Sparsity-Based Algorithms for Blind Separation of Convolutive Mixtures with Application to EMG Signals - Archive ouverte HAL
Communication Dans Un Congrès Année : 2014

Sparsity-Based Algorithms for Blind Separation of Convolutive Mixtures with Application to EMG Signals

Résumé

In this paper we propose two iterative algorithms for the blind separation of convolutive mixtures of sparse signals. The first one, called Iterative Sparse Blind Separation (ISBS), minimizes a sparsity cost function using an approximate Newton technique. The second algorithm, referred to as Givens-based Sparse Blind Separation (GSBS) computes the separation matrix as a product of a whitening matrix and a unitary matrix estimated, via a Jacobi-like process, as the product of Givens rotations which minimize the sparsity cost function. The two sparsity based algorithms show significantly improved performance with respect to the time coherence based SOBI algorithm as illustrated by the simulation results and comparative study provided at the end of the paper.
Fichier principal
Vignette du fichier
1569923661.pdf (326.69 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01057145 , version 1 (21-08-2014)

Identifiants

  • HAL Id : hal-01057145 , version 1

Citer

Abdelouahab Boudjellal, Karim Abed-Meraim, Abdeldjalil Aissa El Bey, Adel Belouchrani, Philippe Ravier. Sparsity-Based Algorithms for Blind Separation of Convolutive Mixtures with Application to EMG Signals. SSP 2014 : IEEE Statistical Signal Processing Workshop, Jun 2014, Gold Coast, Australia. pp.197 - 200. ⟨hal-01057145⟩
243 Consultations
151 Téléchargements

Partager

More