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Combinatorial cohomology of the space of long knots

Arnaud Mortier

August 22, 2014

Abstract

The motivation of this work is to define cohomology classes in the space of knots that are both
easy to find and to evaluate, by reducing the problem to simple linear algebra. We achieve this goal
by defining a combinatorial graded cochain complex, such that the elements of an explicit submodule
in the cohomology define algebraic intersections with some “geometrically simple” strata in the space
of knots. Such strata are endowed with explicit co-orientations, that are canonical in some sense. The
combinatorial tools involved are natural generalisations (degeneracies) of usual methods using arrow
diagrams.
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The paper is organised as follows.
In Section 1, we build a prototypical cochain complex which contains all the essential combina-

torics while using the most simple input, namely a finite collection of finite subsets of R (a colored
leaf diagram). The point of this preliminary is both theoretical and to point out clearly that this
part of our construction does not depend on the material introduced further.

In Section 2, we show that the incidence signs of the previous cochain complex are of topological
nature, as they are an essential ingredient in the computation of the boundary of the meridian
discs of some “geometrically simple” strata in the space of knots, provided that these discs are
correctly oriented. This property canonically defines a co-orientation of simple strata.

Simple strata are represented by means of degenerated Gauss diagrams, i.e., whose arrows are
allowed to meet on the base circle. Then, in Section 3, similarly to Polyak-Viro’s formulas for
finite-type invariants, we define cochains by counting subconfigurations in those diagrams, with
weights given by products of writhes. A little twist appears here: we do not count the signs of
arrows that participate in singularities; these signs contribute implicitly, via the definition of the
canonical co-orientation.
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At the end of the section we construct the main cochain complex, which is a slightly twisted
version of that of Section 1, and construct a Stokes formula relating it with the boundary maps
from Section 2, that model the meridians of simple strata. The announced result follows.

The last section is a review of examples, including new formulas for the low degree Vassiliev
invariants obtained by integrating 1- and 2-cocycles over some canonical 1- and 2-chains. In
particular we give a method for integrating our 1-cocycle formulas into knot invariants without
any computations, over the two main canonical cycles in the space of knots – namely the Gramain
loop, and the Fox-Hatcher loop.
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1 Cohomology of coloured leaf diagrams in R

1.1 Polygons

A polygon is a finite subset of the oriented based circle S1 = R ∪ {∞}. We make no distinction
between a polygon and the corresponding singular 0-chain in C0(S1,Z2). It is said to be even or
odd according to the parity of its cardinality – in other words, odd polygons are those representing
the non-trivial homology class in H0(S1,Z2).

Let P and P ′ be two disjoint even polygons. Then they have a well-defined linking number,
denoted by lk(P, P ′) ∈ Z2 = {±1}, which is the algebraic intersection between P ′ and any 1-chain
in C1(S1,Z2) whose boundary is P . The map lk is symmetric, and bilinear in the sense that if P
and P ′ are disjoint, as well as P and P ′′, then

lk(P, P ′ + P ′′) = lk(P, P ′) + lk(P, P ′′).

If P ′ is odd and P has two elements, again with P ∩ P ′ = ∅, we extend the notation by setting

lk(P, P ′) = lk(P ′, P )
def
= (−1)♯ [min(P ), max(P )] ∩ P ′

,

where we agree that the point ∞ is greater than any real number. Note that the same formula
holds when P ′ is even. The map lk can then be extended by symmetry and bilinearity to any
couple of disjoint polygons at least one of which is even.

We define a partial order on the set of polygons by setting:

P < P ′ ⇐⇒ inf(P ) < inf(P ′).

1.2 coloured leaf diagrams

A (coloured) leaf diagram in R = S1 \ {∞} is a finite collection of pairwise disjoint polygons, none
of which contains ∞. The elements of the polygons are called leaves of the diagram, and two leaves
from the same polygon are said to have the same colour. The terminology is inspired from the fact
that such diagrams are meant to be later completed into tree diagrams by connecting all leaves
of a same colour by an abstract tree. We define two Z-valued complexities associated with a leaf
diagram L:

• The Gauss degree deg(L), which is the total number of leaves minus the number of colours
(polygons) in L.

• The codimension ι(L), or cohomological degree, which is the total number of leaves minus
twice the number of colours in L.
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The term “Gauss degree” comes from the theory of chord diagrams, where it denotes the number
of chords. For instance, a leaf diagram with d polygons, all of which have cardinality 2, has Gauss
degree d and codimension 0.

Leaf diagrams are regarded up to orientation preserving homeomorphisms of the real line S1 \
{∞}. The Z-module freely generated by equivalence classes of leaf diagrams of degree d and
codimension i is denoted by Li

d. Note that Li
d is always finitely generated, and is trivial whenever

i is greater than d− 1.

Remark 1.1. Special attention should be paid to polygons with only one leaf. Such a polygon
contributes −1 to the codimension, and has no effect on the Gauss degree. They are actually the
only reason why the cohomological degree is not bounded and N-valued. In our main application
for this theory, such polygons are naturally excluded, and the spaces of diagrams with fixed Gauss
degree are finitely generated. However, it is harmless to allow them in the prototypical cochain
complex, and there may be a theoretical interest to study their meaning and the relations between
the main and “reduced” cohomology theories.

1.3 The ε signs and prototypical complex

Let L be a leaf diagram. An edge of L is a closed connected part of the circle that lies between two
neighboring leaves of L – in particular, an edge cannot contain a leaf in its interior, and it cannot
contain ∞. An edge is called admissible if its two boundary points have different colours. From
such an edge, we construct a new leaf diagram Le in the following way: the polygons of Le are
the polygons of L, except for the two that have a leaf at the boundary of e: those two are merged
into a single polygon in Le, and one of the two boundary points of e is removed from it (which one
exactly has no effect on the resulting diagram up to positive homeomorphism of R).

One easily checks the following relations:

deg(Le) = deg(L), and

ι(Le) = ι(L) + 1.

Consider the linear maps Li−1
d → Li

d defined on each generator by the formula

L 7→
∑

e admissible

Le.

It is easy to see that using Z2 coefficients, these maps turn the collection of spaces Li
d into a

graded cochain complex. Our goal is to define signs to lift this complex over Z.

The global sign

Let P be an odd polygon in a leaf diagram L. We define the odd index of P as the parity of
the number of odd polygons in L that are greater than P . Using the convention that a boolean
expression has value −1 when it is true and 1 otherwise, this can be written:

Odd(P,L)
def
=

∏

P ′ odd

(P < P ′) .

We extend this definition to all polygons by setting Odd(P ) = 1 whenever P is even.
Let e be an admissible edge in L, bounded by the leaves v and w lying respectively in the

polygons Pv and Pw. Also, denote by Pvw the polygon of Le that results from the merging of Pv

and Pw.
We define the global sign associated with the edge e in L by

σglo(e, L)
def
= Odd(Pv, L) · Odd(Pw, L) · Odd(Pvw , Le).

This will be the only contribution to the signs in the coboundary maps that depends on polygons
located far from e.

Remark 1.2. When Pv and Pw are both odd, both booleans (Pv < Pw) and (Pw < Pv) appear in
σglo, which results in a minus sign.
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The local sign

From now on, for the sake of lightness, we omit to mention that every sign depends on L, since
other diagrams like Le will not contribute any more.

If x is a leaf in L, we denote by Px the polygon that contains it. Define the evenisation of Px

with respect to x as

P (x)
x =

Px + x if Px is odd,
Px if Px is even.

As a set, Px + x corresponds to Px \ {x}, so that the polygon P (x)
x is always even.

As previously, let e be an admissible edge in L, bounded by the leaves v and w. Recall the
convention that a boolean expression takes value −1 when it is true and 1 otherwise.

We define:

lk(e) = lk(P (v)
v , P

(w)
w ) (Linking number of e)

E(Pv, e) =
lk(v + ∞, Pw) if Pv is even,
1 otherwise.

(Even index of Pv wrt e)

ψ(e) =
(v < w)(Pv < Pw) if both Pv and Pw are odd.
1 otherwise.

(Odd consistency of e)

The local sign associated with the edge e is

σloc(e, L) = lk(e)ψ(e) E(Pv , e) E(Pw, e).

Finally, we set
εL(e) = σloc(e, L)σglo(e, L),

and
δi

d(L) =
∑

e admissible

εL(e) · Le,

and extend this formula into a linear map δi
d : Li−1

d → Li
d.

Theorem 1.3. For each d ≥ 1, the collection of spaces L∗
d and maps δ∗

d forms a cochain complex
of Z-modules.

Proof. Let e and e′ be two edges in a leaf diagram L, such that e is admissible. Then e′ is
admissible in Le if and only if e′ is admissible in L and e is admissible in Le′ . We call such a
couple bi-admissible. To prove the theorem, it is enough to show that for any bi-admissible couple,
the contribution of e and e′ in the computation of δ2L is 0. In other words, that the product
εL(e)εL(e′)εL

e′
(e)εLe

(e′) is always equal to −1.
If e and e′ are bounded respectively by v, w and v′, w′, then (e, e′) is bi-admissible if and only

if e and e′ are admissible and the leaves v, w, v′ and w′ represent at least 3 different colours. We
split the proof into two parts, accordingly.

First, assume that all leaves have pairwise different colours. In this case, every contribution
from σloc appears twice and cancels out. So do the contributions of σglo involving other polygons
than those neighboring e and e′. The remaining contributions of σglo are summarised in Table 1; 0
stands for “even”, 1 for “odd”. We show only the contribution to εL(e)εL

e′
(e): the contribution to

εL(e′)εLe
(e′) contains exactly the opposite boolean expressions. So the point is that in each row,

there is an odd number of booleans.
We now assume that v, w, v′ and w′ represent 3 colours, and without loss of generality that w

and w′ share the same one. We need not discuss the special case when w is actually equal to w′,
since the following computations do not depend on that. Table 2 details the contribution of each
factor to the product εL(e)εL(e′)εL

e′
(e)εLe

(e′). The proof that the product of all contributions is
always −1 is straightforward, using the bilinearity of lk and the formula

∀a, b ∈ R, lk(a+ ∞, b) = (a < b).
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Parities of the polygons
Total contribution of σglo to εL(e)εL

e′
(e)

Pv Pw Pv′ Pw′

0 0 0 0 (Pvw < Pv′w′)

0 0 0 1 (Pvw < Pw′)

0 0 1 1 (Pvw < Pv′)(Pvw < Pw′)(Pvw < Pv′w′)

0 1 0 1 (Pw < Pw′)

0 1 1 1 (Pw < Pv′ )(Pw < Pw′)(Pw < Pv′w′)

1 1 1 1
(Pv < Pv′)(Pw < Pv′ )(Pvw < Pv′)
(Pv < Pw′)(Pw < Pw′)(Pvw < Pw′)

(Pv < Pv′w′)(Pw < Pv′w′)(Pvw < Pv′w′)

Table 1: Computation of δ2 when ♯ {Pv, Pw, Pv′ , Pw′} = 4. By symmetry, there are only six cases to
consider. Note that the minus sign due to Pv and Pw being both odd in the last line (Remark 1.2)
appears twice and cancels out.

Parities Contributions

Pv Pw Pv′ lk E ψ σglo

0 0 0 lk(Pv + Pv′ , w + w′)
lk(Pv + Pv′, w + w′)

1 1
lk(v + ∞, w′) lk(v′ + ∞, w)

0 0 1 lk(Pv′ + v′, w + w′) lk(Pv′ , w + w′) lk(w + ∞, w′) (v′ < w′)(Pv′ < Pvw) (Pv′ < Pvw)

1 0 1 1 1 1 −1

0 1 0 lk(Pv + Pv′ , w + w′)
lk(Pv + Pv′ , w + w′)

1 1lk(v + ∞, w′) lk(v′ + ∞, w)

0 1 1 lk(Pv′ + v′, w + w′) lk(Pv′ , w + w′) lk(v + ∞, v′) (v′ < w′)(Pv′ < Pw) (Pv′ < Pw)

1 1 1 1 1 ±
(Pv < Pw)(Pv′ < Pw)

(Pv < Pv′w)(Pv′ < Pvw)

Table 2: Contribution of each factor after obvious simplifications, in the case Pw = Pw′ . By
symmetry, there are only six cases to consider. In the sixth line, ψ and σglo have the same
contribution up to sign, and the sign is + for ψ and − for σglo.

2 Simple singularities in the space of knot diagrams

2.1 Germs and the associated strata

By the space of long knots K we refer to the (arbitrarily high, but finite)-dimensional affine ap-
proximation of the space of all smooth maps R → R3 with prescribed asymptotical behaviour, as
defined in [23]. The discriminant Σ is the subset of all maps in K that are not embeddings. A
projection p : R3 → R2 endows K\Σ with a stratification, whose strata are defined by certain semi-
algebraic varieties in multijet spaces (see Example 2.3, and see [5, 25, 8] and references therein
for an introduction to stratified spaces and the simplest examples used in knot theory). Those
strata can be represented by Gauss diagrams with additional information of geometrical nature,
i.e. involving derivatives (see [24]). We will call such a stratum simple if the only geometric data
are the writhes of the crossings – and geometric otherwise.

Definition 2.1. An abstract germ is the datum of a finite number of complete oriented graphs,
together with an embedding of the disjoint union of their vertices into R = S1 \ {∞}, such that

1. each graph has at least two vertices,

2. no graph has oriented cycles,

3. each edge of each graph is decorated with a sign + or −.
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An abstract germ γ has an underlying leaf diagram L(γ), from which it inherits the terminology
of polygons, leaves, colours, edges, as well as the Gauss and cohomological degrees deg and ι. The
edges of the graphs in γ are called (signed) arrows. The Z-module freely generated by germs with
cohomological degree i is denoted by Gi – because we will essentially think of meridians, for which
i is the dimension.

Condition 2 above implies that a germ induces a total order on each of its polygons, and a
partial order on the set of all of its leaves, denoted by <γ . A knot is said to respect γ, or called a γ-
knot, if it maps any two leaves with the same colour to a classical crossing with over/under datum
given by the order <γ , and writhe given by the sign of the arrow between those leaves. These
conditions may be inconsistent, so that no knot can respect γ; otherwise, γ is called a topological
germ, or more simply a germ. In that case the diagram of a generic γ-knot is uniquely determined

near each imposed crossing up to local diagram isotopy. Out of the 2(n

2) ways to put signs on a
complete graph (consistently oriented) with n leaves, exactly 2n−1(n− 1)! are topological.

If the leaves of γ are fixed, the set of all γ-knots in K is an affine subspace of codimension
2 deg(γ), because there are (♯P − 1) affine equations for each polygon P (which are independent if
dim K is large enough), and because the writhe conditions are open, hence 0-codimensional. If the
leaves are set free, i.e. the germ is regarded up to positive homeomorphism of the real line, then
the codimension drops to 2 deg(γ) − (number of leaves), which is equal to ι(γ).

Definition 2.2. The ι(γ)-codimensional subspace of all knots in K that respect γ up to positive
homeomorphism of the real line is denoted by Kγ and called the simple stratum associated with γ.

In Subsection 2.3, we will show that a germ γ defines canonically a co-orientation of Kγ (that
is, an orientation of its meridian ball). That is the reason for calling it a germ.

Example 2.3. The strata of codimension 1 are described by the classical Reidemeister moves. R-I
and R-II strata are geometric, and R-III is simple. Indeed, choose a basis (e1, e2, e3) of R3, such
that e3 is the axis of the projection p. This splits a knot parametrisation f : R → R3 into three
coordinate functions f1,2,3. Reidemeister strata are then defined by writhe data together with the
conditions (for example):

R-I ∃x, f ′
1(x) = f ′

2(x) = 0 .

R-II ∃x < y,
f1(x) = f1(y)
f2(x) = f2(y)
f3(x) < f3(y)

and det(
f ′

1(x) f ′
1(y)

f ′
2(x) f ′

2(y)
) = 0.

R-III ∃ y < x < z,
f1(x) = f1(y) = f1(z)
f2(x) = f2(y) = f2(z)
f3(x) < f3(y) < f3(z)

.

Note that the conditions do not depend on the choice of a basis for the projection plane, (e1, e2);
this is a general observation, the stratification depends only on p. Also, this stratification should
not be confused with that of Σ used by Vassiliev [23] to define finite-type cohomology classes. That
one will not be used in the present paper.

Remark 2.4. When a germ is regarded up to homeomorphism, it may happen that a knot respects
it in several different ways. Note however that a generic γ-knot cannot have more singularities
than imposed by γ, so that the only source of multiplicity lies in two-leaved polygons, which give
0-codimensional constraints. Rather than the strata Kγ , one may consider simplicial chains, whose
local weight near a given γ-knot is equal to the number of ways that knot respects γ – this is the
implicit choice in Vassiliev’s calculus [24]. Here, algebraic intersection with such chains will be
modelled by means of the map I which is defined in Subsection 3.2.

2.2 Boundary of simple strata

The boundary of a stratum Kγ is defined by the generic ways for its constraints to degenerate.
There are essentially six basic ways, from which all others can be built. They can be interpreted
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by thinking of a generic γ-knot as a knot diagram some of whose crossings, including all multiple
crossings, are coloured in red.

Type Σ. Two leaves of γ that are consecutive with respect to the order <γ tend to be mapped
to the same point in R3. The corresponding piece of boundary lies in Σ, so it is harmless for our
purposes (understanding the cohomology of K \ Σ, which is the relative homology of (K,Σ)).

Type 1. One edge of γ whose boundary points have the same colour collapses into a point x,
accompanied with the condition f ′

1(x) = f ′
2(x) = 0.

Type 2-1. Two branches of a red crossing tend to have the same direction in the knot diagram;
from the point of view of γ, it results in a writhe not being well-defined any more, and replaced
with either a condition of positive, or negative, collinearity of derivatives.

Type 2-2. Two edges of γ that bound a bigon in the knot diagram collapse simultaneously.
This produces the same geometric condition as in Type 2-1.

Type 3-2. One edge whose boundary points have distinct colours collapses.

Type 3-3. Three edges that bound a triangle in the knot diagram collapse simultaneously.

Types 1 to 3-3 correspond to generalised Reidemeister moves, in that the crossings are allowed
to be multiple. They are sorted according to how many red crossings they involve.

Besides these basic types, it can happen that types 2-2, 3-2 and 3-3 are accompanied with
the simultaneous collapsing of an arbitrarily large number of triangles of type 3-3. Indeed, in all
of these cases, one can see on the knot diagram that a number of crossings are locally present
although they may not be imposed by the germ (red). Now these crossings may also actually be
present in the germ, in which case they can either be regarded as far (which yields a basic type as
above) or close, in which case they participate in the collapsing. Then, these extra crossings may
be themselves multiple crossings from the beginning, and the phenomenon repeat itself.

We are now ready to define precisely which kind of degeneracies will be of interest in this paper.

Definition 2.5. We call Type 0 a degeneracy of basic type 3-2 together with finitely many non-
multiple extra crossings as above – in other words, at most two polygons with more than two leaves
can be involved in the collapsing. If the two polygons of the underlying type 3-2 degeneracy have
respectively m and n leaves, then there may be at most (m− 1)(n− 1) extra arrows. Degeneracies
of basic type 3-2 with extra multiple crossings are considered to fall down into Type 3-3.

Reidemeister farness

We now define a class of germs that will allow us to avoid bad geometric strata and the above
Type 3-3 frenzy.

Definition 2.6. Let γ be a germ. We say that two leaves in γ are neighbours if they are the two
boundary points of an edge. Then γ is called:

1. RI-close if it contains an arrow (v, w) such that v and w are neighbours.

2. RII-close if it contains four distinct leaves v, w, x, y such that:

• v and w are neighbours, and so are x and y;

• v and w have distinct colours;

• v <γ x and w <γ y.

3. RIII-close if it contains six distinct leaves v, w, x, y, z, t such that:

• {v, w}, {x, y}, {z, t} are couples of neighbours;

• v, w and y have pairwise distinct colours.

• v <γ x, y <γ z and w <γ t.

We define R-farness of germs, and therefore of simple strata, as the negation of all of these prop-
erties. In other words, γ is R-far if no generic γ-knot can be subject to a generalised Reidemeister
move involving only red crossings, that is, Basic types 1, 2-2 and 3-3 cannot occur.

7



2.3 Meridian systems and the ∂i map

Roughly speaking, our goal is to define cohomology classes in the space of knots as intersection
forms with R-far simple strata. This requires to understand in which meridian spheres these strata
occur. By the previous discussion we mainly need to consider the meridians of simple strata. The
geometric strata resulting from 2-1 degeneracies will later prove to be completely harmless (see
Lemma 3.10).

Let f be a knot respecting an i-germ γ, and Di
f a piecewise linear (PL) i-disc about f in K,

transverse to the stratification. Then the boundary of Di
f intersects finitely many (i− 1)-strata, at

points f1, . . . , fp, and can be covered with PL discs D
i−1
fk

with pairwise disjoint interiors. Since γ
is simple, every meridian stratum γk is necessarily simple, and the degeneracy γk  γ is either of
Type 0 (Definition 2.5) or 3-3.

Definition 2.7 (reduced meridian system). The cellular boundary map (over Z) associated with
the above decomposition of ∂Di

f depends only on γ. It is called the meridian system of γ. The
reduced meridian system of γ is the induced map with target restricted to strata coming from Type
0 degeneracies. We denote it shortly by

∂γ : Cγ →
⊕

0

Cγk
.

When i = 0, D0
f consists of a single point and has a canonical orientation, i.e. there is a

canonical generator of Cγ
∼= Z, which we denote by 1γ .

We now show that the signs ε used to construct the cochain complex from Section 1 provide a
combinatorial realisation of this boundary map, and a preferred generator for each module Cγ .

Definition 2.8 (k-splittings). Let γ be a germ and Γ a graph of γ with n leaves, n ≥ 3. A splitting
of γ along Γ is a germ γs together with the datum of a Type 0 degeneracy γs  γ resulting in the
creation of the graph Γ. It has to involve two graphs Γ1 and Γ2 with respectively k and n+ 1 − k
leaves (we assume k ≤ n + 1 − k), together with (k − 1)(n − k) two-leaved graphs. If k ≥ 3, γs

has a favourite edge e(s) which is the only edge bounded by Γ1 and Γ2 that gets shrunk in the
degeneracy.

When k = 2, the choice of Γ1 (and also Γ2 if n = 3) and therefore e(s), is not unique. However,
k is uniquely defined and we have a notion of k-splitting.

Definition 2.9. Let Γ be a graph with two leaves in a germ γ. We define the consistency χ(Γ)
to be +1 if the order defined by R and that defined by <γ agree on Γ, and −1 otherwise. We let
χw(Γ) denote the product of χ(Γ) with the sign of the arrow bounded by Γ in γ. The maps χ and
w are set to +1 for graphs with more than two leaves.

Lemma 2.10. Let γs be a (2-)splitting of γ, and let L(s) be the underlying leaf diagram to γs.
Then the sign

χw(Γ1)χw(Γ2)εL(s)(e(s))

does not depend on the choice of Γ1 and Γ2.

This lemma is the key ingredient to show that our signs ε are of topological nature. It will be
proved at the end of this section.

We set:
∂i(γ) =

∑

all splittings

χw(Γ1)χw(Γ2)εL(s)(e(s)) · γs

and extend this into a linear map ∂i : Gi → Gi−1. The reason for this map not to be graded lies
essentially in the bunch of two-leaved polygons that appear as a result of splitting a germ.
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Theorem 2.11. 1. The maps ∂i and spaces Gi together form a chain complex.

2. There is a unique collection of maps

φγ : Cγ →֒ Gι(γ),

such that φγ(1γ) = γ if ι(γ) = 0, and such that all the following diagrams commute:

.

Gι(γ) Gι(γ)−1

Cγ ⊕0Cγk

∂ι(γ)

∂γ

φγ ⊕0φγk

3. The map φγ maps Cγ isomorphically onto the submodule Zγ ⊂ Gι(γ). Hence the preimage
φ−1

γ (γ) defines a canonical co-orientation of the simple stratum Kγ .

Proof. The proof of the first point is identical with that of Theorem 1.3. One only has to notice
that the signs χw always appear twice and cancel themselves in the computation of ∂ ◦∂, and that
the collection of two-leaved polygons that result from a splitting does not affect the computations,
because they are even polygons.

We prove points 2. and 3. simultaneously, by induction on i.
When i = 0, there is nothing to prove. The case i = 1 also needs being treated sepa-

rately. Here it suffices to notice that on the two sides of a Reidemeister III move, the sign
χw(Γ1)χw(Γ2)εL(s)(e(s)) takes opposite values – indeed, such a move switches the signs lk(P1, P2),
E(P1, e) and E(P2, e), and leaves the remaining signs unchanged. So φγ is defined uniquely by
mapping to γ the generator of Cγ that is oriented from the negative side to the positive side. Point
3. is then satisfied, and it implies that the direct sum of any collection of maps φγ is injective.

Now let i ≥ 2 and assume that 2. and 3. hold up to i− 1. The crucial point is the following.

Lemma 2.12. If i ≥ 2, then in the cell decomposition of a meridian sphere Si−1
γ made of meridian

discs, the union of all (i − 1)-discs corresponding to Type 0 degeneracies is connected.

Assuming this lemma, consider a germ γ ∈ Gi. By definition, ∂iγ lies in ⊕0Cγk
, so by induction

(Point 3.) it has a unique preimage x by ⊕0φγk
. By Point 1. of the theorem and by induction

(Point 2.), x lies in the kernel of ⊕0∂γk
. In other words, it is a relative cycle in (Sγ , Sγ \

⋃

0 Dγk
).

Also, it has local weight ±1, so it is a generator of Hi−1(Sγ , Sγ \
⋃

0 Dγk
), which by Lemma 2.12 is

canonically isomorphic to Hi−1(Sγ) ∼= Hi(Dγ , Sγ) ∼= Cγ . By pushing x through these isomorphisms,
we obtain a generator of Cγ , and φγ is uniquely defined by the fact that it must map this generator
to γ. This terminates the proof up to Lemma 2.12.

Proof of Lemma 2.12. If γ has at least two graphs Γ and Γ′ with more than two leaves, then any
two splittings respectively along Γ and Γ′ have a piece of boundary in common. If gamma has
only one graph with n > 2 leaves, then n must be at least 4 so that i = n− 2 ≥ 2. Here, any two
2-splittings sliding different branches away have a common piece of boundary, and any k-splitting
(k ≥ 3) has a common boundary piece with n− 1 distinct 2-splittings.

Proof of Lemma 2.10. We first prove the result in one particular case, then proceed by induction,
using a number of “moves” that allow one to join any splitting of any germ.

First note that by symmetry of the formula in {Γ1,Γ2} we need not check separately the case
n = 3, even though Γ2 is not uniquely determined. Figure 1 shows a splitting γ+(2, n− 1) of the
germ with only one graph, with n leaves, and only + signs. The orientations of the arrows in
the (n− 1)-gon depend on the way to connect virtually the branches of the (n− 1)-crossing; they
are not shown because the sign ε only depends on the underlying polygon. One easily sees that
in γ+(2, n − 1), χw(Γ1) is −1 for any choice of Γ1, and only the maps lk and E can contribute
non-trivially in ε.

9
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Figure 1: The germ γ+(2, n− 1), splitting of the positive n-branch crossing.

• lk(P1, P2) is +1 if Γ1 is the topmost arrow (Γ1-candidate) in the diagram on the right of
Fig.1, and alternates up to (−1)n for the bottom arrow.

• E(P1, e(s)) has the same alternating property and is −1 for the bottom arrow

• If n− 1 is even, E(P2, e(s)) has the same value +1 for any choice of Γ1 (and this also holds
obviously if n− 1 is odd).

This proves that the sign χw(Γ1)χw(Γ2)εL(s)(e(s)) is (−1)n for any choice of Γ1 in γ+(2, n− 1).
We now prove the invariance of the result under the following moves:

1. Adding a bystander graph;

2. Making one crossing change in the (n− 1)-crossing;

3. Making one crossing change at one of the (n− 1) Γ1-candidates;

4. Reversing the orientation of a branch of the (n− 1)-crossing;

5. Sliding the branch that was split away from the n-crossing to the other side of the (n − 1)-
crossing;

6. Changing the order in which the n local branches are virtually connected;

7. Moving the point ∞ to another region.

We always neglect the orientation and sign changes on Γ2, which are harmless. Move 1 may
only modify the contribution of σglo, but it does so in the same way for all choices of Γ1, essentially
because Γ1 is always even. Move 2 has no effect at all. Move 3 only changes χ(Γ1) and w(Γ1) into
their opposite, so that χw(Γ1) remains the same. Move 6 commutes with the other moves, so it
suffices to see that it does not affect the result for γ+(2, n− 1).

The effect of Move 5 on the germ is identical with changing the sign of all Γ1-candidates, which
does not affect the result, and then formally applying the effect of (n− 1) moves of type 4. So we
are left with the two moves 4 and 7, shown on Fig.2. Move 4 does not affect any signs for other
choices of Γ1 than the one on the picture; for this one, χw is changed into its opposite, and so is
E(P1, e(s)). If n− 1 is odd, nothing else changes; otherwise, both the linking number of e(s) and
the even index of P2 are also reversed.

Move 7 changes E(P1, e(s)) into its opposite for all choices of Γ1 other than the one we can see
on Fig.2 – and it has no other effect for them. For the last choice of Γ1, it changes χ, and nothing
else if n− 1 is odd; otherwise it also changes both even indices of P1 and P2.

3 Main result

We now introduce a degenerate version of arrow diagrams, designed to count subgerms in the spirit
of [20]. Subgerms are the algebraic artifact that allows one to see whether a knot respects a germ,
and in how many ways. They are also natural in that if γ  γ′ is a degeneracy, then γ may appear
in the meridian of γ′ only as a subgerm.

10
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Figure 2: The effect of moves 4 and 7 on germs.

3.1 Tree diagrams

Let P be a polygon in S
1 \ {∞} of cardinality greater than 1. A spanning tree for P is a collection

of ordered couples (v, w) with v, w ∈ P , still called arrows, such that the corresponding abstract
oriented graph is a tree. The number of arrows in a spanning tree is always equal to the cardinality
of the underlying polygon minus 1.

A tree diagram is a finite collection of pairwise disjoint polygons in S1 \ {∞} endowed with
spanning trees. We keep denoting such diagrams by the letter “A” to respect the tradition of arrow
diagrams, and save “T ” for single spanning trees. Tree diagrams naturally inherit the Gauss and
cohomological degrees defined for leaf diagrams, namely:

• The Gauss degree deg(A) of a tree diagram is equal to its total number of arrows.

• The cohomological degree ι(A) is the Gauss degree minus the number of colours (trees).

Again, tree diagrams are regarded up to positive homeomorphisms of the real line S1 \ {∞}.
The Z-module freely generated by equivalence classes of tree diagrams of degree d and codimension
i is denoted by Ai

d. Note that Ai
d is trivial whenever i is greater than d− 1, and whenever i or d

is negative (see Remark 1.1).

The triangle relation

Observe that a spanning tree T defines a partial order on the underlying polygon: say that v <T w
if T contains the arrow (v, w), and extend this definition by transitivity – which is possible because
T is a tree. We say that T is monotonic if the relation <T is total. Accordingly, a tree diagram
is called monotonic if all of its trees are so. Monotonic spanning trees for a given polygon P are
in one-to-one correspondence with total orders on P . Denote by ∇(T ) the set of all monotonic
spanning trees that correspond to total orders compatible with <T .

Definition 3.1. The triangle relation is the equivalence relation on Ai
d generated by the equalities

A =
∑

T ′∈∇(T )

AT ′ , (1)

where A is a tree diagram that contains T as a spanning tree and AT ′ is the diagram obtained from
A by replacing T with T ′. We denote the quotient Z-module by Ãi

d. It is naturally isomorphic
with the subspace of Ai

d spanned by monotonic tree diagrams.

Remark 3.2. This relation originated in the work of M.Polyak on arrow diagrams – see [19], and
also [18, 21]. It owes its name to the fact that it is locally generated by the relation schematically
depicted on Fig.3.

Reidemeister farness

Definition 3.3. The Reidemeister farness of monotonic diagrams is defined similarly to that of
germs (Definition 2.6).The submodule of Ãi

d generated by R-far monotonic diagrams is denoted
by Ãi

d,far. This definition makes sense since any α ∈ Ãi
d has a unique representative involving only

monotonic diagrams.

11
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Figure 3: Local triangle relations – only a part of a spanning tree is shown; the remaining invisible
parts should be identical for all three diagrams in a given equality.

3.2 The pairing of tree diagrams with germs

Definition 3.4 (partial germs and signed tree diagrams). A partial germ is a leaf diagram whose
every polygon is enhanced into a connected abstract graph with oriented and signed arrows. The
difference with germs is that here the graphs need not be complete. A partial germ whose every
graph is a tree is called a signed tree diagram.

Partial germs inherit the degrees deg and ι from their underlying leaf diagrams. The corre-
sponding Z-modules of signed tree diagrams are denoted by Ti,d and Ti.

Definition 3.5. A subgerm of a germ γ is the result of forgetting an arbitrary number of its arrows,
in such a way that every graph corresponding to a polygon with more than two leaves remains
connected – although two-leaved polygons may completely disappear. This condition means that
subgerms must remember the codimension of γ – but the Gauss degree may drop.

We set I(γ) to be the formal sum of all subgerms of γ that are signed tree diagrams. It is
understood that subgerms are counted with multiplicity if the removal of distinct sets of arrows
yields homeomorphic results. This defines a linear map

I : Gi → Ti.

If τ is a signed tree diagram, we define T(τ) as the underlying tree diagram, multiplied by the
product of the signs of all arrows of two-leaved polygons. Again this extends into a linear map

T : Ti,d → Ai
d.

Remark 3.6. The fact that the map T disregards the signs of arrows associated with polygons
that have more than two leaves should be interpreted this way: for these polygons, the signs of the
arrows have already contributed by entering the co-orientation defined by germs on their associated
strata. In other words, when a simple crossing merges with others into a multiple crossing, we stop
regarding its writhe as making sense individually. See Lemma 2.10 and Theorem 2.11.

Definition 3.7. For α ∈ Ãi
d and γ ∈ Gi, we set

〈〈α, γ〉〉 = 〈α,T ◦ I(γ)〉 ,

where 〈·, ·〉 is the Kronecker delta on tree diagrams, extended by bilinearity.

We have to prove that this is a good definition, that is:

Lemma 3.8. Let ∇ ∈ Ai
d be a triangle relator, i.e. the difference between the two sides of

Equation (1). Then:
∀γ ∈ Gi, 〈〈∇, γ〉〉 = 0.

Proof. We may assume that γ is a single germ. The result follows then from the facts that the
graphs of γ are complete and consistently oriented, and that the map T disregards the signs of
crossings in trees with more than two leaves.

This elementary proof should be compared with that of [15, Lemma 1.9]. There, the result was
deeply related with the fact that the germ was topological. Here, all the topology is confined in
the co-orientation associated with germs, and this lemma actually holds for abstract germs.

12



Definition 3.9. Let c be a PL i-chain in K\Σ that is transverse to the stratification. Then c inter-
sects finitely many simple i-strata γp, with intersection numbers ηp defined by the co-orientation
from Theorem 2.11. For α ∈ Ãi

d, we set:

{α, c} =

〈〈

α,
∑

p

ηpγp

〉〉

.

We are now in a position to see why degeneracies of type 2-1 do not deserve particular attention.

Lemma 3.10. Let ζ be an almost simple stratum, that is, a boundary component of a simple
i-stratum corresponding to a Type 2-1 degeneracy. Let Sζ be the meridian sphere of ζ. Then:

∀d ≥ 0, ∀α ∈ Ãi
d,far, {α, Sζ} = 0.

It means that the cocyclicity condition for R-far cochains is empty around such strata.

Proof. Denote by a the arrow in the germ γ that is subject to 2-1 degeneracy. The situation is
quite different according to whether or not a is part of a multiple crossing.

First assume that a is isolated. Then Sζ intersects exactly two simple strata γ0 and γ±, cor-
responding respectively to γ with the arrow a forgotten, and γ with the arrow a duplicated into
two arrows with opposite writhe, that intersect or not depending on the geometric condition of ζ.
We have exactly the two sides of a usual Reidemeister II move. Moreover, since the co-orientation
of a germ depends only on the configuration of its graphs with more than two leaves, γ0 and γ±

induce opposite orientations on Sζ , so that, up to sign:

{α, Sζ} = 〈〈α, γ0 − γ±〉〉 .

The result follows by classical arguments.

. . .

. . .

...
...

...

the meridian sphere
Irrelevant pieces of

... ...

Figure 4: Meridian of an almost simple stratum (case of a multiple crossing).

Now assume that a is part of a multiple crossing, with k ≥ 3 branches (two of which have
tangent projections). This time Sζ intersects 2k−2 simple i-strata, obtained from ζ by duplicating
a into two arrows with opposite sign, and then form two new multiple crossings by sharing the
remaining k − 2 branches among those two. However, one of the two arrows a+ and a− must
remain isolated so that subdiagrams stand a chance to be R-II far. Hence only two diagrams may
contribute, γ+ and γ−, as indicated by Fig.4. One can see on the picture that they have a piece
of boundary in common (in fact, two): that is the key allowing us to compare their orientations.
Indeed, γ+ and γ− induce the same orientation on their common boundary, hence they induce
opposite orientations on Sζ , and again, up to sign:

{α, Sζ} = 〈〈α, γ+ − γ−〉〉 .

Now since α is R-II far, the isolated duplicate of a must be deleted for a subdiagram to contribute,
so that the relevant subdiagrams in γ+ are also subdiagrams in γ−, with only difference given by
the sign of a. But this sign is disregarded by 〈〈·, ·〉〉, because a is a part of a multiple crossing.
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3.3 Cohomology of tree diagrams and of the space of knots

Given a tree diagram A, an edge is called admissible if it is so in the underlying leaf diagram L.
For such an edge e there is a natural way to define a tree diagram Ae which is a lift of Le. Namely,
if e is bounded by the leaves v and w, the arrows of Ae are the arrows of A where w is replaced
with v every time it appears. This edge-shrinking process is compatible with the triangle relations.
We define a linear map δ̃i

d : Ãi−1
d → Ãi

d on the generators by

δ̃i
d(A) =

∑

e admissible

χ(Γv)χ(Γw)εL(e) · Le,

with the consistency χ as in Definition 2.9.
We are now ready for the main theorem of this paper.

Theorem 3.11. 1. The collection of maps δ̃i
d and sets Ãi

d forms a graded, finite cochain com-
plex. We denote by Hi

d,far the submodule of those i-th homology classes in degree d that have

a representative cocycle in Ãi
d,far.

2. (Stokes formula) For any d ≥ 0, i ≥ 1, α ∈ Ãi−1
d,far and γ ∈ Gi,

〈〈

δ̃i
d(α), γ

〉〉

= 〈〈α, ∂i(γ)〉〉 .

3. There is a natural map
Hi

d,far → Hi(K \ Σ)

induced by the pairing {·, ·}. For i = 0, the image of this map consists of invariants induced
by homogeneous Goussarov-Polyak-Viro formulas for long virtual knots [10]. For i = 1, the
image consists of arrow-germ formulas as defined in [15].

Remark 3.12. The farness constraint could be lightened, by allowing R-III close diagrams. In the
case i = 0, this is harmless (there are no additional equations) thanks to [14, Lemma 3.2], and it
yields all GPV invariants [14, Theorem 3.6]. For higher values of i, it would require to compute
the proper ε signs to associate with Type 3-3 degeneracies, and to consider subgerms whose graphs
are not necessarily trees.

One could also think of removing the R-I,II farness condition – by contrast, this would require
to handle arbitrary geometric strata, resulting in a far more complicated story. For i = 0 it is
pointless, R-I,II farness is actually a necessary condition for cocyclicity [14, Lemma 3.4]. For i = 1
it brings no new cohomology classes [15, Theorem 2.11].

Conjecture 3.13. The image of the map Hi
d,far → Hi(K \ Σ) consists of Vassiliev cohomology

classes of degree at most d.

This is known to hold for i = 0, and to hold over Z2 when d = i+ 1 (extreme case of diagrams
with only one tree), and when i = 1 and d = 3 (case of the Teiblum-Turchin cocycle [22, 24]).

Proof of Theorem 3.11. 1. This follows from Theorem 1.3 after noticing that the additional contri-
bution χ(Γv)χ(Γw) always cancels itself out in δ̃ ◦ δ̃.

2. For simplicity we omit the indices and exponents in the maps ∂i and δ̃i
d. We also may assume

that α is a tree diagram and γ a germ. Note that α cannot be a subdiagram of both a k-splitting
and an l-splitting of γ for k 6= l; so the proof can be split according to the at most unique value
of k such that the RHS stands a chance to be non-zero when ∂(γ) is restricted to k-splittings. As
a last preliminary, note that we prove the formula at the level of Ai

d,far, i.e. before the quotient by
triangle relations.

If k > 2, then because α is R-far we see that any subdiagram of a term in ∂(γ) that contributes
non-trivially to the RHS must have gotten rid of every two-leaved graph that resulted from the
splitting. Similarly, if k = 2, at most one of these graphs may have survived. Also, if no one of them
has survived, then the subdiagram’s possible contribution is cancelled out by the corresponding
subdiagram in the opposite 2-splitting (where the sliding branch has been pushed in the opposite
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direction). Thus we see that for any value of k, we can restrict I(∂(γ)) to certain subdiagrams such
that the corresponding subdiagrams of γ are signed tree diagrams.

We now use a divide and conquer trick. Note that the subdiagrams to which we restricted
I(∂(γ)) have a well-defined preferred edge e(s). So we can arrange the non trivial contributions to
the RHS according to which edge of A corresponds to e(s). This edge must clearly be admissible
in A, so a corresponding arrangement can be realised in the LHS. Now it is easy to see that the
contributions in each pack are naturally in 1-1 correspondence, and that the signs match.

3. The map α 7→ {α, ·} makes tree diagrams into cochains in K. By Theorem 2.11, Lemma 3.10
and the Stokes formula, it maps cocycles to cocycles and coboundaries to coboundaries, thus
inducing a map Hi

d,far → Hi(K \ Σ).

For i = 0, the map δ̃1
d is isomorphic with the map dΛ from [15] restricted to Gauss degree d,

and this isomorphism is compatible with the Stokes formulas. There, it is proved that Goussarov-
Polyak-Viro invariants are exactly the kernel of a certain map dΛ ⊕d∆ ⊕dI ⊕dII, and our R-farness
condition ensures that the diagrams live in the kernel of d∆ ⊕ dI ⊕ dII.

For i = 1, we use the result and terminology of [15, Theorem 2.11]. By our R-farness condition
the condition of the theorem is satisfied, and also the cube equations associated with -strata
are empty. Now it is straightforward to check that the tetrahedron equations associated with

-strata yield the kernel of the map δ̃2
d restricted to edges that are bounded by one leaf from the

triangle, and the remaining equations from -strata are encoded by the restriction of δ̃2
d to the

complementary set of edges. Finally, considering the number of leaves in the polygons, the kernel
of δ̃2

d is the intersection of the kernels of these two restrictions.

4 Examples and comments

An essential aspect of our construction is that it is of a virtual nature. That is, the equations do
not care about the fact that the germs at which we evaluate the bracket 〈〈α, ·〉〉 may or may not
correspond to classical knots. A major benefit is that it makes the theory simple and computable.
Taking care of classicalness would be much more complicated: to the best of our knowledge there is
no complete characterisation of Gauss diagrams of classical knots that do not require to actually try
drawing the knot – although there are some powerful invariants allowing to detect non-classicalness
in a lot of cases, using for instance the Gaussian parity [13], the Miyazawa polynomial [12] or the
arrow polynomial [6].

On the side of drawbacks, the map Hi
d,far → Hi

Vassiliev(K \ Σ), assuming that Conjecture 3.13
holds, is unlikely to be surjective. For instance, the Vassiliev invariant of order 3 given by the
Gauss diagram formula v3 in [10, Theorem 2] cannot be found in H0

3,far (a virtual version of v3 is
constructed in [4], but its non-homogeneity makes it of a strongly different nature). However, our
cochain complex produces a formula for v3, quite unexpectedly, not from H0

3,far but from H1
3,far,

by integrating a 1-cocycle over the Fox-Hatcher loop. The following is a corollary of Theorem 4.2.

Theorem 4.1. The tree-diagram formula α̃1
3 on Fig.5 is an R-far 1-cocycle. Moreover, the in-

tegration of α̃1
3 on the Gramain loop and the Fox-Hatcher loop of a knot K yield respectively the

Gauss diagram formulas:

∫

rot(K) α̃
1
3 =

〈〈

8

,K

〉〉

= v2(K),

∫

FH(K) α̃
1
3 =

〈〈

+ − − ,K

〉〉

= 6v3(K) − w(K)v2(K),

where w(K) denotes the blackboard framing of the diagram of K considered. In particular the map
H1

3,far → H1(K \ Σ) has rank at least 1. If Conjecture 3.13 holds, then this rank is 1 and α̃1
3 is a

realisation of the Teiblum-Turchin cocycle over the integers.
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As far as we know, this is the first time a Gauss diagram formula specific to classical knots
is found without using Gauss diagram identities (see [17]). The only step where we did leave the
comfortable field of virtual arguments is when we used the existence of the Fox-Hatcher loop!

Note that the second formula is unbased – which is a general phenomenon when integrating
over the Fox-Hatcher loop. The evaluation bracket is then defined similarly to the based version,
but it counts subdiagrams with multiplicity, that is given by the order of their symmetry group
(see [17, Sections 2.2 and 2.4], and [16, Section 4.1.2]).

8 8

8

+ +

Figure 5: The 1-cocycle α̃1
3.

4.1 Formal integration of 1-cocycles

A deep result due to Hatcher [11] states that the connected component of K \Σ corresponding to a
non-satellite long knot K has the homotopy type of S1 if K is a torus knot, and of S1 × S

1 if K is
hyperbolic. For those knots there are essentially two interesting elements in H1(KK): the Gramain
loop rot(K), which consists of a rotation of a long knot around its axis, and the Fox rolling, or
Hatcher loop FH(K), which consists of sliding the ball at infinity (in S3) along the knot.

The Gramain loop does not depend on the Reidemeister moves we use to represent it. However,
the Fox-Hatcher loop depends on a framing choice: indeed, each time one adds +1 to the framing
of K, the ball at infinity makes one positive full spin on itself, which amounts to a negative spin
of K, hence it adds − rot(K) to FH(K).

−−

88

8 8

8 8

88

Figure 6: Sign rules for
∫ h

rot
(on the left) and

∫ l

rot
(on the right).

8 −

Figure 7: Sign rule for
∫

FH. It does not depend on the position of the point ∞.
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Let A be a monotonic tree diagram of codimension 1 – so that its only polygon with more than
2 leaves is a triangle T . If the highest (resp. lowest) point of this triangle with respect to the order
<A is also the lowest (resp. highest) of all leaves in A with respect to the R order, then we define a

new diagram
∫ h

rot A (resp.
∫ l

rot A) of codimension 0, by forgetting the arrow containing that point,

with sign rule as indicated on Fig.6. Otherwise, we set
∫ h

rot
A = 0 (resp.

∫ l

rot
A = 0). This defines

linear maps Ã1
d → Ã0

d−1.
With the same notations, let (a, b) and (b, c) denote the two arrows of T . We construct two

unbased diagrams by replacing the arrow (a, b) with (a,∞) (resp. (b, c) with (∞, c)) while forgetting
the point ∞, and give them signs depending only on the relative position of a, b and c in the cyclic
order – see the rule on Fig.7. The difference is denoted by

∫

FH A and defines a map Ã1
d → Ã0

d.

Theorem 4.2. Let α ∈ Ã1
d,far ∩ Ker δ2

d. Then for any classical knot K:

1.
∫

rot(K) α =
〈〈

∫ h

rot α+
∫ l

rot α,K
〉〉

.

In particular, the right-hand side defines a finite-type invariant of K of degree at most d− 1.

However,
∫ h

rot
α+

∫ l

rot
α might not lie in Ker δ1

d−1.

2.
∫

FH(K) α =
〈〈∫

FH α,K
〉〉

.

The right-hand side defines a regular invariant of K. Its value on a diagram of K with trivial
blackboard framing defines a finite-type invariant of K of degree at most d. [Recall that here
the bracket on the right counts subdiagrams with their potential multiplicity due to symmetry.]

This theorem can be proved by analysing the presentation of rot from [7, Fig.144], and that of
FH given by Fox [9] from the viewpoint of Gauss diagrams – as in the proof of [15, Theorem 3.3].
Reidemeister farness is crucial in the proof, not only for the theory to work properly, but to have a
good control of the non-trivial contributions to the integrals. For example, the 1-cocycle formula
from [15, Theorem 3.2], which allows R-III close diagrams, is impossible [to us] to integrate directly
on the Fox-Hatcher loop, because of uncontrollable contributions.

Gauss diagram identities

This theorem can be useful even when applied to a cocycle that is trivial in H1(K \ Σ). Indeed,
it may happen that the integration of such a cocycle is not formally zero. When this happens, it
means that we have found a Gauss diagram identity, that is, a formula for the trivial invariant.
But since there are no such formulas for virtual knots, we have there a non-trivial obstruction to
classicalness.

Among the low-degree examples, we have thereby a new proof that the Gauss diagram formulas

〈〈

− ,K

〉〉

and

〈〈

8

8

− ,K

〉〉

vanish for classical knots.

4.2 Higher degree examples

A number of higher degree formulas comes for free as in general Ãi
i+1,far

∼= Hi
i+1,far, whose rank

grows at least quadratically with i. All of those can be proved to be Vassiliev classes at least over
Z2 using the homological calculus from [24]. One could study their non-triviality by using the
results of [1, 2] which are an excellent sequel, state of the art and completion to Hatcher’s work
on the topology of spaces of knots. We study here the cocycles in H2

3,far.
Our main motivation for computing higher degree examples lies in reinterpreting a result of

Budney et al. [3], which states that it is possible to compute the invariant v2 by counting an
appropriate kind of quadrisecants with appropriate signs.
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In the present language, a quadrisecant of a knot is a particular direction of projection for which
the knot respects a germ with one polygon and four leaves. Hence, counting quadrisecants with
signs is precisely what 2-cocycles in H2

3,far do. More precisely, given a knot K, consider a sphere in
R3, centered at the origin and with radius large enough to intersect K only in two points where it
is arbitrarily close to its axis. Each point in that sphere defines a different direction of projection,
except for the two intersection points with the axis of K. So we do not have a 2-cycle, but still
a canonical 2-chain, where evaluating our cocycles makes sense since generically the quadrisecants
stay far away from the knot axis during an isotopy of K. We call that 2-chain S∞(K).

The module Ã2
3,far has two generators v2

3 =

8

and ṽ2
3 =

8

, and both are cocycles.

Theorem 4.3. For any knot K,

v2(K) =
〈〈

v2
3 , S∞(K)

〉〉

=
∑

8
a d

c b

w(a, b)w(c, d),

where the sum is over all quadrisecants of K of the indicated type, and w(a, b) denotes the writhe
of the simple crossing between the branches a and b.

One can see that this is a new point of view on [3, Proposition 6.2], with a much simpler formula
to think of. Indeed, the quadrisecants counted by v2

3 are precisely those which “determine the cycle
(1342)” in the language of [3, Section 6].

Proof. We begin with the second equality. It is proved by analysing the co-orientation defined
by v2

3 and understanding what orientation it defines on S∞(K). The natural co-orientation of
the plane on Fig.8, as defined by Theorem 2.11, is counterclockwise if and only if the product of
writhes pqr is +1.

8

p

q

r

p

r

−r

−p

qr

pq

pq−pq

qr

−qr−qr

−pq

Figure 8: The meridian of a germ with underlying tree diagram v2
3 . The numbers p, q, r are the

writhes of the arrows as indicated in the middle diagram. A sign between two diagrams indicates
the co-orientation.
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Now we need to draw the picture of Fig.8 on the sphere S∞. For this, observe the following.
Choose a point x on S∞ which defines a diagram Kx with exactly one generic triple point, say
f(t1) >x f(t2) >x f(t3); the set of such points is a 1-submanifold X ⊂ S∞. By moving the center
of S∞ so that it lies on the line containing the triple point, the derivatives f ′(t1), f ′(t2) and f ′(t3)
project to a generic triple of vectors v1, v2, v3 ∈ TxS∞.

Fact. The direction of TxX lies in the angular region determined by the directions of v1 and
v3 that does not contain the direction of v2.

To see it, think of the top and bottom branches as locally spiraling around the medium branch.
Fig.9 reads like this. Independently of the direction of the furthest branch (4), we know that

the branch of X that slides 4 away and keeps the triple point {1, 2, 3} lies in the region bounded
by 1 and 3 that does not contain 2. Also, it appears that the orientation p/ − p (defined by the
middle horizontal line of Fig.8) depends only on the orientation of the branch 3 as indicated. It
is then easy to see that the splitting of the remaining triple point is supported by the direction 2,
and that the orientation qr/ − qr depends only on the orientation of the branch 2.

To conclude, the relative position of p and qr on Fig.9 is dictated by the sign q (writhe of the
crossing between branches 2 and 3). Hence the orientation induced on S∞ by v2

3 is dictated by the
sign pqr · q = pr, which is the result announced.
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4

1

1 3

p

qr
−qr

−p

Figure 9: Orientation of S∞ induced by v2
3

Using this formula, it is straightforward to see that
〈〈

v2
3 , S∞(K)

〉〉

is a Vassiliev invariant of
degree at most 2; therefore it suffices to check the first equality for the trefoil.
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