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I. INTRODUCTION

ERAMANENT magnet synchronous (PMS) motors are more suitable for electric traction compared with induction motors. Indeed, they possess a better mass/power ratio, develop a much higher power level and present a more satisfactory efficiency. In effect, the Joule losses in PMS motors are much less important as these involve no field and rotor currents. The spectacular development of power electronics technology, over the last recent years, has resulted in reliable power electronic converters which make it possible to drive synchronous machines in varying speed mode. Indeed, speed variation can only be achieved for these machines by acting on the supply net frequency. Until the recent development of modern power electronics, there was no effective solution to AC machine speed control because there was no simple way to vary the net frequency. On the other hand, in the electric traction domain, the used power nets are either DC or AC but mono-phase. Therefore, three-phase DC/AC inverters turn out to be the only possible interface (between railway nets and 3-phase AC motors) due to their important capability to ensure a flexible voltage and frequency variation. The above considerations illustrate the major role of modern power electronics in the recent development of electrical traction applications.

As mentioned above, a three-phase DC/AC inverter used in traction is supplied by a power net that can be All authors are with the GREYC Lab, University of Caen, Caen, France.

Corresponding author: F. Giri, fouad.giri@ unicaen.fr either DC or mono-phase AC. In the case of AC supply, the (mono-phase) net is connected to the three-phase DC/AC inverter through a transformer and AC/DC rectifier (Fig 1). The connection line between the rectifier and the inverter is called DC link.

The system consisting of the AC/DC converter, the DC/AD inverter and the PMS motor has to be controlled to achieve varying speed reference tracking. The point is that such system behaves as a nonlinear load vis-à-vis to the AC supply line. Then, undesirable current harmonics are likely to be generated in the AC line. These harmonics reduce the rectifier efficiency, induce voltage distortion in the AC supply line and cause electromagnetic compatibility problems. The pollution caused by the converter may be reduced resorting to additional protection equipments (transformers, condensers…) and/or over-dimensioning the converter and net elements. However, this solution is costly and may not be sufficient.

To overcome this drawback, the control problem must have as objective not only motor speed control but also rejection of current harmonics. The last objective is referred to power factor correction (PFC), [START_REF] Singh | Improved Power Quality AC-DC Converter for Electric Multiple Units in Electric Traction[END_REF]. Previous works on synchronous machine speed control simplified the control problem neglecting the dynamics of the AC/DC rectifier and so making the focus only on the set 'DC/AC inverter -Motor'. A wide range of control solutions have thus been proposed. These involved as well simple techniques such as field-oriented control (FOC) [START_REF] Jasinski | Direct control for AC/DC/AC converter-fed induction motor with active filtering function[END_REF] and NL techniques such as feedback linearization (FL) [START_REF] Kuroe | Optimal speed control of synchronous motors based on feedback linearization[END_REF], direct torque control (DTC) [START_REF] Saleh | Field oriented vector control of synchronous motors with additional field winding[END_REF] or sliding mode (SM) [START_REF] Yang | Variable structure control with sliding mode for self-controlled synchronous motor drive speed regulation[END_REF]. Ignoring the AC/DC rectifier in the development of a control strategy, is criticized at least from two viewpoints. First, such development relies on the assumption that the DC voltage provided by the AC/DC rectifier is perfectly regulated. The problem is that a perfect regulation of the rectifier output voltage can not be met ignoring the rectifier load which is nothing other than the set 'DC/AC inverter -Motor'. The second drawback of the previous control strategy lies in the entire negligence of the PFC requirement. It is not judicious, from a control viewpoint, to consider separately the association 'inverter -Motor', on one hand, and the rectifier, on the other hand.

In the present work, we are developing a new multiloop control strategy that deals simultaneously with both controlled subsystems: the AC/DC converter and the combination 'DC/AC inverter -Motor'. The main feature of our control design is threefold: i. A input current loop is first designed so that the
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A. El magri, F. Giri, A. Abouloifa, I. Lachkar, F.Z. Chaoui P 1 coupling between the power supply net and the AC/DC rectifier operates with a unitary power factor; ii. A second loop is designed to regulate the output voltage of AC/DC rectifier so that the DC link between the rectifier and inverter operates with a constant voltage; iii. A bi-variable loop is designed to enforce the motor velocity to track its varying reference value and to regulate the d-component of stator current to zero in order to optimize the absorbed stator current. All loops are designed using the backstepping technique and Lyapunov design, [START_REF] Wallmark | On control of permanent-Magnet synchronous Motors in Hybrid-Electric Vehicle Application[END_REF]. A theoretical analysis will prove that the four-loop controller thus described actually stabilizes (globally and asymptotically) the controlled system and does achieve its tracking objectives with a good accuracy. More precisely, it is shown that the steadystate tracking errors corresponding to rectifier input current and rectifier output voltage, motor speed and stator current d-component are harmonic signals and their amplitudes depend on the supply net frequency: the larger the net frequency the smaller the error amplitudes. It follows in particular that the motor regulation objective and the PFC requirement are actually ensured, up to harmonic errors of insignificant amplitude, provided the net frequency is large enough. This formally establishes the existence of the so-called ripples, which are usually observed in similar practical applications, and proves why this phenomenon is generally insignificant. These theoretical results are obtained making a suitable use of different automatic control tools e.g. averaging theory and Lyapunov stability [START_REF] Khalil | NONLINEAR SYSTEMS[END_REF]. The paper also includes a simulation study confirming the above theoretical results and, besides, shows that the controller compensates well to disturbing effects due load changes.

The paper is organized as follows: the controlled system (including the AC/DC/AC converter and the synchronous motor) is modeled and given a state space representation; the control objectives in Section 2; the controller design and the closed-loop system analysis are presented in Section 3; the controller performances and robustness are illustrated Section 4 through numerical simulations; a conclusion and a reference list end the paper. To alleviate the paper presentation, a list of notations is given hereafter.

Notation list L stator winding inductance R resistance of the stator windings i d , i q d-and q-axis currents 

A. Modeling the PMW AC/DC Rectifier

The transformer secondary is connected to a H-bridge converter which consists of four IGBT's with anti-parallel diodes for bidirectional power flow arrangement. This subsystem is described by the following set of differential equations:

dc e e v s L L v dt di 1 1 1 - = (1.a) s e dc i C i s C dt dv 1 1 - = (1.b)
where e i is the current in inductor L 1 , dc v denotes the voltage in capacitor C, s i designates the input current inverter, e v is the supply net sinusoidal voltage

( ) cos( . . 2 t E v e e ω =
) and s is the switch position function taking values in the discrete set { 1 , 1 -}. Specifically:

⎩ ⎨ ⎧ - = ON OFF S OFF ON S s is S and is if 1 is S and is if 1
It is not suitable for control design due to the switched nature of the control input s. As a matter of fact, existing nonlinear control approaches apply to systems with continuous control inputs. Therefore, control design for the above inverter will be based upon the following average version of (1.a-b): 

2 1 1 1 1 1 x u L L v dt dx e - = (2.a) s i C x u C dt dx 1 1 1 1 2 - = ( 

B. Modeling the combination PMW DC/AC convertersynchronous motor

Such modeling is generally performed in the d-q rotating reference frame because the components d i and q i then turn out to be DC currents. According to [START_REF] Wallmark | On control of permanent-Magnet synchronous Motors in Hybrid-Electric Vehicle Application[END_REF], the model of the synchronous motor, expressed in the d-q coordinates, is given by:

J T i J K J F dt d L q M - + - = 2 3 ω ω (3.a) q M d q q v L L K i p i L R dt di 1 + + - - = ω ω (3.b) d q d d v L i p i L R dt di 1 + + - = ω (3.c)
The inverter d-and q-voltage can be controlled independently. To this end, these voltages are expressed in function of the corresponding control action (see e.g. [START_REF] Michael | Modeling of Sinewave Inverters: A Geometric Approach[END_REF]):

2 u v v dc q = (4.a) 3 u v v dc d = (4.b) 2 / ) ( 3 3 2 d q s i u i u i + = (4.c)
where

d q u u u u = = 3 2 ,
are the average modulation indexes in the d-and q-axis, respectively. Similarly, let us introduce the state variables

ω = 3 x , q i x = 4 , d i x = 5 .
Then, substituting (4a-b) in (3a-c) yields the following state space representation of the combination 'invertersynchronous motor':

J T x J K x J F dt dx L M - + - = 4 3 3 2 3 .
(5.a)

2 2 3 5 3 4 4 . 1 . . . . x u L x L K x x p x L R dt dx M + + - - = (5.b) 2 3 4 3 5 5 . 1 . . . x u L x x p x L R dt dx + + - = (5.c)
The state space equations obtained up to now constitute a state-space model of the whole system including the AC/DC/AC converters combined with the synchronous motor:

2 1 1 1 1 1 x u L L v dt dx e - = (6.a) ) ( 2 3 1 4 2 5 3 1 1 2 x u x u C x u C dt dx + - = (6.b) J T x J K x J F dx L M - + - = 4 3 3 2 3 . (6.c) 2 2 3 5 3 4 4 1 x u L x L K x x p x L R dt dx M + + - - = (6.d) 2 3 4 3 5 5 1 x u L x x p x L R dt dx + + - = (6.e)

III. CONTROLLER DESIGN

A. Control objectives

The first control objective is to force the speed ω to track a reference signal ref ω . The second objective is to constrain the input current rectifier to be sinusoidal and in phase with the AC supply voltage (PFC). But, there are three control inputs at hand, namely 1 u , 2 u and 3 u . Then, we will further seek two additional control objectives. Specifically:

-controlling the continuous voltage dc v so as it tracks a given reference signal dcref v (generally constant, equal to the nominal voltage entering the inverter) -regulating the current d i to a reference value dref i , equal to zero in order to guarantee the absence of daxis stator current The last requirement is explained by the fact that the developed torque is given by the relation 2 / ) ) ( ( . 3

q d q d q M i i L L i K p T - + =
(see e.g. [START_REF] Muhammad | Power electronics handbook[END_REF]).

Accordingly, torque control should be performed acting on both d i and q i . But, for the surface-magnet synchronous motor, the large effective airgap means that

L L L q d = ≈
i.e. d i does not really influence T and so it is sufficient to regulate it to zero.

B. Control loop design for current e i

The PFC objective means that the input current rectifier should be sinusoidal and in phase with the AC supply voltage. We therefore seek a regulator that enforces the current 1

x to tack a reference signal * 1

x of the form:

e v k x = * 1 (7)
At This point k is any positive (time-varying) parameter. Introduce the current tracking error:

* 1 1 1 x x z - = (8) 
In view of (6.a), the above error undergoes the following equation:

* 1 2 1 1 1 1 . . 1 x x u L L v z e & & - - = (9) 
To get a stabilizing control law for this first-order system, consider the quadratic Lyapunov function

2 1 1 5 . 0 z V = . It can be easily checked that the time-derivative 1 V & is a negative definite function of 1 z if control input is chosen to be: ( ) 2 * 1 1 1 1 1 1 / ) / ( . x x L v z c L u e & - + = with 0 1 > c ( 10 
)
Proposition 1. Consider the control subsystem (6.a) and the control law [START_REF] Kuroe | Optimal speed control of synchronous motors based on feedback linearization[END_REF]. The reference * 1

x is assumed available and derivative. The inner closed-loop system undergoes the following equation:

1 1 1 .z c z - = & with 0 1 > c .
It is clearly seen that the error 1 z converges exponentially fast to zero, whatever the initial conditions.

C. Control loop design for the voltage dc v

The aim of the outer loop is to generate a tuning law for the ratio k so that the output voltage v dc be regulated to a given reference value v dcref .

1) Relation between k and 2 x

The first step in designing such a loop is to establish the relation between the ratio k (control input) and the output voltage 2

x . This is the object of the following proposition.

Proposition 2. Consider the power converter described by (6.a-b) and the e i control loop defined by [START_REF] Kuroe | Optimal speed control of synchronous motors based on feedback linearization[END_REF]. One has the following properties: 1) The output voltage 2

x varies, in response to the tuning ratio k, according to the equation:

) ( 2 3 ) ( 1 4 2 5 3 1 2 2 2 x u x u C v z v k x C dt dx e e + - + = (11)
2) The squared voltage (

2 2
x y = ) varies, in response to the tuning ratio k, according to the equation:

) , ( 2 2 t x f v k C dt dy e + = ( 12 
)
where 14) and fact that the input current expression is

)) ( 2 3 ( 2 ) , ( 4 2 5 3 2 1 x u x u x v z C t x f e + - = ( 
1 1 . z v k x e + =
, yields :

2 1 2 1 1 ) ( x v z v k x u e e + =
, which together with (6.b) establishes (11) 2) Lets introduce the variable change x y = in (11). Deriving y with respect to time and using (11) yields the model (12) and completes the proof of proposition 1.

2) Squared DC-link voltage regulation

The ratio k stands up as a virtual control input in the system (12). The reference signal 

ref e y t x f t k E C k E C z & & - + + = ) , ( ) 2 cos( 2 2 2 2 2 ω (15)
To get a stabilizing control law for this system, consider the following quadratic Lyapunov function: )

ref e y t x f z c C t E k E k & + - - = + ) , ( 2 ) 2 cos( 2 2 2 2 ω (17) where 0 2 > c
is a design parameter. An approximate simple solution is:

( ) 2 2 2 / ) , ( 2 
E y t x f z c C k ref & + - - = (18) 
In view of such choice, it follows from (18), ( 17) and ( 15) that 2 z undergoes the differential equation:

) 2 cos( 2 2 2 2 2 t E k C z c z e ω + - = & (19)
Remark. The signal k is treated by a prefilter to obtain its derivative signal (then the time-derivative of * 1

x is available).

D. Control loop design for motor speed ω

A control law for the remaining (actual) control input, namely 2 u , will now be determined based on equations (6c-d) in order to guarantee speed reference tracking. To this end, let 3 z denote the speed tracking error:

ref x z ω - = 3 3 (20)
In view of (6.c), the above error undergoes the following equation:

ref L M J T x J K x J F z ω & & - - + - = 4 3 3 . 2 3 . ( 21 
)
In ( 21), the quantity 

z c z - = & with 0 3 > c
is a design parameter. This would clearly ensures asymptotic stability of (21) with respect the Lyapunov function:

2 3 3 5 . 0 z V = (23) 
In effect, the time derivative of 3 V would then be:

0 2 3 3 3 3 3 < - = = z c z z V & & (24) As 4 ). 2 / 3 ( x J K M = α
, is a virtual control input, one can not set * α α = . Nevertheless, the above expression of the desired trajectory is retained and a new error is introduced:

* 4 α α - = z (25)
Using ( 23)-( 25), it follows from (21) that the 3 zdynamics undergoes the following equation:

4 3 3 3 z z c z + - = & ( 26 
)
The next step consists in determining the control input 2 u so that the errors ( 43 , z z

) vanish asymptotically. The trajectory of the error 4 z is obtained by operating a time- derivation on (25), that is: 22) and (6c-d) in (27) yields:

* 4 4 ). 2 / 3 ( α & & & - = x J K z M (27) Using (
2 2 3 3 4 2 3 ) ( x u JL K z c x z M + + + = & & γ β (28) 
where

⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ - + ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ - + - = 4 2 3 2 2 3 5 3 4 . 2 3 . . . . . 2 3 ) ( x J FK x J F x L K x x p x L R J K x M M M β (29) ref L L J T J FT t ω γ 4 3 3 3 z z c z + - = & 2 2 3 3 4 2 3 ) ( x u JL K z c x z M + + + = & & γ β (31)
To determine a stabilizing control law for (31), let us consider the quadratic Lyapunov function candidate:

2 4 3 4 5 . 0 z V V + = (32) 
Using (26), the time derivative of 4 V can be rewritten as:

4 4 4 3 2 3 3 4 z z z z z c V & & + + - = (33) 
This shows that, for the 4 3 , z z -system to be globally asymptotically stable, it is sufficient to choose the control 2 u so that 

z c z c V - - = & (with 0 4 > c
). In view of (33), this amounts to let:

3 4 4 4 z z c z - - = &
(34) Comparing ( 34) and (31) yields the following backstepping control law:

( ) 2 3 2 3 4 4 3 2 / ) ( ) 1 ( ) ( ) 3 / 2 ( x x z c z c c K JL u M γ β + + - - + - = (35) 

E. d-axis current loop design

The d-axis 5

x undergoes equation (6.e) in which the following quantity:

L x u x x p v / . . . 2 3 4 3 + = (36) 
acts as a virtual input. As the reference signal dref i is zero, it follows that the tracking error 5 5

x z = undergoes the equation:

v z L R z + - = 5 5 ) / ( & (37) 
To get a stabilizing control signal for this first-order system, consider the following quadratic Lyapunov function: 

z c V - = &
is a negative definite function of 5 z if the (virtual) control input is let to be:

5 5 ) ) / ( ( z c L R v + - - = with 0 5 > c (39)
Now, it is readily observed that the actual control input 3 u is obtained substituting (39) in (36) and solving the resulting equation. Doing so, one gets: ) converges exponentially fast to zero, whatever the initial conditions.

Theorem. Consider the system including the AC/DC/AC power converters and the synchronous motor connected in tandem, as shown in Fig. 2. For control design purpose, the system is represented by its average model ( 6a-e 10), ( 35) and ( 40) where all design parameters, namely Then, one has the following properties:

1) The resulting closed-loop system undergoes the following equation:

) , ( ) ( ) ( t z g t z A t z + = & (42) with ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ ⎛ - - - - - - = 5 4 3 2 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 c c c c c A ; ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ ⎛ = 0 0 0 ) 2 cos( . . 2 0 ) , ( 2 t E k C t z g e ω
2) The tracking errors 

( ) T E k C w g 0 0 0 ) cos( ) / 2 ( 0 ) , , ( 2 1 τ ε τ = (44b)
The stability of system (44) will be now be analyzed with using tools from the averaging theory [START_REF] Khalil | NONLINEAR SYSTEMS[END_REF] . This proves the theorem.

IV. SIMULATIONS

The experimental setup, described by Fig. 3 The reference values of the state variables are chosen as: v dcref = 500V; ref ω steps from 0 to 100 rad/s at t=0.3s; a constant load torque of 15 Nm is applied to the drive at t=0.5s and then back to 10 Nm at t=0.7s. i dref =0.

The following values of the controller parameters turned out to be suitable: c 1 =1000, c 2 =50, c 3 =80, c 4 =900, c 5 =800.

The controller performances are illustrated by , ω ). The response time is less than 0.05 s. The disturbing effect, due to load torque change, is also well compensated by the regulator.

V. CONCLUSION

In this paper we have considered the problem of controlling the power electronic AC/DC/AC converters with synchronous motor load. The system dynamics have been described by the averaged 5 th order nonlinear statespace model (6a-e). Based on such a model, the Lyaponuv stability and averaging theory are used to establish the multiloop nonlinear controller. Presented approach guarantees (Theorem) well line side power quality, controllable and stable (average) DC-link voltage (v dc ) as well as, the power factor at AC input mains is close to unity (PFC) in the entire operating range of the drive. The convergence of the rotor speed and d-axis current, towards their references values, is guaranteed. These results have been confirmed by a simulation study which, further, showed the robustness of controller performances with respect to load changes. 

  combined inertia of rotor and load f combined viscous friction of rotor and load K M flux motor constant II. MODELING THE ASSOCIATION AC/DC/AC CONVERTER-SYNCHRONOUS MOTOR The controlled system is illustrated by Fig 2. It includes an AC/DC boost rectifier, on one hand, and a combination 'DC/AC converter-synchronous' motor on the other hand. The circuit operates according to the well known Pulse Width Modulation (PWM) principle.
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 121 Fig.2. AC/DC/AC drive circuit with three-level inverter
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 2 is chosen to be constant, equal to the nominal input voltage of the inverter. Then, it follows from (12) that the tracking error

  checked that the time-derivative 2 V & can be made a negative definite function of the state 2 z by letting:
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  a (virtual) control input for the 3 z -dynamics. Let * α denote the desired trajectory (yet to be determined) of α . It is easily seen from (21) that if *

Proposition 3 .

 3 Consider the control system consisting of the subsystem (6c-e) and the control laws (35) and (40).The resulting closed-loop system undergoes, in the (

  is readily seen that (41) is globally asymptotically stable with respect 41) is linear, then the error vector (

  coefficients c1 to c5 are positive. Then, the origin 0 = w is an equilibrium point of the average system (45). Now, invoking averaging theory (see e.g. Theorem 10.4 in[START_REF] Khalil | NONLINEAR SYSTEMS[END_REF]), we conclude that there exists a positive real constants * ε and ξ such that, for all

Figs 4 to 6 .

 6 Fig 4 shows that a unitary power factor is achieved after a transient period following each change in reference values or load torque. Figs5 and 6show that the tracking quality is quite satisfactory for all controlled variables (

Fig. 6 .Fig. 5 .Fig. 4 .Fig. 3 .

 6543 Fig. 6. Speed ω(rad/s) and d-axis current id(A)

  . As dcref v In order to get stability results regarding the system of interest, i.e. (44a), it is sufficient to analyze the linear average system (45). It is clear that matrix A is Hurwitz (all its eigenvalues have negative real parts) because the

	and ref ω are periodic with period	N ω π / 1	e	and	N	π / 2	ω	e
	respectively, with 1 N and 2 N are any positive integer
	numbers. The average system is essentially obtained
	averaging the function	1 g	( τ	,	•	,	) •	with respect to its first
	argument, over the interval [0, 2π]. From (44b) it is
	readily seen that the average value of	1 g	( τ	,	•	,	) •	is
	precisely equal to zero. Hence, the average version of
	(44a) is:					
	w &	( τ	)	=	ε	A	w	( τ	)		(46)

  , has been simulated in Matlab/Simulink environment. The involved elements have the following characteristics:

	.	Supply	network:	v	e	( t	)	=	2	.	E	cos( ω	e	t	)	;
	E=220v/50Hz														

. AC/DC/AC converters: L 1 =15mH; C=4.5mF; . Synchronous motor: L=9.4mH; R=0.6Ω; K M =0.29; J=0.000765Nm/rd/s², F=0.003819Nm/rd/s; p=2.

& & & -

Then, the error equation ( 26) and (28) can be rewritten in a more compact form: