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Abstract

This study deals with the asymptotic performance of a multiple-spur can-

cellation scheme. Radio frequency transceivers are now multi-standard and

specific impairment can occur. The clock harmonics, called spurs, can leak

into the signal band of the reception stage, and thus degrade the perfor-

mance. The performance of a fully digital approach is presented here. A

one-spur cancellation scheme is first described, for which we exploit the a

priori knowledge of the spur frequency to create a reference of the polluting

tone with the same frequency. A least-mean-square (LMS) algorithm block

that uses this reference to mitigate the polluter is designed. However, due to

imperfections in the physical components, there is a shift between the a priori

frequency and the actual frequency of the spur, and the spur is affected by
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Brownian phase noise. Under these circumstances, we study the asymptotic

and transient performance of the algorithm. We next improve the transient

performance by adding a previously proposed adaptive-step-size process. In

a second part of this paper, we present a multiple-spur parallel approach

that is based on the one-spur cancellation scheme, for which we provide a

closed-form expression of the asymptotic signal-plus-noise interference ratio

in the presence of frequency shifts and phase noise.

Keywords: Multi-standard transceiver, radio frequency impairment, spurs,

digital cancellation, least-mean-square (LMS) algorithm, adaptive-step-size

algorithm.

1. Introduction

The development of multiple standards for wireless communication, from

Global System for Mobile (GSM) to Long-Term Evolution (LTE), has been

motivated by the increasing demand for mobility and new telecommunication

services (e.g., data, audio, video) [1]. The coexistence of different wireless

systems has resulted in multi-standard solutions for the mobile architecture

loading, for instance, GSM, 3G, LTE, and WiFi devices, each of which comes

with their specific impairments [2, 3, 4, 5].

Due to a multiplicity of the operating frequencies and the physical proxim-

ity between the components, harmonics from clocks, called spurs, can appear

at detrimental frequencies. These spurs can have at least two harmful con-

sequences. First, due to substrate coupling between components, they can
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leak into the phase-locked loop. If they fall near the transmission frequency,

they can demodulate the received signal into the receiver path, which leads

to degradation of the receiver signal-to-noise ratio (SNR) [6]. The second

case is when spurs couple directly into the receiver path, which leads to a

mixture of desired noisy signal and additive spurs (see Figure 1).

Spurs can be mitigated using different passive and active techniques.

From frequency planning [7] to clock spreading [8, 9], all of these passive

methods aim at mitigating the level of the spur, to reduce the polluting

interference that is synthesized.

Nevertheless, the multiplicity of standards that are supported has lead to

the constant growth of spur sources (which is related to the growing number

of operating frequencies), and passive cancellation has become more difficult.

At the same time, radio frequency (RF) transceivers contain more and more

digital parts, and signal processing techniques are becoming an area of inter-

est for problematic RF impairment [10, 11, 12, 6]. Thus, active methods for

spur cancellation that are based on notch filter techniques or signal processing

algorithms have been developed over the last few years [13, 14, 15, 16, 17].

In this study, we focus on direct pollution from spurs. The observed noisy

signal is polluted by a fixed number of spurs that need to be mitigated. The

aim of this study is to propose a fully digital approach for spur attenuation

and to derive its analytic performance. We first focus on a one-spur model, for

easy comprehension, and then extend the problem and results to a multiple-

spur compensation model.
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Our method is based on (more or less accurate) knowledge of the spur

frequency. The algorithms studied here are based on synthesized references

of the spurs, which are tones with the same frequency. Due to imperfections

in the physical components, the reference cannot be considered as a perfect

replica of the polluting spur. We assume here that there is a shift between

the a priori or expected frequency (assumed to be known or estimated) and

the actual frequency of the spur. However, in real cases, the spur is not a

pure tone, as it is modulated by phase noise (PN). This PN should follow

a Brownian model, which is a classical model used in the literature for free-

running oscillators [18, 19, 20, 21].

For the one-spur model, we introduce a mono-spur cancellation block. For

this real-case model, we derive closed-form formulae of the signal-plus-noise-

to-interference ratio (SNIR) at the output of the algorithm. We also give an

equivalent scheme, which is a notch filter, and propose a frequency interpre-

tation of the system design. Then, we improve the transient response of the

algorithm by adding a previously proposed adaptive-step-size process to the

least-mean-square (LMS) algorithm, which leads to a more rapid solution

that has the same asymptotic performance.

In the second part of this paper, we consider a problematic P -spur mix-

ture, and propose a multiple-spur cancellation scheme based on a parallel

structure that is composed of P mono-spur cancellation blocks. In this model,

we still consider imperfections, e.g., PN and frequency shift (FS), for all of

the spurs and references, and compute the theoretical values of the asymp-
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totic SNIR in the most general case. Our main contributions, in addition to

being a comprehensive study, can be summarized below:

• Proposition and analytical analysis of a LMS-based algorithm for multiple-

spur pollution with specific impairments (frequency shift and phase

noise), with a frequency interpretation of the compensation system

(equivalence to a first-order infinite impulse response (IIR) notch fil-

ter),

• Derivation of closed-form expressions usable to tune the step-size pa-

rameter of the LMS-based spur cancellation algorithms, as well as to

predict the SIR performance with respect to the polluter properties

(frequency shift values, phase noise variances, reference amplitudes).

To the best of our knowledge, no such analytical results have been

found to date.

• Proposition of an adaptive step overlay to the LMS algorithm to im-

prove the transient response while keeping the same asymptotic per-

formance. The improved algorithm has almost the same convergence

speed as the recursive least squares (RLS) algorithm, but can better

cope with a sudden change in the configuration of the spurs (if the

parameters of the reference remain unchanged).

This paper is organized as follows. We give the one-spur model in Sec-

tion 2 and present the cancellation scheme in Section 3, for which we express
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asymptotic and transient studies. Then, we develop a multiple-spur cancel-

lation scheme and provide closed-form formulae of the overall performance

in Section 4. Section 5 validates our method and theoretical results through

simulations.

2. One-spur model

In this section, we first consider the cancellation of a single spur. The

discrete-time observation model (at sample time nTs) is

d(n) = x(n) + b(n) + s(n) , (1)

where d(n) is the observed signal, x(n) is the zero-mean data signal of vari-

ance σ2
x, b(n) is circular complex additive white Gaussian noise with zero

mean and variance σ2
b , and s(n) is the additive spur. The spur is expressed

as

s(n) = Aej(ω−δω)n+jφ(n)+jφ0 , (2)

where A is the unknown amplitude, φ0 is the unknown phase, φ(n) is the

PN that affects the spur, and ω is the a priori spur (natural) frequency,

which is normalized by the sample time. Nevertheless, due to imperfections

in the oscillators, the spur is affected by an unknown (natural) frequency

shift (FS) δω, which corresponds to the difference between the normalized a

priori frequency and the normalized effective frequency of the spur.

As mentioned in the introduction, we consider here that the PN is under
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a Brownian model [19, 20, 21]. The evolution of the phase is

φn+1 = φn + ξ(n) , (3)

with φ(0) = 0 and ξ(n) is an additive white noise of variance σ2
ξ .

As the a priori frequency of the spur is known, a reference signal is synthe-

sized as an image of the polluting spur. The evolution of this reference is

written as

u(n) = Bejωn+jφR , (4)

where B is the amplitude of the reference and φR is its phase. In a real

case, the synthesized reference can also have a FS and PN. Nevertheless, as

it is only the global FS (spur + reference) and the global PN that matter,

we assume for simplicity that all of the imperfections are attributed to the

spur. The aim of the cancellation is to use the synthesized reference u(n)

to cancel the polluting spur and to evaluate the influence of the PN and FS

on the performance. The influence of the polluting spur, in terms of the

signal-plus-noise-to-interference-ratio (SNIR) expressed in dB, is

SNIRMixture = −10 log10

(

A2

σ2
x + σ2

b

)

, (5)

We denote e(n) as the compensated signal after application of the algorithm,
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and introduce the estimation error ǫ(n) as

ǫ(n) = x(n) + b(n)− e(n) . (6)

The asymptotic variance of the estimation error σ2
ǫ is expressed as

σ2
ǫ = lim

n→∞
E[|ǫ(n)|2] . (7)

The spur canceller is not intended to cancel the additive noise term. As we

focus here on the performance of the spur canceller and not on the impact of

the additive white noise, we consider for the performance measurement that

the noise is part of the desired signal. In other words, regarding the spur

cancellation algorithm, the desired signal is the observed signal without the

spur. The performance of the algorithm will be described by the SNIR after

compensation, defined by:

SNIRcomp = −10 log10

(

σ2
ǫ

σ2
x + σ2

b

)

. (8)

For the theoretical results, several hypotheses are made:

• The desired signal x(n) is a white complex zero-mean circular signal;

• The normalized FS δω ≪ ω (normalized frequency);

• The PN variance σ2
ξ ≪ 1.

We will see in Section 5.1 that the last two assumptions are completely
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satisfied in practical cases. The link between our model parameters (δω and

σ2
ξ ) and physical parameters of oscillator used in practice will also be ex-

plained later.

3. One-spur cancellation scheme and performance

3.1. Filter scheme

The compensated signal e(n) is obtained by subtracting the estimated

spur value ŝ(n) from the input sample d(n). This value is obtained by mul-

tiplying the reference signal u(n) by a complex adaptive coefficient w(n),

which is updated using the output of the algorithm e(n), as shown in Figure

2.

3.2. Ideal coefficient

From an analysis perspective, let us introduce the ideal coefficient for this

cancellation scheme, which is defined by a complex coefficient wopt(n) that

provides an output ŝ(n) that is strictly equal to the polluting spur s(n) for

all n. Thus, wopt(n) verifies:

wopt(n)u(n) = s(n) ∀n ∈ N . (9)

The iterative expression of the ideal coefficient using (2) and (4) is:

wopt(n) =
A

B
ej(φ0−φR)e−jδωnejφ(n) . (10)
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Due to the hypotheses made at the end of Section 2 (δω ≪ ω, σ2
ξ ≪ 1), the

ideal coefficient can be expressed recursively as

wopt(n+ 1) ≈ wopt(n) + wopt(n)[jξ(n)− jδω] . (11)

Using w(n) = wopt(n) specified in (10) or (11) in Figure 2 gives an ideally

recovered signal, which means that in this case e(n) = x(n)+ b(n) , ∀ n ∈ N.

As most of the parameters (e.g., amplitudes, phases, FS, PN) are not known,

the ideal coefficient cannot be used, and a recursive estimation of wopt(n) has

to be performed.

3.3. The LMS algorithm

We propose to use the LMS algorithm [22, 23], which is based on the

error signal e(n) = d(n) − ŝ(n), to perform the updating of the coefficient

w(n) :

ŝ(n) = w(n)u(n) (12)

e(n) = d(n)− ŝ(n) (13)

w(n+ 1) = w(n) + µu∗(n)e(n) (14)

where µ is the constant step size of the algorithm and ()∗ denotes complex

conjugate. The LMS algorithm is a stochastic-gradient descent method that

computes at each iteration n the gradient of the instantaneous square error

as 1/2 ∂|e(n)|2/∂w = −u∗(n)e(n), in order to use the steepest descend to
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update the coefficient w(n) in (14). In Appendix A, we briefly review how

the LMS algorithm approach can also be legitimized thanks to a weighted-

least-squares error cost function to be minimized. In the case of a perfect

situation (i.e., no PN and no FS), it can be shown that (10) is the solution

of the Yule-Walker equation, to which the LMS algorithm converges [24].

3.4. Asymptotic performance

We now introduce the difference between the ideal coefficient and the

iterative coefficient w(n), called the misalignment v(n):

v(n) = w(n)− wopt(n) . (15)

From (13), with the model defined in (1) and using the property of the ideal

coefficient of (9), the output of the algorithm then becomes

e(n) = x(n) + b(n)− v(n)u(n) . (16)

We see from (16) and (6), that ǫ(n) = v(n)u(n), and with (8), we can link

the SNIR after compensation to the variance of the misalignment as

SNIRcomp = −10 log10

(

B2σ2
v

σ2
x + σ2

b

)

. (17)

The variance of the misalignment can be expressed recursively using (11),

(14), (16), and (17) (see Appendix B). We use the same hypotheses as

mentioned at the end of Section 2, and since the PN follows a Brownian
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model, only the scale of this model φ(n+1)− φ(n) [which is the white noise

ξ(n)] has any influence. Therefore,

E[|v(n+ 1)|2] = (1− µB2)2E[|v(n)|2] + µ2B2(σ2
x + σ2

b )

+Q(δω, σ
2
ξ ) ,

(18)

where

Q(δω, σ
2
ξ ) =

A2

B2
(σ2

ξ + δ2ω) +
2A2(1− µB2)δ2ω(µB

2δ2ω − δ2ω + µB2)

B2(µ2B4δ2ω − 2µB2δ2ω + µ2B4)
(19)

Equation (18) is composed of three terms: the first is the recursive term; the

second is the contribution of the noisy signal; and the last term Q(δω, σ
2
ξ )

represents the impact of both the PN and FS on the overall performance.

Asymptotically, we assume that E[|v(n+1)|2] = E[|v(n)|2], and substitut-

ing (18) into (17) and using the definition of (19), we obtain the asymptotic

SNIR after convergence as

SNIRcomp = −10 log10

[

µB2

2− µB2
+

Q(σ2
ξ , δω)

µ(σ2
x + σ2

b )(2− µB2)

]

. (20)

A maximal value of the step size µ, to ensure the convergence of the

algorithm (see [24, Section 9-4]), is given by

µ < µmax =
2

B2
. (21)
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The asymptotic SNIR is composed of a static term (misalignment due

to the presence of the input noise) and the pollution term (due to the PN

and FS). It appears that the step size µ defined in (14) leads to a trade-off

between the accuracy of the estimate and resistance against the contribution

of the polluter.

We consider here that µ ≪ 1. The optimal step size µopt is then obtained

by the maximisation of (20) (see Appendix C), and is described on

µopt =









A2

√

108 (σ2
x+σ2

b
) δω

4−σ2
ξ

3
A2

σ2
x+σ2

b

3
3
2 (σ2

x + σ2
b )B

6
+

2A2 δω
2

(σ2
x + σ2

b )B
6









1
3

+
σ2
ξ A

2

3 (σ2
x + σ2

b )B
4







A2

√

108 (σ2
x+σ2

b
) δω4

−σ2
ξ
3
A2

σ2
x+σ2

b

3
3
2 (σ2

x+σ2
b
)B6

+ 2A2 δω
2

(σ2
x+σ2

b
)B6







1
3

.
(22)

3.5. Equivalent scheme in z domain

From (12), (13), (14), the update of the filter coefficient can be expressed

as

w(n+ 1) = (1− µB2)w(n) + µd(n)u∗(n) . (23)

This means that the algorithm can be considered as a low-pass filter (LPF)

noise canceller, based on the filtering of d(n)u∗(n). The equivalent scheme is

presented in Figure 3.

The observation d(n) is first frequency shifted downward (by −ω) and
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then filtered using a LPF. As a consequence, the translated observation

d(n)u∗(n) has its spur at the frequency −δω and is selected by the LPF.

The result is then frequency shifted back upward by the reference frequency

ω and then subtracted from the observed data.

From (23), the transfer function of the LPF in the z domain is

L(z) =
W (z)

U∗(z) ∗D(z)
=

µ

z − (1− µB2)
(24)

where ∗ denotes convolution in the z domain. This filter has a cut-off fre-

quency of µB2. As a consequence, there is a direct link between the value of

the LMS step size and the bandwidth of the LPF.

From this filter scheme, a global notch structure can be obtained as the

result of the direct filtering of the observation d(n) by a filter H(z) (cf Figure

3). In the z domain, as L(z) ∗ U(z) = BL(ze−jω), the output of the global

filter H is [24]

E(z) = D(z)−W (z) ∗ U(z)

= D(z)− {L(z)[D(z) ∗ U∗(z)]} ∗ U(z)

= D(z)− [BL(z)D(zejω)] ∗ U(z) .

We denote

G(z) = BL(z)D(zejω)
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so that

E(z) = D(z)− BG(ze−jω) = D(z)− B2L(ze−jω)D(z)

= D(z)− [B2L(z) ∗ U(z)]D(z) .

We can define H(z) as the global notch filter response of the overall structure

in the z domain, expressed as

H(z) =
E(z)

D(z)
= 1− B2L(z) ∗ U(z) . (25)

The filter thus obtained is a band stop filter, as L(z) ∗ U(z) is a LPF that

is up-shifted in frequency by ω. Furthermore, from (25), the z transform of

the filter becomes

H(z) = 1− µB2

zejω − (1− µB2)

=
1− z−1ejω

1− (1− µB2)ejωz−1
.

(26)

It is of note that the equivalent notch filterH(z) coincides with the first-order

IIR notch filter implemented in [14].

3.6. Special cases and approximate performance formulae

In this subsection, we consider two special cases (frequency shift only

and phase noise only) to obtain simplified and more interpretable asymptotic

performance formulae.
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3.6.1. Frequency shift only

We consider here that there is no PN, i.e., σ2
ξ = 0. The pollution term

from (19) thus becomes

QFS(δω) =
2A2(1− µB2)δ2ω(µB

2δ2ω − δ2ω + µB2)

B2(µ2B4δ2ω − 2µB2δ2ω + µ2B4)
. (27)

We assume that the FS δω is smaller than the step µ. The asymptotic

SNIR with only FS can therefore be approximated as:

SNIRFS ≃ −10 log10

[

µB2

2
+

A2δ2ω
(σ2

x + σ2
b )µ

2B4

]

. (28)

It should be noted that due to the simplifications of (19) and (20), (28) can be

obtained equivalently with a frequency-domain representation based on the

LPF L(z) and a power spectral density computation (see Appendix D). The

hypothesis δω < µ consists of having a LPF cut-off frequency that is greater

than the FS. Indeed, the input of the LPF d(n)u∗(n) has a spur at frequency

−δω, which can only be mitigated if the LPF has a cut-off frequency that is

greater than the FS.

From the maximisation of (28), a simplified expression of the optimal step

size in this case can be obtained as

µFS
opt =

3

√

4A2δ2ω
B6(σ2

x + σ2
b )

. (29)

From (28) and (29), the maximal value of the SNIR can be analytically
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expressed as

SNIRFS
Max = −1

3
10 log10

[

27A2δ2ω
16(σ2

x + σ2
b )

]

. (30)

Equation (30) means that the SNIR performance will decrease by 6.66 dB

per decade of the increase in the FS. This gives a direct link between the

expected performance and the acceptable FS.

3.6.2. Phase noise only

We now consider that the reference frequency perfectly matches the spur

frequency, i.e., δω = 0. With only PN, the pollution term from (19) is

Q(δω, σ
2
ξ ) =

A2

B2
σ2
ξ . (31)

The associated SNIR is

SNIRPN = −10 log10

[

µB2

2− µB2
+

A2σ2
ξ

(σ2
x + σ2

b )µB
2(2− µB2)

]

. (32)

In the frequency domain, the PN will widen the spur spectrum, so if the

cut-off frequency of the LPF L(z) is too small, the LPF will not mitigate all

of the spur band, which introduces performance loss .

As in the case of FS only, a simplified optimal step size can be obtained

from (32) in the case of PN only:

µPN
opt =

1

B2

√

σ2
ξ

A2

σ2
x

(33)
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and from (33), the maximal SNIR for a given PN can be analytically ex-

pressed as

SNIRPN
max = 10 log10

(√

σ2
x + σ2

b

σ2
ξA

2
− 1

2

)

. (34)

3.7. Transient mode and adaptive step process

Equations (19) - (28) describe the performance in the asymptotic mode,

after convergence of the system. In the transient mode, where the filter w(n)

converges to the ideal coefficient, the average SNIR is a function of the sample

index n, and is denoted as

SNIR(n) = −10 log10

[

B2E[|v(n)|2]
σ2
x + σ2

b

]

. (35)

In the asymptotic mode, where n → ∞, the transient SNIR defined in (35)

converges to the asymptotic SNIR defined in (17). From (18), and assuming

w(1) = 0, the average SNIR can be obtained recursively, which leads to the

closed-form formula

SNIR(n) = −10 log10

{

B2

σ2
x + σ2

b

[

(1− µB2)2n
A2

B2

+[µ2B2(σ2
x + σ2

b ) +Q(δω, σ
2
ξ )]

1− (1− µB2)2n

µB2(2− µB2)

]}

.

(36)

First, it is important to note that limn→∞ SNIR(n) = SNIRcomp, as de-

fined in (20). At the same time, (36) demonstrates that the asymptotic

convergence speed is inversely proportional to the step size µ. To have a

faster algorithm in the transient mode, we propose to add an adaptive-step-
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size process to the LMS algorithm. Thus, the step size will have a large

value if the convergence is not settled, and will have to converge to a deter-

ministic value. The purpose is to have the same asymptotic performance as

theoretically expressed in (20), but also to limit the transient mode of the

algorithm.

The step-size update is based on the instantaneous square error |e(n)|2,

to which a gradient descent is applied. We use the step-size update proposed

in [25], which is based on a geometric update [26] with a forgetting factor

γ < 1 [27]:

µn+1 = {µn [γ + η|u∗(n)e(n)G(n)|]}µmax

µmin
(37)

where G(n) = ∂w(n)/∂µ can be expressed recursively as

G(n) = (1− µnB
2)G(n) + u∗(n)e(n) (38)

η is a constant factor, and {}µmax

µmin
means that the step size is bounded between

a maximal and a minimal value. The maximal value is set for convergence

reasons from (21), and the minimal value is set to have the desired asymp-

totic performance [for instance, by setting the value of µmin to the optimal

value (22) in a given scenario, typically, the worst case, where Q(δω, σ
2
ξ ) is

maximum].

The term |u∗(n)e(n)G(n)| represents the recursive expression of the cost

function derivative ∂|e(n)|2/∂µ|n. By construction, this has an important
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value if the convergence is not settled, and in the asymptotic mode, it con-

verges to 0.

With a geometric update combined with a forgetting factor, the step size

will necessarily increase during transient mode, where γ+η|u∗(n)e(n)G(n)| >

1, and then decrease to finally converge to µmin in the asymptotic mode

(where γ + η|u∗(n)e(n)G(n)| < 1).

The LMS algorithm combined with the adaptive-step-size process de-

signed is summarized as

ŝ(n) = w(n)u(n)

e(n) = d(n)− ŝ(n)

w(n+ 1) = w(n) + µnu
∗(n)e(n)

G(n+ 1) = (1− µnB
2)G(n) + u∗(n)e(n)

µn+1 = {µn [γ + η|u∗(n)e(n)G(n)|]}µmax

µmin
.

(39)

Here, the first three equations correspond to the LMS algorithm, and the last

two correspond to the adaptive-step-size process overlay. In the asymptotic

mode, (39) is equivalent to (12), (13), and (14) with µn = µmin.

4. Multi-spur cancellation scheme

Several spurs can be present in the baseband signal at different frequen-

cies. We consider here the case where P spurs pollute the noisy signal. We

assume that all of the spur frequencies are different from each other. The
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mixture is given by

d(n) = x(n) + b(n) +
P
∑

i=1

si(n) (40)

with

si(n) = Aie
j(ωi−δωi

)n+jφ0i+jφi(n) (41)

where Ai is the unknown amplitude, φ0i is the unknown phase, φi(n) is the

PN that affects Spur i, ωi is the a priori frequency, and δωi
is the FS of Spur

i. We consider that all of the PNs are under a Brownian model of variance

σ2
ξi
, as in Section 2. For each spur, a dedicated reference is synthesized as

ui(n) = Bie
jωin+jφRi . (42)

As all of the spur frequencies are assumed to be different, the spurs are

temporally uncorrelated. From the one-spur cancellation scheme defined in

Section 3, a parallel structure can be designed, where all of the spurs are

simultaneously filtered (the P references are weighted by P complex coeffi-

cients). The parallel cancellation scheme is presented in Figure 4. In this

structure, all of the estimates ŝi(n) coming from the LMS blocks are summed

and then subtracted from the observation d(n). The resulting output e(n) is

then used as feedback to the P blocks.
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The output of the algorithm at time index n is written as

e(n) = d(n)− Σ̂(n) , (43)

where

Σ̂(n) =
P
∑

i=1

wi(n)ui(n) (44)

is the global estimate. The iteration process of the P filter coefficients is then

set from (14) as

wi(n+ 1) = wi(n) + µu∗
i (n)e(n) ; ∀i (45)

where µ is the global constant step size used in the structure. For all of the

blocks in Figure 4, the adaptive-step-size process described in (39) can also

be used.

At the same time, for each block, we introduce the related pollution factor

from (19) as

Qi(δωi
, σ2

ξi
) =

A2
i

B2
i

(σ2
ξi
+ δ2ωi

) +
2A2

i (1− µB2
i )δ

2
ωi
(µB2

i δ
2
ωi
− δ2ωi

+ µB2
i )

B2
i (µ

2B4
i δ

2
ωi
− 2µB2

i δ
2
ωi
+ µ2B4

i )
.

(46)

Assuming there is no correlation between the spurs and the spur estimates,

the asymptotic SNIR can be expressed (see Appendix E) as
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SNIRPaLMS[P]
= −10 log10

[

µ
∑P

i=1 B
2
i

2− µ
∑P

i=1 B
2
i

+

∑P
i=1 Qi(δωi

, σ2
ξi
)

µ(σ2
x + σ2

b )(2− µ
∑P

i=1 B
2
i )

]

.

(47)

The SNIR is composed of two terms: the first is due to the desired noisy

signal, and the second is due to the polluting terms. In the case of one spur,

the expression in (47) is equal to the asymptotic SNIR expressed in (20).

5. Simulation

In this section, analytic formulae for the asymptotic and transient per-

formance of the digital spur cancellation algorithms are compared to simu-

lations.

5.1. Link between model parameters and physical values

First, we have supposed that the a priori spur frequency is perfectly

known, as in the case of multi-standard transceivers. The clock harmonics

are exact multiples of the operating clock frequency, and a spur will fall into

the reception stage if one of the harmonics is within the signal bandwidth at

the receiver carrier frequency fRx (see Figure 1). In such a case, the a priori

spur natural frequency ω (normalized between 0 and 2π) , defined in (2) and

(4), is obtained from the clock frequency harmonic, which is a multiple of

the operating clock frequency Fclock, the received carrier frequency fRx and
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the sampling frequency F , where

ω = 2π
pFclock − fRx

F
, (48)

with p the index of the polluting harmonic.

As an example, if we consider a clock operating at Fclock = 26 MHz, and

a carrier frequency fRx = 930 MHz for a LTE 10 MHz signal (at sampling

frequency F = 15.36 MHz), the 36th clock harmonic, (at 936 MHz) will

pollute the received signal. The spur will be at fs = 6 MHz in baseband,

leading to

ω = 2π
36 · 26e6− 930e6

15.36e6
= 2π · 0.39 .

Our models and performance equations are based on values of the fre-

quency shift δω and the phase noise variance σ2
ξ . First, the parameter δω

is related to the practical imprecision ∆ of a synthetized frequency, which

is expressed in parts-per-million (ppm). For example, in LTE systems, a

typical frequency drift is about 10 ppm [28, 29]. The link between δω and

the physical parameters (spur frequency fs, sampling frequency F , expressed

in Hertz) is δω = ∆fs/F . For example, in LTE, for a signal bandwidth of

10 MHz sampled at F = 15.36 MHz, with a polluting spur at 6 MHz, the

resulting δω is 4 · 10−6.

Secondly, we have to link our parameter model σ2
ξ to a practical phase

noise specification. A state-of-the-art discretized model for Brownian phase
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noise is φ(n) = 2πfs
√
cB(n), where fs is the spur frequency, B(n) repre-

sents the Brownian motion process of variance 1
F

(where F is the sampling

frequency), and c is a parameter of the oscillator defined in [18]. Thus, our

state noise variance σ2
ξ is 4π2f 2

s c/F . The oscillator constant c cannot be

obtained directly, but is a function of the oscillator power spectral density

L expressed in dBc/Hz at a specific frequency f (> 0), with the relation

L(f) = 10 log10 (f
2
s c/f

2) [18, 30]. The link between a phase noise specifica-

tion and the state noise variance of our model is finally

σ2
ξ = 4π2f 210−

L(f)
10

1

F
.

For example, in LTE, for a signal bandwidth of 10 MHz (F = 15.36 MHz) and

for a power spectral density of −100 dBc/Hz at f = 10 kHz, the equivalent

variance of the Brownian model is σ2
ξ = 2.5 · 10−8.

5.2. One-spur case

We focus first on the transient performance for one spur. We consider

here that the observation is composed of a white complex signal of unit

variance, an additive white complex Gaussian noise with a SNR of 10 dB

and a spur of known frequency, where the SNIR before compensation is

0 dB. The spur follows the model presented in (2), which is affected by

a frequency shift δω = 10−7, and the corresponding Brownian PN has a

variance σ2
ξ of 10−7. The reference is constructed from (4) and is used in the

filter scheme described in Figure 2. At the middle of the simulation, a change
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in the configuration is applied: the frequency of the spur and the reference

are not changed, but the level of the spur is raised from 0 dB to 5 dB to

force the algorithm to re-converge after having reached the asymptotic mode

(assuming unchanged parameters for the reference). The two algorithms

presented in Section 3 are compared: the constant-step solution of (12)-(14),

and the adaptive-step-size solution of (39). For these algorithms to have the

same asymptotic performance, the value of the constant LMS step size is

the same as the minimal step of the adaptive-step-size solution, and this is

set to 2−11 (which is close to optimal). The maximal value of the adaptive

step size is bounded by (21). The simulated mean transient SNIRs for the

two algorithms, the theoretical SNIR evolution for the constant step size

of (36), the theoretical asymptotic value of (20), and the adaptive-step-size

algorithm of (39) are depicted in Figure 5. Also, two other methods in the

literature are computed for comparizon: the recursive least squares (RLS)

algorithm [24] and the equivalent IIR as described in (26) and presented

in [14]. It is first shown that the theoretical formulae are validated by the

simulations: the mean transient performance of the constant-step-size LMS

follows (36) and constant and adaptive-step-sized algorithms have the same

asymptotic performance, as defined in (20). Furthermore, the adaptive-step-

size solution is more rapid than the constant-step-size solution for the same

asymptotic performance. The constant-step-size LMS solution has the same

transient and asymptotic performance as the IIR filter, which is in agreement

with the equivalent notch filter of (26). Finally, the adaptive solution has
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a convergence rate that is similar to the RLS solution, but can better cope

with a change in the configuration of the spurs, and offers a more suitable

hardware implementation (as there is no division in our algorithm).

Figure 6 compares the asymptotic SNIR to the simulated results for one

spur with input SNIR of 10 dB, in the case of FS only (no PN). The SNIR

is computed versus the step size (which is equivalent to the minimal step

size in the case of the adaptive-step-size solution) for different values of FS.

The simulated data is white and has an additive white noise of variance 10

dB. The figure validates the asymptotic formula (28). The presence of the

optimal step size is also validated, and the loss of performance, due to the

second term of (28), is proportional to the square of the step size, as expected

by the formulae.

At the same time, the optimal step size gives the maximal value of the

SNIR that can be obtained for a given FS. Figure 7 shows the evolution of this

maximal SNIR (30) versus FS. This shows that the theory is in agreement,

and that the FS leads to a loss of performance of 6.66 dB per decade.

Figure 8 compares the asymptotic SNIR to the simulated results in the

case of PN (no FS). The asymptotic SNIR is computed versus the step size,

for different variances of the Brownian model of (3), again, showing agree-

ment with the theory described in (32).

The maximal SNIR is given by (34), and is validated in Figure 9 for an

initial SNIR of 10 dB.

In Figure 10, we consider both the PN and FS for one spur, and the
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theory elaborated in (20) is validated by the simulation for several pairs of

σ2
ξ and δω.

5.3. Multi-spur case

In order to show the impact of the number of spurs on the asymptotic

performance, Figure 11 shows the asymptotic SNIR of (47), as compared to

the simulations. The noisy signal is still white, and is polluted by 1 to P

spurs of different frequencies. All of the P spurs are affected by a Brownian

PN of variance σ2
ξi
and their reference has a FS of δωi

, following the model

described in (41) and (42). The parameters used are described in Table 1.

It should be noted that the frequency values are given for information only,

and have no impact on the overall performance, as (47) does not depend on

wi.

5.4. Bit error rate

5.4.1. QPSK Case

We compare the influence of the spurs and the compensated spurs in

terms of the bit error rate (BER). We first consider a data signal modulated

by quadrature phase shift keying (QPSK) modulation through an additive

white Gaussian noise channel with various SNRs. We suppose that the noisy

signal is polluted by two spurs, affected by a FS of 10−7 and a PN of variance

10−7. We show in Figure 12 the results of the BER without the compensation

system and with the parallel LMS compensation scheme (with step size of

2−11) for different values of the channel SNR and for different SIRs.(Here,
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the amplitudes of the spurs are computed from only the power of the desired

signal (SIR) neglecting the additive white noise in order to have constant spur

amplitude versus the channel SNR: the amplitudes of the spurs are obtained

directly by A1 = A2 =
√

σ2
x/10

SIR/10, where σ2
x is the variance of the data

signal without noise.) We show that our methods greatly reduce the BER

and that the compensated BER comes close to the ideal channel influence

Q
(

√

2Eb/N0

)

.

5.4.2. LTE Case

Finally, we compare the BER for the more realistic case of a simplified

LTE modulation that is based on the Third Generation Partnership Project

(3GPP) model [31]. The data signal follows a LTE 1.4 MHz bandwidth

specifications based on orthogonal frequency division multiplexing (OFDM),

with 72 QPSK subcarriers, a fast Fourier transform (FFT) of size of 128, and

a cyclic prefix of length nine samples. The BER is computed on the uncoded

bits of the data and through an additive white Gaussian noise channel with

various SNRs. We consider that the noisy signal is polluted by two spurs.

These spurs are affected by a FS of 10−7 and are modulated with a Brownian

PN of variance 10−7.

Figure 13 shows the results of the BER without compensation and with

the parallel LMS compensation scheme for different values of the channel

SNR and for different SIRs. The theoretical performance without spurs (i.e.,
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only the influence of the channel) is shown in black 1. Without compensation,

it is shown that the presence of the spurs reduces the performance of the

overall system, which leads to a lower limit on the BER. The decrease in

performance depends on input SIR, although it impacts the signal as soon as

the SNR is greater than about 4 dB. After compensation, the BER is greatly

reduced compared to the initial BER, and reaches a floor. Thus, the designed

system has good performance if the spurs have an initial SIR between 0 dB

and 20 dB.

5.5. Practical Phase Noise case

Up to now, we have verified the theoretical performance of the proposed

algorithm in the presence of Brownian phase noise, which is the usual model

chosen in practise for free running oscillators [19, 20, 21]. However, if a more

practical PLL-type oscillator is used, the polluting model for the phase noise

will not be Brownian. In such a case, the theoretical asymptotic perfor-

mance expressions (20) and (32) are no longer valid, and the performance

will depend on the scale and shape of chosen phase noise.

The profile of a practical phase noise is depicted in Figure 14. Such a

phase noise spectrum can result from a sum of 1/f 2 noise modeled as a

1For the simulation, the theoretical curve is given by the link between the SNR and
Eb/N0. In the case of LTE with 1.4-MHz bandwidth and QPSK modulation, the link is
given by Eb/N0 = SNR(nFFT + nCP)/(2nRe), where nFFT = 128 is the size of the fast
Fourier transform, nCP = 9 is the length of the cyclic prefix, and nRe = 72 is the number

of received carriers. This leads to the expression of BER = Q
[

√

SNR(nFFT + nCP)/nRe

]
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Lorenz spectrum, 1/f noise (flicker noise) filtered by a second-order PLL,

and a noise floor as described in [32, Section 2.3]. An example of a phase

noise specification from [32, Section 2.3] is proposed in Table 2.

In Figure 15, we represent in red the asymptotic performance of our al-

gorithm versus the step size in the presence of one spur, impaired by the

practical phase noise described in Table 2, obtained by Monte-Carlo simula-

tion. For comparison, we also plot the theoretical asymptotic performance

with Brownian phase noise with specific variance obtained in (32). We note

that, for large values of the step size, the performance is similar for the two

models [since the first term of (32), µB2/(2−µB2), is predominant and does

not depend on the model], whereas for small values of the step size, the

theoretical curve under the Brownian assumption does not match with the

practical performance [since the second term of (32) is predominant and is

model dependent].

6. Conclusions

This study has focused on the performance of a multiple-spur cancel-

lation scheme. We first proposed a one-spur canceller based on the LMS

algorithm, which uses a priori knowledge of spur frequency to create a refer-

ence. We proposed a model with imperfections, due to the limited accuracy

of frequency knowledge and Brownian phase noise. In this case, we derived

closed-form formulae of the asymptotic SNR and show that the step size of

the algorithm can be optimally tuned. We showed that the LMS algorithm is
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equivalent to a notch filter, which leads to simplified expressions in the case

of PN only or FS only. We added an adaptive-step-size process to improve

the convergence speed without lowering the asymptotic performance. This

solution offers performance similar to the RLS algorithm but can better cope

with configuration changes. In a second part of the paper, we extended the

problem to the multiple-spur case, and developed a parallel scheme that uses

the one-spur block previously described. We developed closed-form formulae

of the asymptotic SNIR for P spurs, in a general case of P Brownian noises

and P FSs.

Appendix A. Establishment of the LMS algorithm

The goal of this appendix is to recall how the LMS approach can be

legitimized, from simplification of the recursive-least-squares approach. The

weighted least-squares cost function used is [24, 33]

Jn(ŵ) =
n
∑

p=1

λn−p|e(p)|2

with λ < 1, because of the nonstationarity of the parameters to be estimated.

Due to the structure of the filter defined in Figure 2, we have:

Jn(ŵ) =
n
∑

p=1

λn−p|d(p)− ŵu(p)|2

=
n
∑

p=1

λn−p [d(p)d∗(p)− ŵ∗d(p)u∗(p)− ŵd∗(p)u(p) + ŵŵ∗u(p)u∗(p)] .
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At each iteration, the weight estimate update w(n+1) is based on the minimi-

sation of Jn(ŵ). As the cost function is a real function of complex variables,

using complex derivative theory [34], the minimisation is obtained by set-

ting ∂Jn(ŵ)/∂ŵ
∗ = 0 and assuming ∂ŵ/∂ŵ∗ = 0. As a consequence, the

derivative component is written as

∂Jn(ŵ)

∂ŵ∗
= ∇ŵ∗Jn(ŵ) =

n
∑

p=1

λn−p∇ŵ∗ |e(p)|2 =
n
∑

p=1

λn−p [−d(p)u∗(p) + ŵu(p)u∗(p)] .

Setting ∂Jn(ŵ)/∂ŵ
∗ = 0 then leads to

w(n+ 1) =

∑n
p=1 λ

n−p[d(p)u∗(p)]
∑n

p=1 λ
n−p[u(p)u∗(p)]

. (49)

We denote the temporal autocorrelation of the reference by Rλ(n) and

the temporal crosscorrelation between the reference and the observation by

pλ(n), which are estimated as

Rλ(n) =
∑n

p=1 λ
n−pu(p)u∗(p) (50)

pλ(n) =
∑n

p=1 λ
n−pd(p)u∗(p) , (51)

and finally have

w(n+ 1) =
pλ(n)

Rλ(n)
. (52)
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The temporal crosscorrelation and autocorrelation can be recursively ex-

pressed as

pλ(n) = λpλ(n− 1) + d(n)u∗(n) (53)

Rλ(n) = λRλ(n− 1) + u(n)u∗(n) . (54)

Substituting (53) in (52), we have

w(n+ 1) =
1

Rλ(n)
[λpλ(n− 1) + d(n)u∗(n)] . (55)

From (52) and due to the recursive update of Rλ(n) expressed in (54)

pλ(n− 1) = w(n)Rλ(n− 1)

= w(n)
Rλ(n)− u(n)u∗(n)

λ
,

and substitution into (55) gives

w(n+ 1) = w(n) +
1

Rλ(n)
[−w(n)u(n)u∗(n) + d(n)u∗(n)] . (56)

As by construction e(n) = d(n)− w(n)u(n), the update becomes

w(n+ 1) = w(n) +
1

Rλ(n)
[e(n)u∗(n)] . (57)
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The standard update of the LMS algorithm [22] is finally obtained by sub-

stituting the inverse recursive update of the temporal autocorrelation of the

reference [1/Rλ(n)] with a constant step size µ, to have a less complex algo-

rithm, and thus the recursive equation of w(n) becomes

w(n+ 1) = w(n) + µu∗(n)e(n) , (58)

= w(n)− µ

2
∇w|e(n)|2

Appendix B. Proof of asymptotic misalignment variance for one

spur

The expression of the misalignment can be expressed recursively using

(14) and (11), as

v(n+ 1) = w(n+ 1)− wopt(n+ 1)

= w(n) + µu∗(n)[x(n) + b(n)]− µB2v(n)− wopt(n)

−wOpt(n)[jξ(n)− jδω]

= [w(n)− wopt(n)] + µu∗(n)[x(n) + b(n)]

−µB2v(n)− wopt(n)[jξ(n)− jδω]

= (1− µB2)v(n) + µu∗(n)[x(n) + b(n)]− wopt(n)[jξ(n)− jδω] .

(59)
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The LMS algorithm is based on minimization of the gradient of J(n), so

the complex sequence of the misalignment v(n) is white. Assuming tempo-

ral uncorrelation between the white sequences [the misalignment v(n), the

signal x(n), the additive noise b(n), and the phase noise ξ(n)], we only have

dependence between the misalignment v(n) and the recursive expression of

the optimal filter wopt(n). Note that there is no single dependency between

v(n) and [x(n)+b(n)] due to causality and the whiteness of the desired noisy

signal. The variance of the misalignment can be expressed as

E[|v(n+ 1)|2] = (1− µB2)2E[|v(n)|2] + µ2B2(σ2
x + σ2

b )

+
A2

B2
(σ2

ξ + δ2ω) + δω(1− µB2)E[|v(n)wopt(n)|] .
(60)

The term E[|v(n)wopt(n)|] can be expressed through the separation between

the real part and the imaginary part of the two components:

E[|v(n)wopt(n)|] =
2A2(µB2δ2ω − δ2ω + µB2)

B2(µ2B4δ2ω − 2µB2δ2ω + µ2B4)
. (61)

Then, replacing (61) in (60) leads to (18).

Appendix C. Proof of optimal step value

We still assume the aforementioned hypotheses

• The normalized FS δω ≪ ω (normalized frequency),
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• The PN variance σ2
ξ ≪ 1,

• The step size µ ≪ 1.

With these hypotheses, the linear asymptotic SNIR obtained in (20) can be

expressed as

SNIRlin
comp ≈

[

µB2

2
+

A2δ2ω
µ2B4(σ2

x + σ2
b )

+
A2σ2

ξ

2µB2(σ2
x + σ2

b )

]

. (62)

We denote

S(µ) =
∂SNIRlin

comp

∂µ

=
B2

2
− 2A2δ2ω

B4(σ2
x + σ2

b )µ
3
−

A2σ2
ξ

2(σ2
x + σ2

b )B
2µ2

. (63)

The optimal step value is obtained with S(µopt) = 0, leading to

−B6(σ2
x + σ2

b )µ
3
opt +B2A2σ2

ξµopt + 4A2δ2ω = 0 . (64)

Then, solving (64) leads to the optimal step expression derived in (22).

Appendix D. Proof of the simplified SNIR of a frequency shift in

the frequency domain

In the asymptotic mode, assuming that there is no PN, the algorithm is

equivalent to a notch filter after baseband frequency shifting of the spur. The
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estimation error at the output of the structure is expressed after shifting as

ǫBB(n) = [x(n) + b(n)− e(n)] u∗(n) . (65)

Expressing the z transform of the filter obtained, using the z transform of

the equivalent LPF (24), the estimation error can be expressed as:

EBB(z) = S(z) ∗ U∗(z)− B2W (z)

= S(z) ∗ U∗(z)− B2L(z)[D(z) ∗ U∗(z)] .

With (1) for the observation equation

EBB(z) = −B2L(z)[X(z) ∗ U∗(z)] + [1− B2L(z)][S(z) ∗ U∗(z)] . (66)

The variance of the estimation error is from (66)

σ2
ǫBB

= σ2
xB

4T
∫

1
2T

− 1
2T

|L(e2jπfT )|2df

+
∫

1
2T

− 1
2T

|1− B2L(e2jπfT )|2Γsu∗(f)df .

The first term corresponds to the static error due to the presence of the

noisy data (assumed to be white and with a power spectral density σ2
xT ).

The second term corresponds to the dynamic error related to the frequency

shift, where Γsu∗(f) is the power spectral density of su∗ (which corresponds

to the downshifted spur frequency). After computation and using the same
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hypotheses (δω ≪ 1, δω < µ;µ ≪ 1), the variance of the estimation error is

σ2
ǫBB

≈ σ2
x

µB2

2− µB2
+

(

Aδω
µB2

)2

, (67)

which leads to the same value of the asymptotic SNIR as described in the

simplified form of (28).

Appendix E. Proof of SNIR formula in the parallel LMS architec-

ture

In the parallel structure, the global output of the algorithm is composed

of the signal x(n), the noise b(n), the spurs si(n), and the spur estimates

wi(n)ui(n), such that

e(n) = x(n) + b(n) +
P
∑

i=1

si(n)−
P
∑

i=1

wi(n)ui(n) . (68)

The misalignments for each block are introduced with the same definition as

in (15), as si(n) = wopti(n)ui(n), so that

e(n) = x(n) + b(n)−
P
∑

i=1

vi(n)ui(n) . (69)

The estimation error of the structure, which is defined in (6), leads to the

expression of the asymptotic SNIR of the P stages:

SNIRP = −10 log10

(

∑P
i=1 B

2
iE[v2i ]

σ2
x + σ2

b

)

. (70)
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For each block, the misalignment is recursively described using (11), (15),

(45), (59), and (69) as

vi(n+ 1) = vi(n) + µu∗
i (n)[x(n) + b(n)]

− wopti(n)[jξi(n)− jδωi
]−

P
∑

j=1

µBiBjvj(n) , ∀i ∈ [1;P ] .
(71)

Assuming the same hypothesis between uncorrelated misalignment, the vari-

ance of Block i is expressed ∀i ∈ [1;P ] as

E[v2i (n)] =
µ(σ2

x + σ2
b )

2− µB2
i

+
Qi(σ

2
ξi
, δωi

)

µB2
i (2− µB2

i )
+

P
∑

j=1
j 6=i

[

µB2
jE[v2j(n)]

2− µB2
i

]

. (72)

From (72), the problem can be set in matrix form as

























2− µB2
1 . . . −µB2

P

−µB2
1 . . . −µB2

P

...
...

...

−µB2
1 . . . 2− µB2

P











































E[v21(n)]

E[v22(n)]

...

E[v2P (n)]



















=



















µ(σ2
x + σ2

b )

µ(σ2
x + σ2

b )

...

µ(σ2
x + σ2

b )



















+



















Q1(σ2
ξ1

,δω1 )

µB2
1

Q2(σ2
ξ2

,δω2 )

µB2
2

...

QP (σ2
ξP

,δωP
)

µB2
P



















.

The system can be solved for the P blocks, which leads to the same expression

of the variance, i.e., ∀i:

E[v2i ] =
µ(σ2

x + σ2
b )

2− µ
∑P

j=1 B
2
j

+
1
2

∑P
j=1 Qj

2− µ
∑P

j=1 B
2
j

+
Qi(σ

2
ξi
, δωi

)

2µB2
i

(73)
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Finally, substituting (73) into (70) gives

P
∑

i=1

B2
iE[v2i ] =

µ(σ2
x + σ2

b )
∑P

i=1 B
2
i

2− µ
∑P

j=1 B
2
j

+
1
2

∑P
i=1 B

2
i

∑P
j=1 Qj(σ

2
ξj
, δωj

)

2− µ
∑P

j=1 B
2
j

+

∑P
i=1 Qi(σ

2
ξi
, δωi

)

2µ
, ∀i .

The above equation can be simplified to

P
∑

i=1

B2
iE[v2i ] =

µ(σ2
x + σ2

b )
∑P

i=1 B
2
i

2− µ
∑P

j=1 B
2
j

+

∑P
i=1 Qi(σ

2
ξi
, δωi

)

µ(2− µ
∑P

j=1 B
2
j )

. (74)

Then, substituting (74) into (70) leads to the expression of the asymptotic

SNIR expressed in (47).
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Clock
clock spurs

Figure 1: Block diagram of a receiver stage with spur pollution due to clock harmonics.
LNA denotes the low noise amplifier, LPF denotes the low pass filter, and ADC denotes
the analog to digital converter.
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−

+d(n) = x(n) + b(n) + s(n)
+

e(n) = d(n)− ŝ(n)

ŝ(n) = w(n)u(n)

w(n)
u(n)

Figure 2: Filtering scheme used for spur cancellation.
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+ e(n)
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d(n)u∗(n)
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u(n)

ŝ(n)

H(z)

Figure 3: Equivalent scheme of the LMS algorithm where L(z) and H(z) denote, respec-
tively, a LPF in the z domain and the response of the global notch structure in the z
domain.
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Figure 4: Parallel LMS cancellation scheme
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Figure 5: Comparison of the mean transient SNIR for the two proposed solutions and for
other methods in the literature.
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Figure 6: Comparison of the theoretical SNIR obtained in (28) with the simulated results,
as a function of the step size, for one spur and with a FS of δω (PN=0).
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Figure 7: Comparison of the maximal SNIR obtained by simulation and the theoretical
SNIR (30), versus the FS of δω (PN=0).
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Figure 8: Comparison of the theoretical SNIR obtained in (32) with the simulated results,
versus the step size for one spur, when the spur is affected by a Brownian PN of variance
σ2
ξ (FS=0).
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Figure 9: Comparison of the maximal SNIR obtained by simulation and the value of the
SNIR with (34), versus phase noise variance σ2

ξ (FS=0).
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Figure 10: Comparison of the theoretical SNIR obtained in (20) with the simulated results,
versus the step size for one spur, when the spur is affected by a Brownian PN of variance
σ2
ξ and a FS δω.

57



10−4 10−3 10−2 10−1
0

5

10

15

20

25

30

35

40

Step size , µ

S
N
IR

(d
B
)

1 Spur: Simulation

1 Spur: Theory: (20) & (47)
2 Spurs: Simulation

2 Spurs: Theory: (47)
3 Spurs: Simulation

3 Spurs: Theory: (47)
4 Spurs: Simulation

4 Spurs: Theory: (47)
5 Spurs: Simulation

5 Spurs: Theory: (47)

Figure 11: Asymptotic performance of the parallel LMS structure in the case of one to
five spurs, with the parameters given in Table 1, versus step size of the LMS algorithm,
or the minimal step of the adaptive-step-size solution.
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Figure 12: Bit error rate of simple QPSK modulation versus SNR for two spurs of varying
SIR, with Brownian PN and affected by a FS. The BER is computed with and without
compensation.
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Figure 13: Bit error rate of LTE with signal bandwidth of 1.4 MHz, versus the SNR for
two spurs of varying SIR, with Brownian PN and affected by a FS. The BER is computed
with and without compensation.
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Figure 14: Double sideband phase noise in dBc/Hz
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and simulated performance with phase noise described in Table 2
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Indexi ωi Input SNIR (dB) B PN : σ2
ξi

FS : δωi

1 0.19 · 2π 10 0.9 10−6 10−6

2 0.22 · 2π 15 0.85 10−8 10−5

3 0.4 · 2π 5 1.2 10−6 10−7

4 0.6 · 2π 7 1 10−6 10−6

5 0.8 · 2π 12 1.1 10−5 10−6

Table 1: Parameters for the multiple-spur simulation in asymptotic mode for various
(normalized) frequencies ωi = 2πfsi/F (fsi is the frequency of the ith spur in baseband,
and F is the sampling frequency)..
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Phase Noise Parameter Value Unit
L0 -95 dBc/Hz

fcorner 1 kHz
BPLL 100 kHz
LFloor -150 dBc/ Hz

Table 2: Specification example for phase noise (see [32, section 2.3])
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