 for more details).
Nonetheless, since schematic additions are in general much more expensive than differential additions on
a Kummer variety, a compatible addition is an arithmetic operation that should not be used too often.

This simple idea of doing compatible additions is surprisingly powerful.

Proposition 2.4 (Multiway additions). Let ±P0 ∈ KA(k) be a point not of 2-torsion. Then from
±P1, . . . ,±Pn ∈ KA(k) and ±(P0 + P1), . . . ,±(P0 + Pn) ∈ KA(k), one can compute ±(P1 + · · ·+ Pn)
and ±(P0 + P1 + · · ·+ Pn).

Proof. We prove the proposition by induction, the case n = 1 being clear. Let ±P ′

1 = ±(
∑n−1

i=1 Pi) ∈

KA(k) which can be computed from the known data by the induction hypothesis.
In Proposition 2.1 set x = P ′

1, y = (P0 + Pn), z = P0 + P ′

1, t = Pn to recover ±(P0 + P ′

1 + Pn). The
conditions of Proposition 2.1 hold if 2P0 6= 0 and 2P ′

1 − 2Pn 6= 0. By hypothesis, we can rule out the
case 2P0 = 0. Suppose that 2P ′

1 − 2Pn = 0 then ±(P ′

1 − Pn) is a point of 2-torsion on KA, so we can
always compute the addition by ±(P ′

1 − Pn). From ±(P0 + Pn) we can compute ±(P0 + 2Pn) using a
differential addition, and we recover ±(P0 + P ′

1 + Pn) = ±(P0 + 2Pn) +±(P ′

1 − Pn). We have shown
that we can always compute ±(P0 + P ′

1 + Pn).
Next, in Proposition 2.1 set x = P ′

1, y = Pn, z = P0 + P ′

1, t = −P0 + Pn to recover ±(P ′

1 + Pn).
Note that ±(−P0 + Pn) can be computed with a differential addition since we know ±P0,±Pn and
±(P0 + Pn) by hypothesis. Again, we can apply the Proposition at the condition that 2P0 − 2Pn 6= 0
and 2P ′

1 − 2Pn + 2P0 6= 0. If 2P0 − 2Pn = 0 then P0 − Pn is a point of 2-torsion so that we can always
compute the addition by ±(P0 − Pn). From the induction hypothesis, we can recover ±(P0 + P ′

1) so
that we can compute ±(P ′

1 + Pn) = ±(P0 + P ′

1) +±(P0 − Pn).
On the other hand, if 2P0 = 2Pn− 2P ′

1. By permuting P ′

1 and Pn we also know that 2P0 = 2P ′

1− 2Pn,
otherwise we could compute ±(P ′

1 + Pn) via a compatible addition (so in this case P0 is a point of
4-torsion). We can also assume that neither P ′

1 or Pn is a point of 2-torsion, otherwise we could
compute ±(P ′

1 + Pn) directly. We can then use Proposition 2.1 again, this time with x = P ′

1, y = Pn,
z = P0 + P ′

1 + Pn, t = −P0. We can apply this Proposition if 2P0 + 2Pn 6= 0 and 2P0 + 2P ′

1 6= 0. But by
the above 2P0 + 2Pn = 2P ′

1 6= 0 because P ′

1 is not a point of 2-torsion, and similarly 2P0 + 2P ′

1 6= 0.
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So in all cases we can always recover ±(P ′

1 + Pn) and ±(P0 + P ′

1 + Pn). The important point is that
by Remark 2.2 we can detect in which case we are, and of course generically we just need two compatible
additions to compute the two points. �

Remark 2.5. The idea behind Proposition 2.4 is that giving the points ±(P0 + Pi) on KA “fixes” the
sign of Pi relatively to P0. Since P1, . . . , Pn have “compatible” signs with respect to P0, this explains
why we are able to compute ±(P1 + · · ·+ Pn) and ±(P0 + P1 + · · ·+ Pn).

Another application of compatible additions is to do multi-scalar multiplication on the Kummer
variety. More precisely, we assume that we are given the points ±P,±Q and ±(P +Q) in KA(k), and we
want to compute ±(αP +βQ) for some α, β ∈ Z. An easy approach is to do a 2-dimensional Montgomery
ladder. At each step we have the four elements ±(mP + nQ), ±((m+ 1)P + nQ), ±(mP + (n+ 1)Q),
±((m+ 1)P + (n+ 1)Q). Depending on whether the current bits of (α, β) is (0, 0), (1, 0), (0, 1) or (1, 1),
we add ±(mP + nQ), ±((m+ 1)P + nQ), ±(mP + (n+ 1)Q) or ±((m+ 1)P + (n+ 1)Q) to the four
points. This costs a doubling and three differential additions (the point ±(P −Q) is easily obtained
from ±P ,±Q and ±(P +Q)).

A less trivial approach [Ber06] consists in working with three points and doing one doubling and two
differential additions at each step. Actually, one can see that we only need to keep track of two elements
in the square. This is easier to see this on an example:

Example 2.6. Suppose that we have only computed ±(nP + (m+ 1)Q) and ±((n+ 1)P +mQ). If we
are lucky the current bits of (α, β) are (1, 0) or (0, 1) and we don’t need the two missing elements for
this step. In this case we can go to the next bits with only one doubling and one differential addition.
If however the bits are for instance (0, 0) then we need to recover ±(nP + mQ). But this can be
done by a compatible addition with (in the terminology of Proposition 2.1) ±x = ±(nP + (m+ 1)Q),
±y = ±(−Q), ±z = ±((n+ 1)P +mQ), ±t = ±(−P ). (For the conditions of the Proposition to hold
we need that 2P + 2Q 6= 0 and (2n+ 2)P + (2m+ 2)Q 6= 0. But if this is not the case then the points
±((2n)P + (2m+ 1)Q), ±((2n+ 1)P + (2mQ)) are easy to compute directly.) In this case we need one
compatible addition and two differentiable additions.

We expect to need to reconstruct a missing element in the square with probability 1/2. But when we
compute this missing element, we can choose which two out the three elements we keep for the next
step. Continuing the example, we now have ±(nP +mQ), ±((n+ 1)P +mQ) and ±(nP + (m+ 1)Q).
We look at the next bits of (α, β) and see that they are (0, 0) and (1, 0). Then for the current step
we compute only ±((2n)P + (2n)Q), ±((2n + 1)P + (2n)Q). We know that we won’t need to do a
compatible addition for the two next steps.

Using this strategy of keeping the two points among the three that appear next (forgetting about the
fourth point), a Monte Carlo simulation shows that on average there will be 1.111 differential additions,
0.888 doubling and 0.293 compatible additions by bits. (A cleverer strategy could detect when we will
not use the two points before the next compatible addition anyway and take this opportunity to replace
some differential additions by doublings.)

So depending on the cost of a compatible addition compared to doublings and differential additions,
this strategy might be better than [Ber06]. (But one should take care that since compatible additions
are not done for each bits, an implementation of this computation may not be safe against side channel
attacks.)

Of course we can extend Example 2.6 to multiscalar multiplication. (Such a setting can appear when
using a multidimensional GLV ladder to speed-up the scalar multiplication [GLV01].) The generalisation
of [Ber06] to this setting uses a Montgomery chain with n+ 1 points at each step [Bro06] (where n is
the number of points in the multiscalar multiplication). By using compatible additions, we only need to
keep 2 points at each steps.

Proposition 2.7. Assume that we have the points ±P1, . . . ,±Pn ∈ KA(k) and also the 2n sums
±(

∑
εiPi) ∈ KA(k) for i ∈ {1, . . . , n}, εi ∈ {0, 1}. (Actually we can assume that P1 is not of 2-torsion

otherwise it is easy to go back to a multiscalar multiplication with n− 1 points. Then by Proposition 2.4
it suffices to have the ±(P1 + Pi) to recover the other sums.)
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Then we can compute ±(
∑

αiPi) for αi ∈ N by the following recursive algorithm: if we already have
±(

∑
miPi) and ±(P1 +

∑
miPi) then let Q =

∑
εiPi where εi is equal to the current bit of αi. We

can recover ±(
∑

miPi + Q) via a compatible addition between ±Q, ±(
∑

miPi) and ±(P1 +
∑

miPi,
±(Q − P1) and then use two differential additions to recover ±(

∑
niPi) and ±(P1 +

∑
niPi) where

ni = 2mi + εi.
This costs (at most) 1 compatible addition and two differential additions by bits.

Proof. We just need to check that the condition of Proposition 2.1 holds in order to do the compatible
addition. Suppose the contrary. Since P1 is not a point of 2-torsion, the only possibility is that
2(P1 +

∑
miPi −Q) = 0. But in this case

∑
niPi = 3Q− 2P1 and P1 +

∑
niPi = 3Q− P1 which are

easy to compute directly. �

Of course the strategy given at the end of Example 2.6 to reduce the number of compatible additions
apply too, but the probability of having to do a compatible addition tends to one by bits exponentially
fast in n. Moreover, to prevent some side channel attacks, it may be better to always do a compatible
addition at each step anyway. However it is possible to replace the two differential additions by one
doubling and one differential addition, by computing ±(

∑
niPi) and ±(Q +

∑
niPi) instead. This

strategy of changing the couple of point we keep each time costs 1 compatible addition, 1 differential
addition and 1 doubling by bits.

Coming back to Example 2.6, if we relax the condition that in the differential chain each difference
should be P , Q, P +Q or P −Q, then [Ber06] obtains a differential chain (the “extended-gcd” chain)
that uses around 1.76 additions by bit. This algorithm constructs a differential chain R (where each
element in R is a couple), starting with R = {(0, 0), (0, 1), (1, 0), (1, 1)} and requiring that one can add
x+ y (and −x− y) only when x,y and x− y are already in R. By using “compatible additions” for the
multiscalar multiplication (and assuming that the points Pi are linearly independent for simplicity here),
one only need to construct a chain R of tuples such that if x, y, u, v ∈ R are such that x+ y = u+ v,
then one can add x+ y (and −x− y) to R provided that

• x− y ∈ R;
• or x− y 6= u− v and x− y 6= v − u.

3. Arithmetic with theta functions

This section is mainly a survey of all the results on theta functions that we use in the rest of the paper.
The main results are duplication formulas and Riemann relations. We explain that a sufficient condition
for the Riemann relations to allow to compute the addition of an abelian variety is closely related to the
rank of the multiplication map in the graded ring of theta functions. We deduce algorithms to compute
addition on abelian varieties and compatible addition on Kummer varieties. We end up the section by
studying the three way addition introduced in [LR13].

For simplicity we will define theta functions for abelian variety over the complex field C. It should
be noted that the Theorems 3.1 and 3.2 are actually valid over any field of odd characteristic k by the
algebraic theory of theta functions [Mum66].

Let A be an abelian variety over C and L be an ample symmetric line bundle on A. Writing A = V/Λ
where V is a C-vector space of dimension g and Λ is a Z-lattice of rank 2g of V , a section f ∈ Γ(A,L )
corresponds to an analytic function f on Cg which satisfy the condition

f(z + λ) = aL (z, λ)f(z) ∀z ∈ V, λ ∈ Λ,

for a certain automorphic factor aL : V × Λ → C∗ which satisfy the cocycle condition aL (z, λ+ λ′) =
aL (z, λ)aL (z + λ, λ′).

In fact, the Chern class of L can be described by a (positive) hermitian form H such that E(Λ,Λ) ⊂ Z
where E = ImH and by Appell-Humbert’s theorem the automorphic factor aL can be chosen so that

(1) aL (z, λ) = χ(λ)eπH(z,λ)+π/2H(λ,λ)π/2,

for a certain quasi-character χ : Λ → ±1. (For more details we refer to [Mum70; BL04]).
More concretely, if A has a principal polarisation, up to a linear transform of V , we can write

Λ = Zg +ΩZg where Ω ∈ Hg is in the Siegel upper half space. Then one can define a principal symmetric
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line bundle L0 associated to the hermitian form H0 corresponding to the matrix (ImΩ)−1 and the
quasi-character χ0(λ) = eπiE(λ1,λ2) where λ = λ1 + λ2 is the decomposition of λ in Zg ⊕ ΩZg.

We recall the definition of the theta functions with characteristics a, b ∈ Qg:

(2) θ [ ab ] (z,Ω) =
∑

n∈Zg

eπi
t(n+a)·Ω·(n+a)+2πi t(n+a)·(z+b).

These theta functions with characteristics are related by

(3)
θ [ ab ] (z,Ω) = eπi

taΩa+2πi ta·(z+b)θ [ 00 ] (z +Ωa+ b,Ω),

θ
[
a+n
b+m

]
(z,Ω) = e2πi

ta·mθ [ ab ] (z,Ω),

where m,n ∈ Zg; and satisfy the functional equation

(4) θ [ ab ] (z +Ωm+ n,Ω) = e−2πi tb·m+2πi ta·ne−πi tmΩm−2πi tmzθ [ ab ] (z).

Let n ∈ N and L = L n
0 . We have dimΓ(A,L n

0 ) = ng and if n = n1n2, a basis of the global sections
Γ(A,L n

0 ) is given by

(5) θ
[
a/n1

b/n2

]
(n1z,

n1

n2
Ω) a ∈ Z(n1), b ∈ Z(n2),

where Z(n) = Zg/nZg (this is an easy generalisation of [Mum83, p. 123–124]). One should note that
the basis given in Equation (5) corresponds to the factor of automorphy from Equation (1) twisted by a
coboundary so that the sections are periodic with respect to Zg. In other words, we have chosen L in
its isomorphic class such that sections f ∈ Γ(A,L ) satisfy

(6)
f(z +m) = f(z),

f(z +Ωm) = e−πin tm·Ω·m−2πin tz·mf(z).

From Equation (5), we see that the period matrix Ω defines more than an ample line bundle L0, it
also gives a canonical basis of sections of L n

0 for all n ∈ N. In the following, we will take the basis of
sections coming from the decomposition n1 = 1, n2 = n and to simplify the notations we let for i ∈ Z(n)

(7) θ
L

n
0

i (z) = θ
[

0
i/n

]
(z,Ω/n).

We will often denote this function by θi when the context is clear. This is the unique basis (up to
multiplication by a constant) such that translation by a point of n-torsion is given by

(8) θb(z +
m1

n
+

Ωm2

n
) = e−πi tm2·

Ω
n
·m2−2πi tm2·ze−2πi tb·m2θb+m1

(z),

for m1,m2 ∈ Zg (for more details on the canonical choice of a basis of sections, see [Mum91; Mum66]).
When n = 4, the decomposition n1 = 2, n2 = 2 in Equation (5) yields to the classical basis of level 4

theta functions θ
[
a/2
b/2

]
(2z,Ω). More generally, in terms of the basis from Equation (5), the action of

translation by a point of n-torsion is given in projective coordinates by

(9)

(
θ
[
a/n1

b/n2

]
(n1(z +

m1

n
+

Ωm2

n
),
n1

n2
Ω)

)

a,b

=
(
e−2πi tm2·b/nθ

[
(a+m2)/n1

(b+m1)/n2

]
(n1z, n1Ω/n2)

)

a,b
.

This can be seen from Equation (8) and the linear change of variable

(10) θ
[
a/n1

b/n2

]
(n1z,

n1

n2
Ω) =

1

ng
1

∑

β∈ 1
n1

Zg/Zg

e−2πi ta·βθ
[

0
b/n+β

]
.

By a theorem of Lefschetz, when n > 3 the line bundle L is very ample, so the ng theta functions θi
gives an embedding of A into the projective space Png

−1
C

([Mum83, Theorem 1.3, p. 125–134],[BL04,
Theorem 4.5.1]). Since θi(−z) = θ−i(z), when n = 2 the morphism to projective space factorizes through
the Kummer variety KA. When L0 is an irreducible principal polarisation on A, the morphism to
projective space associated to L = L 2

0 is actually an embedding of the Kummer variety KA ([BL04,
Theorem 4.8.1]).
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The most important tools concerning the arithmetic of abelian (and Kummer) varieties embedded by
theta functions are the duplication formulae and Riemann relations. From now on, we suppose that
L = L n

0 is totally symmetric, or equivalently that n is even [Mum66, Corollary 4 p. 315].

Theorem 3.1 (Duplication formulae). Fix z1, z2 ∈ Cg. Then for all i, j ∈ Z(n),

θ
[

0
i
n

]
(z1 + z2,

Ω

n
)θ

[
0
j

n

]
(z1 − z2,

Ω

n
) =

∑

t∈1
2
Zg/Zg

θ
[

t
i+j

2n

]
(2z1, 2

Ω

n
)θ

[
t

i−j

2n

]
(2z2, 2

Ω

n
).

Reciprocally, for all χ ∈ 1
2Z

g/Zg and i, j ∈ Z(2n) such that i+ j ∈ Z(n)

θ
[ χ
i/n

]
(2z1, 2

Ω

n
)θ

[ χ
j/n

]
(2z2, 2

Ω

n
) =

1

2g

∑

t∈1
2
Zg/Zg

e−2iπ2 tχ·tθ
[

2χ
i+j

2n
+t

]
(z1 + z2,

Ω

n
)θ

[
0

i−j

2n
+t

]
(z1 − z2,

Ω

n
).

Proof. See [Igu72, Theorem 2 p. 139, p. 141], an algebraic proof is given by [Mum66] by applying the
isogeny theorem to A×A → A×A, (x, y) 7→ (x+ y, x− y). For a generalisation, see [Koi76; Kem89]. �

We can rewrite duplication formulae in the standard basis (7). For this, we let for χ ∈ Ẑ(2) and
i ∈ Z(n), UL

χ,i(z) =
∑

t∈Z(2) χ(t)θi+t(z). In terms of theta functions with characteristics, the level 2n

theta function UL
2

χ,i (z) is equal to θ
[

χ
i
n

]
(2z, 2Ω

n ), where we have identified Z(2) to its dual group Ẑ(2)

via the map x 7→ χ(z) = eπi
tx·z. It is easy to check that if t ∈ Z(2), UL

2

χ,i+t = χ(t)UL
2

χ,i and that
duplication formulae from Theorem 3.1 can be rewritten as

θL

i+j(z1 + z2)θ
L

i−j(z1 − z2) =
∑

χ∈Ẑ(2)

UL
2

χ,i (z1)U
L

2

χ,j (z2)(11)

UL
2

χ,i (z1)U
L

2

χ,j (z2) =
1

2g

∑

t∈Z(2)

χ(t)θL

i+j+t(z1 + z2)θ
L

i−j+t(z1 − z2),(12)

for z1, z2 ∈ Cg, χ ∈ Ẑ(2) and i, j ∈ Z(2n) such that i+ j, i− j ∈ Z(n).

Theorem 3.2 (Riemann relations). Let x1, y1, u1, v1, z ∈ Cg, such that 2z = x1 + y1 + u1 + v1 and

let x2 = z − x1, y2 = z − y1, u2 = z − u1, v2 = z − v1. Then for all characters χ ∈ Ẑ(2) and all
i, j, k, l,m ∈ Z(n) such that i+ j+k+ l = 2m, if i′ = m− i, j′ = m− j, k′ = m−k and l′ = m− l, then

(13)
(∑

t∈Z(2)

χ(t)θi+t(x1)θj+t(y1)
)
.
(∑

t∈Z(2)

χ(t)θk+t(u1)θl+t(v1)
)
=

(∑

t∈Z(2)

χ(t)θi′+t(x2)θj′+t(y2)
)
.
(∑

t∈Z(2)

χ(t)θk′+t(u2)θl′+t(v2)
)
.

In particular, we have the addition formulae for z1, z2 ∈ Cg (with χ, i, j, k, l like before):

(14)
( ∑

t∈Z(2)

χ(t)θi+t(z1 + z2)θj+t(z1 − z2)
)
.
( ∑

t∈Z(2)

χ(t)θk+t(0)θl+t(0)
)
=

( ∑

t∈Z(2)

χ(t)θ−i′+t(z2)θj′+t(z2)
)
.
( ∑

t∈Z(2)

χ(t)θk′+t(z1)θl′+t(z1)
)
.

We also have the three ways additions formulae for z1, z2, z3 ∈ Cg:

(15)
( ∑

t∈Z(2)

χ(t)θi+t(z1 + z2 + z3)θj+t(z1)
)
.
( ∑

t∈Z(2)

χ(t)θk+t(z2)θl+t(z3)
)
=

( ∑

t∈Z(2)

χ(t)θi′+t(0)θj′+t(z2 + z3)
)
.
( ∑

t∈Z(2)

χ(t)θk′+t(z1 + z3)θl′+t(z1 + z2)
)
.
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Proof. We can verify (13) by expressing the left hand side and right hand side of the equation in

term of the UL
2

χ,i basis using (11). Then (14) and (15) are immediate consequences of (13) (using that
θi(−z2) = θ−i(z2)) For more details, see [LR12] or [Mum66]. A slightly different form is also given in
[Mum66, p. 334–335]; see also [Mum83; Koi76] for an analytic proof. �

If 4|n, following [Mum83], by applying (13) with x1 = y1 and u1 = v1 = 0, we obtain a complete set
of equations for the embedding of A into PZ(n). It is clear that Riemann equations are parametrized
by the (projective) theta null point 0A = (θi(0))i∈Z(n) which is defined in particular by the data of Ω
and n. If n = 2, since the Riemann equations are trivial, they do not give equations for the embedding
of KA is PZ(2). Nonetheless, in the case that dimA = 1, KA is just the projective line and there is no
equations and if dimA = 2 then the embedding of KA is PZ(2) is given by a well known quartic equation
(see [Mum66, §5] for instance) the coefficients of which can easily be computed from the knowledge of
the level 2 theta null point. In the following, we suppose that A is given by the way of its theta null
point so that we have a projective model of A on which we would like to have an efficient and complete
arithmetic.

It is clear that Equation (14) can be used to compute the addition law on A. It order to do so, it is
important to know when factor of the left hand side of (14),

∑
t∈Z(2) χ(t)θk+t(0)θl+t(0) does not cancel.

By Equation (12), we have
∑

t∈Z(2) χ(t)θk+t(0)θl+t(0) = UL
2

χ,k0
(0)UL

2

χ,l0
(0) where k0, l0 ∈ Z(2n) are such

that k0 + l0 = k and k0 − l0 = l. To understand the arithmetic of theta functions, we thus need to

investigate the non cancellation of the level 2n theta functions UL
2

χ,i . Actually, this non cancellation is

closely related to the rank of the natural multiplication map Γ(A,L )⊗ Γ(A,L ) → Γ(A,L 2).
To see this, following Mumford [Mum66, p. 328], we consider the morphism ξ : A×A → A×A, (x, y) 7→

(x+ y, x− y). Let π1 and π2 the first and second projections A×A → A. Let ∆ : X → X ×X be the
diagonal; ∆ induces the multiplication map ∆∗ : Γ(A, π∗

1L )⊗Γ(A, π∗

2L ) → Γ(A,L 2), π∗

1θ
L
i ⊗π∗

2θ
L
j 7→

(θL
i ⊗ θL

j ). If S : A → A×A is the inclusion map x 7→ (x, 0) then ∆ fits into the commutative diagram

(A,L 2)

(A×A, π∗

1L
2 ⊗ π∗

2L
2) (A×A, π∗

1L ⊗ π∗

2L ).
ξ

S
∆

so ∆∗ = S∗ξ∗. But ξ∗ is given by the duplication formula from Theorem 3.1 and S∗ : Γ(A ×

A, π∗

1L
2 ⊗ π∗

2L
2) → Γ(A,L 2) is given by π∗

1θ
L

2

i ⊗ π∗

2θ
L

2

j 7→ θL
2

j (0)θL
2

i . We finally get that the map

Γ(A,L )⊗ Γ(A,L ) → Γ(A,L 2) is given by

(16)
∑

t∈Ẑ(2)

χ(t)
(
θL

i+t ⊗ θL

j+t

)
7→ UL

2

χ, i+j

2

UL
2

χ, i−j

2

(0),

which makes clear the link between the non cancellation of the UL
2

χ,i (0) and the rank of the multiplication
map.

Theorem 3.3. Let L0 be a principal symmetric line bundle on A. Then the multiplication map

Γ(A,L m
0 )⊗ Γ(A,L n

0 ) → Γ(A,L n+m
0 )

is surjective when m > 2 and n > 3. In particular, if L = L n
0 with n > 2 even, then Γ(A,L ) ⊗

Γ(A,L ) → Γ(A,L 2) is surjective, or equivalently for any χ ∈ Ẑ(2), i ∈ Z(2n), there exists i0 ∈ Z(n)

such that UL
2

χ,i+i0
(0) 6= 0.

If L = L 2
0 , then the rank of the multiplication map is equal to the number of even theta null

coordinates UL
2

χ,i (0) 6= 0 for χ ∈ Ẑ(2), i ∈ Z(4) such that χ(2i) = 1.

Proof. This Theorem is proved analytically in [Koi76], and algebraically in [Kem88] (see also [Kem89,
Lemma 17]). When n is divisible by 4, Mumford as a finer result in [Mum66, p. 340]. �
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The use of the words odd and even for the theta null coordinates comes from the fact that when n = 2,

we have UL
2

χ,i (−z) = χ(2i)UL
2

χ,i (z). So when χ(2i) = −1, the function UL
2

χ,i is odd and we always have

UL
2

χ,i = 0. In terms of theta functions with characteristics, the functions UL
2

χ,i correspond to the usual

level 4 theta functions {θ
[
a/2
b/2

]
(2·,Ω) | a, b ∈ Z} and χ(2i) corresponds to (−1)

ta·b which determines

the 2g−1(2g + 1) even theta functions from the 2g−1(2g − 1) odd ones.

Remark 3.4 (Normal projectivity). If L is a very ample line bundle on a smooth projective variety
X, the corresponding embedding of X into projective space is said to be projectively normal if the
homogeneous ring associated to this embedding is integrally closed. This condition is equivalent to
the condition that SnΓ(X,L ) → Γ(X,L n) is surjective for all n > 2 [Har00, Exercice 5.14 p. 126], or
equivalently by [BL04, p. 187] that Γ(X,L n)⊗ Γ(X,L ) → Γ(X,L n+1) is surjective for n > 1. (We
remark that the condition that Γ(X,L n)⊗ Γ(X,L ) → Γ(X,L n+1) is surjective for n sufficiently large
is equivalent to L being very ample by [Mum69, p. 38]).

By Theorem 3.3, if L = L n
0 where L0 is a principal ample symmetric line bundle and n > 3, then

(A,L ) is projectively normal. If n is totally symmetric, then by definition L descends to an ample
line bundle M on KA, and if π : A → KA denotes the projection, then π⋆Γ(KA,M ) = Γ(A,L )+ where
Γ(A,L )+ denotes the section invariant under the action by −1. By [Koi76, Corollary 4.5.2],[Kem88] the

multiplication map Γ(A,L 2m
0 )+ ⊗ Γ(A,L 2n

0 )+ → Γ(A,L
2(n+m
0 )+ is surjective when n > 1 and m > 2.

So if n > 2, the variety (KA,M ) is projectively normal. When n = 2, we have Γ(A,L )+ = Γ(A,L ) or
in other words L can be seen as a line bundle on KA. Then (KA,L ) is projectively normal if and only
if Γ(A,L )⊗ Γ(A,L ) → Γ(A,L 2)+ is surjective, but by Theorem 3.3 this is equivalent to the condition
that every even theta null coordinate is non zero.

Remark 3.5 (Non annulation of the even theta null coordinates). When g = 1, it is well known that
the three even theta null coordinates are never 0 for an elliptic curve. When g = 2 the product of
the square of the 10 even theta null coordinates define a modular form χ10 of weight 10 on the Siegel
modular space whose locus is the abelian surfaces that are isomorphic to a product of two elliptic
curves [GL12, Section 2.6]. More precisely, when Ω is in the fundamental domain defined by Gottschling
[Got59] then the even theta null coordinates are non zero except θ [ 1111 ] (0,Ω) which cancels exactly

when Ω =

(
τ1 0
0 τ2

)
, that is when (A,L ) is isomorphic to a product of elliptic curves with the product

polarization. For more details we refer to [Dup06].
When g > 2 it is well known that Jacobians of hyperelliptic curves are characterized by the cancellation

of some even theta null coordinates [Mum84, §6], so an absolutely simple abelian variety can have a zero
even theta null coordinate.

Corollary 3.6. Let L = L n
0 , where n is even and L0 is principal and symmetric, coming from a

period matrix Ω. We represent the abelian variety (A,L ) via the corresponding theta null point.
If n > 2 then for all z1, z2 ∈ Cg, if we are given (θi(z1))i∈Z(n)) and (θi(z2))i∈Z(n), then one can

recover all products θi(z1 + z2)θj(z1 − z2) for i, j ∈ Z(n).
If n = 2 and we assume that the even theta null coordinates are non zero, then from the same data

we can recover all terms of the form θi(z1 + z2)θj(z1 − z2) + θj(z1 + z2)θi(z1 − z2) for i, j ∈ Z(2).

Proof. When n > 2, for all i, j ∈ Z(n) and χ ∈ Ẑ(2), we can find k, l ∈ Z(n) such that i+j+k+l ∈ 2Z(n)
and

∑
t∈Z(2) χ(t)θk+t(0)θl+t(0) 6= 0. Indeed, we may as well take k = i, l = j, and if needed translate

them by a suitable element by using Theorem 3.3 so that UL
2

χ, k+l
2

(0)UL
2

χ, k−l
2

(0) 6= 0. By Theorem 3.2 we

can then recover
∑

t∈Z(2) χ(t)θi+t(z1 + z2)θj+t(z1 − z2). By summing over χ ∈ Ẑ(2), we then recover

θi(z1 + z2)θj(z1 − z2).
The case n = 2 is done similarly, we refer to [LR10] and [Rob10] for more details. �

By the discussion of Remark 3.4 for n = 2, it should not be surprising that when the even theta null
coordinates are non zero we can recover the symmetric elements θi(z1+z2)θj(z1−z2)+θj(z1+z2)θi(z1−z2).
From now on we will always assume that we are in this case when n = 2. It is easy from Corollary 3.6
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to describe equations of the degree 2 scheme ±{x+ y, x− y}; we refer to [LR13] for more details and to
Section 7 for explicit formulas in dimension 2.

When n > 2 is even we can thus always compute the addition of the projective points x and y in
(A,L ). Indeed, if θj0(x−y) 6= 0, then the projective point (θi(x+y)θj0(x−y))i∈Z(n) represent the point
x+ y. But one can see that the relations in Theorem 3.2 are stronger than just computing additions on
the variety A. To explain this, we introduce the affine theta coordinates of z ∈ Cg as θi(z), i ∈ Z(n).
Then, if we know the affine theta coordinates of z1, z2 ∈ Cg and also the affine theta coordinates of the
point z1 − z2, then by Corollary 3.6 we can recover the affine theta coordinates of the point z1 + z2 ∈ Cg.
This affine differential addition allows us to recover the analytic addition law on (Cg,+) which is above
the abelian variety A = Cg/(Zg +ΩZg). This affine differential addition is an essential building block for
algorithms on abelian varieties that needs a bit more arithmetic, like isogenies [LR12; CR13] or pairings
[LR10; LR13]. In this context, the affine three ways addition formulae from Equation (15) are also very
usefull; let z1, z2, z3 ∈ Cg, then given the affine coordinates of z1, z2, z3, z2 + z3, z1 + z3, z1 + z2 one can
use Equation (15) to recover the affine coordinates of z1 + z2 + z3. (We refer to [LR13] for a proof which
use a result similar to Theorem 3.3 but for sections of fibers translated by points, see also [Kem88]).

Unlike the standard addition, the (affine) differential addition and (affine) three way additions can
also be computed when the level n is two. Indeed, for the differential addition, by Corollary 3.6 we know
the elements θi(z1 + z2)θj(z1 − z2) + θj(z1 + z2)θi(z1 − z2), from which it is easy to also recover the
coordinates θi(z1 + z2) if we also know the θi(z1 − z2). For the (affine) three way addition, a proof can
be found in [LR13] for generic points. Of course one can not compute normal addition in level 2, but we
have already noted that Corollary 3.6 allows to compute the schematic addition of x, y ∈ KA and thus
of compatible additions.

One should note the difference between the affine three way addition from Equation (15) and the
projective three way addition from Proposition 2.4. The first one takes as input the affine coordinates of
x, y, z, y + z, x+ z, x+ y and compute the affine coordinate of x+ y + z, while the second one takes the
projective coordinates of x, y, z, x+ y, x+ z and compute the projective coordinates of x+ y + z.

This calls for two remarks. First, when we want to compute the addition of two projective points x
and y on a Kummer variety, then we know that we can do a differential addition if we also know the
projective point x− y (with an affine differential addition from above, except that since we only want
the projective result we can gain some computations by replacing divisions by some multiplications).
But one might guess that we need less information than the full coordinates of x − y to recover the
projective coordinates of x + y (as we have just seen we already need less information to compute
projective coordinates of x+ y + z than its affine coordinates). We will return to this in Section 5. The
second remark is that while differential additions are very fast on the Kummer variety, especially in
the generic case when the coordinates of x − y are all non zero as in [Gau07], compatible additions
are much slower. But in Proposition 2.4, we use two compatible additions to recover x + y + z and
y + z from x, y, z, x+ y, x+ z. According to the formulae in Section 7, it is faster to first compute y + z
using one compatible addition, and then recover x+ y + z by using the affine three way addition from
Equation (15) (except that we only need the result in projective coordinates which allows to be a bit
faster than a full affine three way addition).

We end up this section by proving that the affine three way addition can always be computed when
the even theta null coordinates are non zero. This is a strengthening a result of [LR13] which the same
result in proved only for general points.

Proposition 3.7. Let L = L n
0 with n even and z1, z2, z3 ∈ Cg. Then from the affine level n theta

coordinates of z1, z2, z, z2+z3, z1+z, z1+z2, one can always compute the affine coordinates of z1+z2+z3
up to a sign.

Proof. If n > 4, this was already proven in [LR13]. We can thus assume that n = 2. If z1, z2 or z is a
point of 2-torsion, we can directly compute the (affine) action of translation by it using Equation (8). If
not one can do a compatible addition to recover z1 + z2 + z3 projectively. We then need to find the
projective factor λ. Writing z1 + 2z2 + z3 = (z1 + z2) + (z2 + z3) = (z1 + z2 + z3) + z2 where the two
terms on the right can be computed exactly by a differential addition gives λ2. �
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Of course in practice it is faster to use Equation (15) to compute the three way addition because it
will give enough relations in the generic case that to use the method of the proof of Proposition 3.7.

Corollary 3.8. Let n be even, and assume that we have m points zi ∈ Cg given by their theta coordinates
(θk(zi)k∈Z(n)). Assume that we also know the theta coordinates (θk(zi + zj)k∈Z(n)) for all i 6= j. Then
for any (λi)

m
i=1 ∈ Zm, we can recover the theta coordinates of (θk(λ1z1 + · · ·+ λmzm)k∈Z(n)) of the sum∑

λizi.

Proof. By an easy recursive application of Proposition 3.7 we can recover all points
∑

εizi where
εi ∈ {0, 1}. One can then use differential additions to recover

∑
λizi. �

4. Arithmetic, levels and isogenies

In this section, we explain how to compute the fiber of the natural projection A → KA. The main
result, extending the usual genus 1 case, says that we can compute this fiber only with differential and
compatible additions up to one choice of sign.

If E : y2 = f(x) is an elliptic curve given by its Weierstrass equation, working on the Kummer
line amounts to forgetting the coordinate y. Reciprocally, given a point ±P = x(P ) on the Kum-
mer line, finding the points P,−P on E above it comes down to computing a square root to find
{(x(P ),

√
f(x(P ))), (x,−

√
f(x(P )))}.

If (A,L0) is a principally polarised abelian variety, the map from the abelian variety to the Kummer
variety is given by the duplication formulae from Theorem 3.1. More precisely, if L = L 2

0 and we work

with the basis (θL
i )i∈Z(2) of level 2 theta functions for the embedding of KA and the basis (θL

2

i )i∈Z(4)

of level 4 theta functions for the embedding of A, then the map natural projection A → KA is given by

(17) θL

i+j(x)θ
L

i−j(x) =
1

2g

∑

t∈Z(2)

θL
2

i+t(x)θ
L

2

j+t(0)

Indeed, we note that on the left of Equation (17) we get a product of two level 2 theta functions, so by
Theorem 3.3 and Remark 3.4 we get all even coordinates Γ(A,L 2)+. Thus Equation (17) defines the
projection map from (A,L 2) to (KA,L

2+).
Now we would like to inverse this map to get, from the knowledge of point on a Kummer variety the

two points on the abelian variety lying above it. As in the elliptic curve case we would like to do this at
the expense of only one square root (besides the standard fields operations).

We suppose here that we know the abelian variety A via its level 4 theta null point 0̃A = (θi(0))i∈Z(n).

It will be easier to work with the variables UL
2

χ,i from Section 3 since Equation (12) gives

(18) UL
2

χ,i (x)U
L

2

χ,j (0) =
∑

t∈Z(2)

χ(t)θL

i+j+t(x)θ
L

i−j+t(x),

Unfortunately since the odd theta null values are null, Equation (18) allows only to recover the coordinates

UL
2

χ,i such that χ(2i) = 1. But from Equation (9) we see that if Ti is the point of 4-torsion corresponding

to − i
4 ∈ 1

4Z
g/Zg we have Uχ,i(Ti) = Uχ,0(0) 6= 0. With the equation

(19) UL
2

χ,i (x)U
L

2

χ,i (Ti) =
∑

t∈Z(2)

χ(t)θL

2i+t(x+ Ti)θ
L

t (x− Ti),

we can then recover UL
2

χ,i (x) provided that we know the level 2 theta coordinates of x+ Ti and x− Ti.
We first remark that we can compute Ti ∈ A by using Equation (9) and then push it to KA.

Now fix a point i0 ∈ Z(4), and fix once and for all a choice of x+Ti0 ∈ KA(k) (this can be done using
Corollary 3.6 and requires a square root). Now let i be any other element of Z(4), by pushing Ti + Ti0

to KA, we can use a compatible addition (Proposition 2.1) to recover x+ Ti. In other words once we
have fixed a choice of x+ Ti0 the other choices of sign for x+ Ti are fixed and can be recovered by using
compatible additions. Now from x+ Ti one can recover x− Ti by doing a differential addition and then

use Equation (19) to recover UL
2

χ,i (x).
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In a sense, since differential additions and compatible additions allows us to go back to the abelian
variety from the Kummer (up to one choice of sign), all arithmetic on the Kummer should come from
these two operations.

Remark 4.1. One should be careful here because Equation (19) makes sense for affine coordinates and
we are working with projective coordinates. What happens is that by taking an affine lift of the level 4
theta null point, we can use Equation (9) to get a canonical lift of the 4-torsion points Ti. Let z ∈ Cg be

a lift of x, then if we take any affine lift x̃+ Ti of x+ Ti ∈ KA it is equal to z + Ti up to a projective

factor λ. But then computing x̃− Ti affinely via a differential addition gives that x̃− Ti is equal to
z − Ti up to the projective factor λ−1; so these factors cancels out in Equation (19).

Working on an abelian variety with level 4 theta functions requires 4g (projective) coordinates.
Compared to the 2g coordinates needed for representing a point on the Kummer variety using level 2
theta functions, this looks like a very inefficient way to represent a choice of sign! We can have a closer
look at our algorithm to go from level 2 to level 4 and see how much information we really need to
encode the choice of sign and still do arithmetic efficiently on the abelian variety. But since the map
from Equation (17) is a bit complicated (compared to the elliptic curve case where the map from the
Weierstrass model to the Kummer line is a projection), we will investigate another map that comes from
isogenies. This will allow us to treat any even level n > 4.

Theorem 4.2 (Isogeny theorem). Let n = n1n2 and ℓ = ℓ1ℓ2. Let π : A = Cg/(Zg ⊕ ΩZg) → B =
Cg/(Zg ⊕ l1

l2
ΩZg) : z 7→ l1z be the canonical isogeny with kernel K = 1

ℓ1
Zg/Zg ⊕ 1

ℓ2
ΩZg/ΩZg. Then if

we use the basis with level ℓn = (ℓ1n1)(ℓ2n2) from Equation (5) for A and the basis with level n = n1n2

for B, we get that

π∗

(
θ
[
a/n1

b/n2

]
(n1z,

n1

n2

(ℓ1
ℓ2
Ω
)
)

)
= θ

[
aℓ1/n1ℓ1
bℓ2/n2ℓ2

]
(n1(ℓ1z),

n1ℓ1
n2ℓ2

Ω)

Proof. This is immediate. �

Corollary 4.3. Let A = Cg/(Zg ⊕ ΩZg) be an abelian variety, that we represent via the embedding of
level n theta functions where n = 2m is greater or equal to 4. Let π : A → B = Cg/(Zg ⊕ Ω

mZg) : z 7→ z

be the canonical isogeny of kernel K = 1
mΩZg/ΩZg, where we represent B with level 2 theta coordinates.

Then
(θBi (π(z))i∈Z(2) = (θAϕ(i)(z))

where ϕ : Z(2) → Z(n) is the natural embedding.

We can also see the theta coordinates as affine coordinates on Cg rather than as projective coordinates
on the abelian variety A = Cg/Λ. We recall from Section 3 that we define the affine coordinates of
z ∈ Cg as θi(z), i ∈ Z(n). It is easy to lift π to an affine map π̃ such that π̃∗θBi = θAϕ(i):

Theorem 4.4. Let e1, . . . , eg be a basis of 1
nZ

g/Zg given by affine theta coordinates (they can be
recovered from the affine theta null point of level n on A via Equation (8)).

Let z ∈ Cg. Then

• The affine theta null point 0̃A can be recovered from the 1 + g(g + 1)/2 points π̃(0A), π̃(ei),
π̃(ei + ej);

• The affine theta null point z can be recovered from the above data and the 1 + g points π̃(z),
π̃(z + ei). In particular we can encode a point on A by using (1 + g)2g coordinates (once we
know the theta null point).

Proof. If we combine Equation (9) with the form of π̃ given by Corollary 4.3, then it is straightforward to
see that we can recover the theta coordinates of z from the theta coordinates of the points π̃(z+

∑
λiei)

where λi ∈ {0, . . . , ℓ− 1}. But π̃(z +
∑

λiei) = π̃(z) +
∑

π̃(λiei). By Corollary 3.8, we can recover the
right hand term from the points π̃(0A), π̃(ei), π̃(ei + ej), π̃(z), π̃(z + ei) by using three way additions
and differential additions. �
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Remark 4.5. If n > 4 and g > 1 we thus get a more compact representation of a point x in the abelian
variety A than by using the level n theta functions as coordinates. We can also compute the arithmetic
directly on this representation: if we know the coordinates of x, y ∈ A given by π̃(x), π̃(x+ ei), π̃(y),
π̃(y+ ei); then we can recover the coordinates π̃(x+ y), π̃(x+ y+ ei) by doing some three way additions.
(Of course if we already know π̃(x− y), π̃(x− y + ei) it is faster to do differential additions).

Remark 4.6. If we only know π(z), since B is represented by theta functions of level 2 this mean
that we know π(z) ∈ KB, and the best we can hope is to recover the preimage ±z +Kerπ ∈ A. This
preimage can be recovered in a similar way as we did in the inversion of the duplication formula. First
we fix a choice of π(z) + π(e1); we can recover all the other points π(z) + π(ei) by a compatible addition
with π(e1 + ei). Now we fix an affine lift λiπ̃(z + ei) where λi is an unknown projective factor. By
computing differential additions, and since π̃(z +mei) = π̃(z) we recover λm

i as in [LR12; CR13]. We
choose λi satisfying these equations; by Theorem 4.4 we can then recover one of the element z (or −z)
in the preimage. In total there is 2mg possible choices, so we recover all elements in the preimage.

Let D be the diagonal matrix with entries (1, . . . , 1, 2) and let A′ be the abelian variety A′ =
Cg/(Zg +DΩZg) where Ω ∈ Hg. Then Ω induces a polarisation L of type (1, . . . , 1, 2) on A′; a basis of
sections of L 2 is given by

θ [ 0b ] (·,Ω(2D)−1)b∈(2D)−1Zg/Zg .

If A′ is simple, then by [BL04, Theorem 4.3.1] L has no fixed components so that L 2 is a very ample
line bundle by [BL04, Theorem 4.5.5]. So in this case we can embed the abelian variety A′ using only
2 · 2g projective coordinates. Unfortunately A′ is not principally polarized in general since the Néron
Severi group of an abelian variety is Z generically.

Still, if we let π : A′ → A = Cg/(ΩZg+Zg), then a similar reasoning as in Corollary 4.3 and Theorem 4.4
show that for z ∈ Cg, the level (2, 2, . . . , 2, 4)-theta coordinates of z with respect to A′ can be recovered
from the level 2 theta coordinates with respect to A of the two points π̃(z) and π̃(z + e) where e is the
point of 4-torsion generating D−2Zg/Zg. This idea can be used to efficiently represent a point on an
abelian variety.

5. Arithmetic on abelian varieties

In this section, we introduce a much more compact, while very efficient, representation of points
of abelian varieties than the one provided by level 4-theta coordinates. We explain how compatible
and differential additions may be used to compute the arithmetic of an abelian variety with this
representation.

Let A be an abelian variety and KA the corresponding Kummer variety. In this section, we will use
the same notation as in Section 2, for x ∈ A(k), we denote by ±x ∈ KA(k) the point of KA image of
x by the natural projection. We suppose that we are given a point T ∈ A(k) that is not a point of
2-torsion. We will represent a point x ∈ A(k) by the couple of points (±x,±(x+ T )) ∈ KA(k)

2.

Proposition 5.1. The map α : A → K2
A, given on geometric points by x 7→ (±x,±(x+ T )) is injective.

Furthermore, given a couple (±x1,±x2) ∈ KA(k)
2 it is easy to check if it lies in α(A(k)). Lastly, one

can do arithmetic on this representation.

Proof. The natural projection A → KA has degree 2, so if (±x,±(x+ T )) = (±y,±(y + T )) then either
x = y, or x = −y. But in the latter case, since x+ T = y + T or x+ T = −y − T in A and T is not a
point of 2-torsion, we need to have x = −x so α is injective in all cases.

The couple (±x1,±x2) ∈ KA(k)
2 lies in α(A(k)) if and only if ±x2 ∈ {±(x1 + T ),±(x1 − T )} in

KA(k)
2 which can be tested by the way of a schematic addition. Finally, the addition of (±x,±(x+ T ))

and (±y,±(y + T )) is given by the couple (±(x+ y),±(x+ y + T )) ∈ KA(k)
2 which can be computed

from Proposition 2.4. �

Remark 5.2. On elliptic curves, we recover a representation studied by Kohel in [Koh11]. If T ′ ∈ A(k)
is another point not of 2-torsion, one can go from the representation (±x,±(x+ T )) ∈ KA(k)

2 to the
representation (±x,±(x + T ′)) ∈ KA(k)

2 only once we have fixed a choice in {T + T ′, T − T ′}. The
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ambiguity comes from the fact that (−1) is always an automorphism on A from which we can act on
our representations.

Remark 5.3. If we represent KA via the embedding given by level 2 theta functions, then it is
straightforward to apply the isogeny and pairing algorithms from [LR12; LR13] on the representation
(±x,±(x+ T )).

For an isogeny f : A → B, what we can compute is the map from the representation from (±x,±(x+T ))
on A to the representation (±y,±(y + f(T ))) on B. In the case that f is an endomorphism so that
B = A, we will usually want to compute the endomorphism with respect to the same representation
(±y,±(y + T )) on A. Such is the case, for instance, when we want to use f to speed-up the scalar
multiplication as in [GLV01]. To obtain f we can apply Remark 5.2 and compute once and for all an
element in {T ± f(T )} ⊂ KA(k) (such a choice may amount to replace f by −f).

Remark 5.4 (Multiscalar multiplication). We can reinterpret Proposition 2.7 as follow: the standard
approach to a multiscalar multiplication

∑
miPi is to precompute the

∑
εiPi, εi ∈ {0, 1} and do a

double and add algorithm. Proposition 2.7 can be seen as an adaptation of this algorithm to the
coordinates from Proposition 5.1. We represent a point on A by the couple (

∑
miPi,

∑
miPi + P1) in

the Kummer. The only difference is that rather than doing a double and add (which will involve a
compatible addition), we do it the reverse way; first a compatible addition to change the representation
to (

∑
miPi,

∑
miPi + Q) using Remark 5.2 (keeping the notations of Proposition 2.7), and then a

double.

As noted in Section 3, when doing an addition of (±x,±(x+ t)) and (±y,±(y + T )), it is faster to
compute (±(x+ y),±(x+ y + T )) by using a compatible addition and a three way addition than by
using two compatible additions. Still the arithmetic on this representation is quite cumbersome. Luckily
scalar multiplication are much better behaved.

Indeed the scalar multiplication (±x,±(x + T )) 7→ (±nx,±(nx + T )) can be computed with a
Montgomery ladder of the form (±mx,±(m + 1)x,±((m + 1)x + T )) where each step will use one
doubling and two differential additions on the Kummer. So compared to the scalar multiplication on the
Kummer variety this will be around 50 percent slower. A much better idea is to use the standard trick to
only compute ±(n− 1)x,±nx on the Kummer variety (via a standard Montgomery ladder). Then at the
end one can recover ±(nx+ T ) by doing a compatible addition (nx) + (T ) = ((n− 1)x) + (x+ T ). So
this only add an extra computation at the end compared to the standard multiplication on the Kummer.
Of course, the same trick will work for a multiscalar multiplication.

Finally it might seem that we need twice as many coordinates to represent the point x ∈ A(k) using
the representation (x, x+ T ) ∈ KA(k)

2 than we need to represent a point in the Kummer. But actually,
in a way similar to the case of elliptic curves in Weierstrass form where we only need one extra coordinate
to encode the choice of sign, once we have ±x ∈ KA(k) we can encode ±(x+ T ) as the corresponding
root in the degree two scheme {±(x+ T ),±(x− T )}. In most cases this can be done by using only one
coordinate. In the level 2 representation of the Kummer variety, we then represent a point of A by a
pair in P2g−1(k)× P1(k). We refer to Section 7 for an analysis of the arithmetic in this representation.

6. Conclusion

In this paper we have shown how a simple type of addition on a Kummer variety which we called the
compatible addition can be used to do some arithmetic that does not come from differential additions.

We have used this tool to explain how to go from a level 2 theta representation to a level 4 theta
representation and to derive an efficient representation of an abelian variety A by embedding it into K2

A.
If KA is represented by theta functions of level 2, this representation only add one extra coordinates
(more precisely this gives an embedding of A into P2g−1×P1), and benefits from the same efficient scalar
multiplication as the one in KA.
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7. Appendix: explicit formulae

Let (ai)i∈Z(2) be the level two theta null point representing a Kummer variety KA of dimension 2.
Let x = (xi)i∈Z(2) and y = (yi)i∈Z(2), we let X = x+ y and Y = x− y. We will give formulae for the
coordinates 2κij = XiYj +XjYi.

Let i ∈ Z(2), χ ∈ Ẑ(2) and let

zχi =
( ∑

t∈Z(2)

χ(t)xi+txt

)( ∑

t∈Z(2)

χ(t)yi+tyt
)
/
( ∑

t∈Z(2)

χ(t)ai+tat
)
.

By Equation (12),
∑

t χ(t)ai+tat is simply the classical theta null point θ
[
χ/2
i/2

]
(0,Ω)2. Then Theorem 3.2

gives

4X00Y00 = z0000 + z0100 + z1000 + z1100 ;

4X01Y01 = z0000 − z0100 + z1000 + z1100 ;

4X10Y10 = z0000 + z0100 − z1000 − z1100 ;

4X11Y11 = z0000 − z0100 − z1000 + z1100 ;

2(X10Y00 +X00Y10) = z0010 + z0110 ;

2(X11Y01 +X01Y11) = z0010 − z0110 ;

2(X01Y00 +X00Y01) = z0001 + z1001 ;

2(X11Y10 +X10Y11) = z0001 − z1001 ;

2(X11Y00 +X00Y11) = z0011 + z1111 ;

2(X01Y10 +X10Y01) = z0011 − z1111 ;

As usual, we let M represent the cost of a multiplication (in the field of definition of x and y), S
represent the cost of a square, and M0 represent the cost of a multiplication coming from the theta
null point (ai)i∈Z(2) (so a data that depend only on the Kummer variety). Finally I represent the cost
of an inversion, which we will replace by some multiplications using the fact that we have projective
coordinates. We may suppose that a0 = 1. Also we note Aχ

i =
∑

χ(t)ai+tai. We have seen that from

the duplication formulae, if ai = θ
[

0
i/2

]
(0,Ω/2) then Aχ

i = θ
[
χ/2
i/2

]
(0,Ω)2. For homogeneity reasons,

we may also assume that A00
00 = 1.

To compute the four z00i we need 4M +8S +3M0. To compute the two z10i we need 2M +4M +2M0.
But actually, since we already have the squares x2

i from the computation of the z00i , we can compute the
product xi+txt as 2xi+txt = (xi+t + xt)

2 − x2
i+t − x2

t so the actual cost is 2M + 4S + 2M0. In total to
compute all κij we need 4M + 8S + 3M0 + 3(2M + 4S + 2M0) = 10M + 20S + 9M0. When x = y, the
cost reduces to 8S + 3M0 + 3(2M + 2S + 2M0) = 6M + 14S + 9M0.

7.1. Differential additions. The first four equations are enough to give the κii and can be used to
compute the differential addition X from x, y, Y in 4M + 8S + 3M0 + 4I (in the generic case where
the coordinates of Y are non zero, otherwise we need all the κij). Similarly, to compute the double
of x (again in the generic case where the coordinates of the theta null point are non zero), we need
8S + 6M0. Once we have computed the differential addition x + y, computing another differential
addition x+ y′ involving the same point x costs only 4M + 4S + 3M0 + 4I. In a Montgomery ladder,
computing the scalar multiplication nP , the differential additions will involve the point P so up to some
precomputations the 4I from the formula above become 3M . One step of the Montgomery ladder then
costs 7M + 12S + 9M0; we recover the formulas from [Gau07] this way. In [Gau07] a 3M − 3S − 3M0

tradeoff is described. For the complexity analysis here we assume that we have small constants so the
cost of M0 is small and we have not done this trade off.

In a d-multiscalar Montgomery ladder, computing the multiplication m1P1+ · · ·+mdPd, the algorithm
from [Bro06] costs 1 doubling and d differential addition on the Kummer by step. This give a complexity
of 8S + 6M0 + d(7M + 4S + 3M0) = 7dM + (8 + 4d)S + (6 + 3d)M0.
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7.2. Compatible additions. We describe the degree two scheme {X,Y } by the polynomial Pα(Z) =
Z2 − 2κα0

κ00
Z + καα

κ00
whose roots are {Xα

X0
, Yα

Y0
} (where α is such that XαY0 −X0Yα 6= 0). To compute κ00

and καα we need 4M + 8S + 3M0, and to compute κα0 we need 2M + 4S + 2M0; so in total to compute
Pα, we need 6M + 12S + 5M0 + 2I.

Once we have a root Z, if we let Z ′ = 2κα0

κ00
− Z be the conjugate root (corresponding to Yα

Y0
), we can

recover the coordinates Xi, Yi by solving the equation
(
1 1
Z Z ′

)(
Yi/Y0

Xi/X0

)
=

(
2κ0i/κ00

2καi/κ00

)
;

We find Xi =
2(Zκ0i−καi)
κ00(Z−Z′) = Zκ0i−καi

Zκ00−κα0
for i 6= 0, α (here we have X0 = 1, Xα = Z). But usually we

will express Z = (X0 : Xα) ∈ P1 as a point in the projective line, and we find that

Xi =
Xακ0i −X0καi

Xακ00 −X0κα0
.

Recovering the projective coordinates of X then costs 8M (given the κij). To sum up, given Z = (X0 : Xα)
recovering X costs in total (10M + 20S + 9M0) + 8M = 18M + 20S + 9M0.

For a compatible addition, where x+ y = z + t, we can find Z as the common root between Pα and

the similar polynomial P′

α(Z) = Z2 − 2
κ′

α0

κ′

00

Z +
κ′

αα

κ′

00

coming from the symmetric coordinates zitj + tizj .

Computing the coefficients needed for P′

α costs 6M + 12S + 5M0. The common root is

Z =

κ′

αα

κ′

00

− καα

κ00

−2κα0

κ00 + 2
κ′

α0

κ′

00

=
κ′

αακ00 − καακ
′

00

2(κ′

α0κ00 − κα0κ′

00)
.

Computing Z projectively costs 4M . In the end, a compatible addition costs (18M + 20S + 9M0) +
(6M + 12S + 5M0) + 4M = 28M + 32S + 14M0.

7.3. Multiscalar multiplication. We compute the cost of a multiscalar multiplication using the
strategy outlined in Proposition 2.7 and Remark 5.4; which cost one compatible addition, one differential
addition and one doubling by multibits. With the same notations as this Proposition, we assume that we
have precomputed all data corresponding to the

∑
εiPi, εi ∈ {0, 1}. For the compatible addition, due to

the precomputations we gain (1M + 4S + 2S × 3 + 9M0) + (1M + 4S + 2S + 5M0) = 2M + 16S + 14M0

and the compatible addition costs 26M + 16S. The doubling and the differential addition then cost
(8S+6M0)+(7M +3M0) = 7M +8S+9M0 (reusing what we have already computed for the compatible
addition). Finally we get a cost of 33M + 24S + 9M0 by multibits.

So for a d-dimensional GLV scheme, using compatible additions or only differential additions according
to the size of d, we get a cost of of Max(7dM +(8+4d)S+(6+3d)M0, 33M +24S+9M0). In particular,
even for large d we are competitive with the best result using Mumford coordinates (in Jacobian form)
[HC] which needs 52M + 11S for a mDBLADD.

We note that there is probably a lot of room for improvement here. First, we only need the square of
the coordinates of the point computed via a compatible addition, there may be a way to compute them
directly faster. Also we have not used the equation of the Kummer surface to speed up the computations.

7.4. Three way additions. In the (±x,±(x+ T )) representation, a doubling costs one doubling and
one differential addition in the Kummer, for a cost of 4M + 12S + 12M0. A differential addition costs
two differential additions in the Kummer, for a cost of (4M +8S+3M0+4I)+ (4M +4S+3M0+4I) =
8M + 12S + 6M0 + (6M + 4M + 4M) = 24M + 12S + 6M0.

A standard addition is much more expensive: we compute x + y + T via a compatible addition
(x + T ) + y = x + (y + T ), for a cost of 28M + 32S + 14M0. We could compute x + y via another

compatible addition, but it is faster to do a three way addition, using Equation (15). For all χ ∈ Ẑ(2),
( ∑

t∈Z(2)

χ(t)(x+ y + T )tTt

)( ∑

t∈Z(2)

χ(t)xtyt
)
=

( ∑

t∈Z(2)

χ(t)0t(x+ y)t
)( ∑

t∈Z(2)

χ(t)(y + T )t(x+ T )t
)
.

To recover x+ y, this costs (4M +4M +3M0)+ (1M +1I)× 4+3M0 = 12M +6M0 +4I = 22M +6M0.
In total a standard addition costs (28M + 32S + 14M0) + (22M + 6M0) = 50M + 32S + 20M0.
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If we will add y a lot of time so we are allowed to make precomputations first, then as in Section 7.3
the cost of the compatible addition to compute x + y + T is 28M + 16S, the cost of the three way
addition is 20M + 6M0 for a total cost of 48M + 16S + 6M0.

As we can see the arithmetic is extremely expensive in this representation. To be efficient, one
need to go to the level 2 Kummer model (once the necessary precomputations have been done in this
representation), and only switch back to this representation at the end using a compatible addition.

References

[BBJ+08] D. Bernstein, P. Birkner, M. Joye, T. Lange, and C. Peters. “Twisted edwards curves”. In:
Progress in Cryptology–AFRICACRYPT 2008 (2008), pp. 389–405 (cit. on p. 2).

[Ber06] D. J. Bernstein. “Differential addition chains”. 2006. url: http://cr.yp.to/ecdh/
diffchain-20060219.pdf (cit. on pp. 4, 5).

[BCL+14] D. J. Bernstein, C. Chuengsatiansup, T. Lange, and P. Schwabe. “Kummer strikes back:
new DH speed records”. 2014. eprint: 2014/134.pdf (cit. on p. 1).

[BL04] C. Birkenhake and H. Lange. Complex abelian varieties. Second. Vol. 302. Grundlehren
der Mathematischen Wissenschaften [Fundament al Principles of Mathematical Sciences].
Berlin: Springer-Verlag, 2004, pp. xii+635. isbn: 3-540-20488-1 (cit. on pp. 5, 6, 9, 13).

[BCH+13] J. W. Bos, C. Costello, H. Hisil, and K. Lauter. “Fast cryptography in genus 2”. In: Advances
in Cryptology–EUROCRYPT 2013. Springer, 2013, pp. 194–210 (cit. on p. 1).

[Bro06] D. R. Brown. “Multi-dimensional Montgomery ladders for elliptic curves”. 2006. eprint:
2006/220 (cit. on pp. 4, 15).

[Can87] D. G. Cantor. “Computing in the Jacobian of a hyperelliptic curve”. In: Math. Comp. 48.177
(1987), pp. 95–101. issn: 0025-5718 (cit. on p. 1).

[Cos11] R. Cosset. “Application des fonctions thêta à la cryptographie sur courbes hyperelliptiques”.
PhD thesis. 2011 (cit. on p. 2).

[CR13] R. Cosset and D. Robert. “An algorithm for computing (ℓ, ℓ)-isogenies in polynomial time
on Jacobians of hyperelliptic curves of genus 2”. Accepted for publication in Mathematics
of computation. 2013. url: http://www.normalesup.org/~robert/pro/publications/
articles/niveau.pdf. HAL: hal-00578991, eprint: 2011/143 (cit. on pp. 2, 10, 13).

[Dup06] R. Dupont. “Moyenne arithmetico-geometrique, suites de Borchardt et applications”. In:
These de doctorat, Ecole polytechnique, Palaiseau (2006) (cit. on p. 9).

[GLV01] R. P. Gallant, R. J. Lambert, and S. A. Vanstone. “Faster Point Multiplication on Elliptic
Curves with Efficient Endomorphisms”. In: CRYPTO. Ed. by J. Kilian. Vol. 2139. Lecture
Notes in Computer Science. Springer, 2001, pp. 190–200. isbn: 3-540-42456-3 (cit. on pp. 4,
14).

[Gau07] P. Gaudry. “Fast genus 2 arithmetic based on Theta functions”. In: Journal of Mathematical
Cryptology 1.3 (2007), pp. 243–265 (cit. on pp. 1, 10, 15).

[GL09] P. Gaudry and D. Lubicz. “The arithmetic of characteristic 2 Kummer surfaces and of
elliptic Kummer lines”. In: Finite Fields and Their Applications 15.2 (2009), pp. 246–260
(cit. on p. 1).

[GL12] E. Z. Goren and K. E. Lauter. “Genus 2 curves with complex multiplication”. In: International
Mathematics Research Notices 2012.5 (2012), pp. 1068–1142 (cit. on p. 9).

[Got59] E. Gottschling. “Explizite bestimmung der randflächen des fundamentalbereiches der
modulgruppe zweiten grades”. In: Mathematische Annalen 138.2 (1959), pp. 103–124 (cit.
on p. 9).

[Har00] R. Hartshorne. Algebraic geometry. Springer, 2000 (cit. on p. 9).
[HC] H. Hisil and C. Costello. “Jacobian Coordinates on Genus 2 Curves”. In: (). eprint: 2014/385

(cit. on p. 16).
[Igu72] J.-I. Igusa. Theta functions. Die Grundlehren der mathematischen Wissenschaften, Band

194. New York: Springer-Verlag, 1972, pp. x+232 (cit. on p. 7).
[Kem88] G. Kempf. “Multiplication over abelian varieties”. In: American Journal of Mathematics

110.4 (1988), pp. 765–773 (cit. on pp. 8–10).

http://cr.yp.to/ecdh/diffchain-20060219.pdf
http://cr.yp.to/ecdh/diffchain-20060219.pdf
http://eprint.iacr.org/2014/134.pdf
http://eprint.iacr.org/2006/220
http://www.normalesup.org/~robert/pro/publications/articles/niveau.pdf
http://www.normalesup.org/~robert/pro/publications/articles/niveau.pdf
http://hal.archives-ouvertes.fr/hal-00578991
http://eprint.iacr.org/2011/143
http://eprint.iacr.org/2014/385


18 REFERENCES

[Kem89] G. Kempf. “Linear systems on abelian varieties”. In: American Journal of Mathematics
111.1 (1989), pp. 65–94 (cit. on pp. 7, 8).

[Koh11] D. Kohel. “Arithmetic of split Kummer surfaces: Montgomery endomorphism of Edwards
products”. In: Coding and Cryptology. Springer, 2011, pp. 238–245 (cit. on p. 13).

[Koi76] S. Koizumi. “Theta relations and projective normality of abelian varieties”. In: American
Journal of Mathematics (1976), pp. 865–889 (cit. on pp. 7–9).

[Lan05] T. Lange. “Formulae for arithmetic on genus 2 hyperelliptic curves”. In: Applicable Algebra
in Engineering, Communication and Computing 15.5 (2005), pp. 295–328 (cit. on p. 1).

[LR10] D. Lubicz and D. Robert. “Efficient pairing computation with theta functions”. In:
Algorithmic Number Theory. Lecture Notes in Comput. Sci. (2010). Ed. by G. Hanrot,
F. Morain, and E. Thomé. 9th International Symposium, Nancy, France, ANTS-IX, July
19-23, 2010, Proceedings. doi: 10.1007/978-3-642-14518-6_21 (cit. on pp. 9, 10).

[LR12] D. Lubicz and D. Robert. “Computing isogenies between abelian varieties”. In: Compos.
Math. 148.5 (2012), pp. 1483–1515. issn: 0010-437X. doi: 10.1112/S0010437X12000243.
url: http://dx.doi.org/10.1112/S0010437X12000243 (cit. on pp. 2, 8, 10, 13, 14).

[LR13] D. Lubicz and D. Robert. “A generalisation of Miller’s algorithm and applications to pairing
computations on abelian varieties”. In: (2013). preprint (cit. on pp. 2, 5, 10, 14).

[Mon87] P. L. Montgomery. “Speeding the Pollard and elliptic curve methods of factorization”. In:
Mathematics of computation 48.177 (1987), pp. 243–264 (cit. on p. 1).

[Mon92] P. L. Montgomery. “Evaluating recurrences of form Xm+n= f (Xm, Xn, Xm- n) via Lucas
chains”. In: Available at ftp. cwi. nl:/pub/pmontgom/lucas. ps. gz 349 (1992) (cit. on p. 1).

[Mum66] D. Mumford. “On the equations defining abelian varieties. I”. In: Invent. Math. 1 (1966),
pp. 287–354 (cit. on pp. 1, 5–8).

[Mum67a] D. Mumford. “On the equations defining abelian varieties. II”. In: Invent. Math. 3 (1967),
pp. 75–135 (cit. on p. 1).

[Mum67b] D. Mumford. “On the equations defining abelian varieties. III”. In: Invent. Math. 3 (1967),
pp. 215–244 (cit. on p. 1).

[Mum69] D. Mumford. “Varieties defined by quadratic equations”. In: Questions on Algebraic Varieties
(CIME, III Ciclo, Varenna, 1969) (1969), pp. 29–100 (cit. on p. 9).

[Mum70] D. Mumford. Abelian varieties. Tata Institute of Fundamental Research Studies in Mathe-
matics, No. 5. Published for the Tata Institute of Fundamental Research, Bombay, 1970,
pp. viii+242 (cit. on p. 5).

[Mum83] D. Mumford. Tata lectures on theta I. Vol. 28. Progress in Mathematics. With the assistance
of C. Musili, M. Nori, E. Previato and M. Stillman. Boston, MA: Birkhäuser Boston Inc.,
1983, pp. xiii+235. isbn: 3-7643-3109-7 (cit. on pp. 6, 8).

[Mum84] D. Mumford. Tata lectures on theta II. Vol. 43. Progress in Mathematics. Jacobian
theta functions and differential equations, With the collaboration of C. Musili, M. Nori,
E. Previato, M. Stillman and H. Umemura. Boston, MA: Birkhäuser Boston Inc., 1984,
pp. xiv+272. isbn: 0-8176-3110-0 (cit. on p. 9).

[Mum91] D. Mumford. Tata lectures on theta III. Vol. 97. Progress in Mathematics. With the
collaboration of Madhav Nori and Peter Norman. Boston, MA: Birkhäuser Boston Inc.,
1991, pp. viii+202. isbn: 0-8176-3440-1 (cit. on p. 6).

[Rob10] D. Robert. “Fonctions thêta et applications à la cryptographie”. PhD thesis. Université
Henri-Poincarré, Nancy 1, France, July 2010. url: http://www.normalesup.org/~robert/
pro/publications/academic/phd.pdf. Slides http://www.normalesup.org/~robert/

pro/publications/slides/2010-07-phd.pdf, TEL: tel-00528942. (Cit. on pp. 2, 9).

IRMAR, Universté de Rennes 1, Campus de Beaulieu, F-35042 Rennes FRANCE
E-mail address: david.lubicz@univ-rennes1.fr

URL: http://perso.univ-rennes1.fr/david.lubicz/

INRIA Bordeaux–Sud-Ouest, 200 avenue de la Vieille Tour, 33405 Talence Cedex FRANCE
E-mail address: damien.robert@inria.fr

URL: http://www.normalesup.org/~robert/

http://dx.doi.org/10.1007/978-3-642-14518-6_21
http://dx.doi.org/10.1112/S0010437X12000243
http://dx.doi.org/10.1112/S0010437X12000243
http://www.normalesup.org/~robert/pro/publications/academic/phd.pdf
http://www.normalesup.org/~robert/pro/publications/academic/phd.pdf
http://www.normalesup.org/~robert/pro/publications/slides/2010-07-phd.pdf
http://www.normalesup.org/~robert/pro/publications/slides/2010-07-phd.pdf
http://tel.archives-ouvertes.fr/tel-00528942


REFERENCES 19

Institut de Mathématiques de Bordeaux, 351 cours de la liberation, 33405 Talence cedex FRANCE

Équipe MACISA, LIRIMA (Laboratoire International de Recherche en Informatique et Mathématiques
Appliquées)


	1. Introduction
	2. Arithmetic on Kummer varieties
	3. Arithmetic with theta functions
	4. Arithmetic, levels and isogenies
	5. Arithmetic on abelian varieties
	6. Conclusion
	7. Appendix: explicit formulae
	7.1. Differential additions
	7.2. Compatible additions
	7.3. Multiscalar multiplication
	7.4. Three way additions

	References

